To date, there is no consensus on whether or how exposure to blast waves (i.e., exposure to blast overpressure) causes mild traumatic brain injury. Without such an understanding, we cannot develop effective strategies that prevent, or provide protection against, this type of injury. We perform experimental studies to support the development and validation of high-fidelity finite-element biomechanical models, through which we investigate and quantify the effects of various potential mechanisms of blast-induced traumatic brain injury.
Boiczyk, G. M., N. Pearson, V. B. Kote, A. Sundaramurthy, D. R. Subramaniam, J. E. Rubio, G. Unnikrishnan, J. Reifman, and K. L. Monson. Rate- and region-dependent mechanical properties of Göttingen minipig brain tissue in simple shear and unconfined compression. Journal of Biomechanical Engineering. 2023 June 1; 145(6):061004. [PDF, Pubmed]
Rubio, J. E., D. R. Subramaniam, G. Unnikrishnan, V. Sajja, S. Van Albert, F. Rossetti, A. Frock, G. Nguyen, A. Sundaramurthy, J. B. Long, and J. Reifman. A biomechanical-based approach to scale blast-induced molecular changes in the brain. Scientific Reports. 2022 August 26; 12:14605. [PDF, Pubmed]
Pearson, N., G. M. Boiczyk, V. B. Kote, A. Sundaramurthy, D. R. Subramaniam, J. E. Rubio, G. Unnikrishnan, J. Reifman, and K. Monson. A strain rate-dependent constitutive model for Göttingen minipig cerebral arteries. Journal of Biomechanical Engineering. 2022 August 1; 144(8):081007. [PDF, PubMed]
Sundaramurthy, A., V. B. Kote, N. Pearson, G. M. Boiczyk, E. M. McNeil, A. J. Nelson, D. R. Subramaniam, J. E. Rubio, K. Monson, W. N. Hardy, P. J. VandeVord, G. Unnikrishnan, and J. Reifman. A 3-D finite-element minipig model to assess brain biomechanical responses to blast exposure. Frontiers in Bioengineering and Biotechnology. 2021 December 17; 9:757755. [PDF, PubMed]
Subramaniam, D. R., G. Unnikrishnan, A. Sundaramurthy, J. E. Rubio, V. B. Kote, and J. Reifman. Cerebral vasculature influences blast-induced biomechanical responses of human brain tissue. Frontiers in Bioengineering and Biotechnology. 2021 November 4; 9:744808. [PDF, PubMed]
Rubio, J. E., G. Unnikrishnan, V. S. S. S. Sajja, S. Van Albert, F. Rosetti, M. Skotak, E. Alay, A. Sundaramurthy, D. R. Subramaniam, J. B. Long, N. Chandra, and J. Reifman. Investigation of the direct and indirect mechanisms of primary blast insult to the brain. Scientific Reports. 2021 August 6; 11:16040. [PDF, PubMed]
Unnikrishnan, G., H. Mao, V. S. S. S. Sajja, S. van Albert, A. Sundaramurthy, J. E. Rubio, D. R. Subramaniam, J. Long, and J. Reifman. Animal orientation affects brain biomechanical responses to blast-wave exposure. Journal of Biomechanical Engineering. 2021 May 1; 143(5):051007. [PDF, PubMed]
Subramaniam, D. R., G. Unnikrishnan, A. Sundaramurthy, J. E. Rubio, V. B. Kote, and J. Reifman. The importance of modeling the human cerebral vasculature in blunt trauma. BioMedical Engineering OnLine. 2021 January 14; 20(1):11. [PDF, PubMed]
Rubio, J. E., M. Skotak, E. Alay, A. Sundaramurthy, D. R. Subramaniam, V. B. Kote, S. Yeoh, K. Monson, N. Chandra, G. Unnikrishnan, and J. Reifman. Does blast exposure to the torso cause a blood surge to the brain? Frontiers in Bioengineering and Biotechnology. 2020 December 17; 8:573647. [PDF, PubMed]
Unnikrishnan, G., H. Mao, A. Sundaramurthy, E. D. Bell, S. Yeoh, K. Monson, and J. Reifman. A 3-D rat brain model for blast-wave exposure: effects of brain vasculature and material properties. Annals of Biomedical Engineering. 2019 September; 47(9):2033-2044. [PDF, PubMed]
Bell, E. D., M. Converse, H. Mao, G. Unnikrishnan, J. Reifman, and K. L. Monson. Material properties of rat middle cerebral arteries at high strain rates. Journal of Biomechanical Engineering. 2018 July 1; 140(7):071004. [PDF, PubMed]
Mao, H., G. Unnikrishnan, V. Rakesh, and J. Reifman. Untangling the effect of head acceleration on brain responses to blast waves. Journal of Biomechanical Engineering. 2015 December 1; 137(12):124502. [PDF, PubMed]