The blood coagulation system comprises a large number of biochemical and cellular interactions that are involved in the formation of a blood clot at the site of vascular injury. Our work, which focuses on trauma-induced coagulopathy, aims to 1) investigate the quantitative differences between normal and pathological blood clotting, 2) elucidate the contributions of hypothermia and acidosis to coagulopathy, and 3) design strategies to modulate the blood coagulation process by therapeutic interventions.
Mitrophanov, A. Y., G. Merrill-Skoloff, S. P. Grover, V. Govindarajan, A. Kolanjiyil, D. S. Hariprasad, G. Unnikrishnan, R. Flaumenhaft, and J. Reifman. Injury length and arteriole constriction shape clot growth and blood-flow acceleration in a mouse model of thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2020 September; 40(9):2114-2126. [PDF, PubMed]
Mitrophanov, A. Y., F. Szlam, R. M. Sniecinski, J. H. Levy, and J. Reifman. Controlled multifactorial coagulopathy: effects of dilution, hypothermia, and acidosis on thrombin generation in vitro. Anesthesia & Analgesia. 2020 April; 130(4):1063-1076. [PDF, PubMed]
Mitrophanov, A. Y., V. Govindarajan, S. Zhu, R. Li, Y. Lu, S. L. Diamond, and J. Reifman. Microfluidic and computational study of structural properties and resistance to flow of blood clots under arterial shear. Biomechanics and Modeling in Mechanobiology. 2019 October; 18(5):1461-1474. [PDF, PubMed]
Govindarajan, V., S. Zhu, R. Li, Y. Lu, S. L. Diamond, J. Reifman, and A. Y. Mitrophanov. Impact of tissue factor localization on blood clot structure and resistance under venous shear. Biophysical Journal. 2018 February 27; 114(4):978-991. [PDF, PubMed]
Mitrophanov, A. Y., F. Szlam, R. M. Sniecinski, J. H. Levy, and J. Reifman. In reply to "Clinical and practical aspects of restoring thrombin generation in acute coagulopathic bleeding." Anesthesia & Analgesia. 2017 February; 124(2):702. [PDF, PubMed]
Mitrophanov, A. Y., F. Szlam, R. M. Sniecinski, J. H. Levy, and J. Reifman. In reply to "If the goal is balance, why not fresh frozen plasma?" Anesthesia & Analgesia. 2017 February; 124(2):699-700. [PDF, PubMed]
Mitrophanov, A. Y., F. Szlam, R. M. Sniecinski, J. H. Levy, and J. Reifman. A step toward balance: thrombin generation improvement via procoagulant factor and antithrombin supplementation. Anesthesia & Analgesia. 2016 September; 123(3):535-546. [PDF, PubMed]
Govindarajan, V., V. Rakesh, J. Reifman, and A. Y. Mitrophanov. Computational study of thrombus formation and clotting factor effects under venous flow conditions. Biophysical Journal. 2016 April 26; 110(8):1869-1885. [PDF, PubMed]
Mitrophanov, A. Y., F. R. Rosendaal, and J. Reifman. Mechanistic modeling of the effects of acidosis on thrombin generation. Anesthesia & Analgesia. 2015 August; 121(2):278-288. [PDF, PubMed]
Mitrophanov, A. Y., A. S. Wolberg, and J. Reifman. Kinetic model facilitates analysis of fibrin generation and its modulation by clotting factors: implications for hemostasis-enhancing therapies. Molecular BioSystems. 2014 June 24; 10:2347-2357. [PDF, PubMed]
Mitrophanov, A. Y., F. R. Rosendaal, and J. Reifman. Computational analysis of the effects of reduced temperature on thrombin generation: the contributions of hypothermia to coagulopathy. Anesthesia & Analgesia. 2013 September; 117(3):565-574. [PDF, PubMed]
Mitrophanov, A. Y., F. R. Rosendaal, and J. Reifman. Computational analysis of intersubject variability and thrombin generation in dilutional coagulopathy. Transfusion. 2012 November; 52(11):2475-2486. [PDF, PubMed]
Mitrophanov, A. Y., F. R. Rosendaal, and J. Reifman. Therapeutic correction of thrombin generation in dilution-induced coagulopathy: computational analysis based on a data set of healthy subjects. The Journal of Trauma and Acute Care Surgery. 2012 August; 73(2 Suppl 1):S95-102. [PDF, PubMed]
Mitrophanov, A. Y., and J. Reifman. Kinetic modeling sheds light on the mode of action of recombinant factor VIIa on thrombin generation. Thrombosis Research. 2011 October; 128(4):381-390. [PDF, PubMed]