
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
DOVIS: an implementation for high-throughput virtual screening
using AutoDock
Shuxing Zhang1,2, Kamal Kumar1, Xiaohui Jiang1, Anders Wallqvist1 and
Jaques Reifman*1

Address: 1Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical
Research and Materiel Command, Fort Detrick, MD 21702, USA and 2Department of Experimental Therapeutics, MD Anderson Cancer Center,
1515 Holcombe Blvd, Unit 36, Houston, TX 77030, USA

Email: Shuxing Zhang - shuzhang@mdanderson.org; Kamal Kumar - kamal@bioanalysis.org; Xiaohui Jiang - xjiang@bioanalysis.org;
Anders Wallqvist - awallqvist@bioanalysis.org; Jaques Reifman* - jaques.reifman@us.army.mil

* Corresponding author

Abstract
Background: Molecular-docking-based virtual screening is an important tool in drug discovery
that is used to significantly reduce the number of possible chemical compounds to be investigated.
In addition to the selection of a sound docking strategy with appropriate scoring functions, another
technical challenge is to in silico screen millions of compounds in a reasonable time. To meet this
challenge, it is necessary to use high performance computing (HPC) platforms and techniques.
However, the development of an integrated HPC system that makes efficient use of its elements is
not trivial.

Results: We have developed an application termed DOVIS that uses AutoDock (version 3) as the
docking engine and runs in parallel on a Linux cluster. DOVIS can efficiently dock large numbers
(millions) of small molecules (ligands) to a receptor, screening 500 to 1,000 compounds per
processor per day. Furthermore, in DOVIS, the docking session is fully integrated and automated
in that the inputs are specified via a graphical user interface, the calculations are fully integrated
with a Linux cluster queuing system for parallel processing, and the results can be visualized and
queried.

Conclusion: DOVIS removes most of the complexities and organizational problems associated
with large-scale high-throughput virtual screening, and provides a convenient and efficient solution
for AutoDock users to use this software in a Linux cluster platform.

Background
In the last several years, virtual screening has become an
accepted tool in drug discovery. It has been successfully
applied in a number of therapeutic programs, in particu-
lar, at the lead discovery stage, where high-throughput
molecular docking can play an important role [1]. In con-
cert with the continued need for improvements of in silico

docking accuracies, the explosive growth of commercial
and publicly available chemical databases requires com-
putational techniques to efficiently implement docking
protocols and rapidly screen millions of compounds in a
timely fashion. Here, we are focusing on the techniques to
enable large scale docking using Linux-based HPC plat-
forms.

Published: 27 February 2008

BMC Bioinformatics 2008, 9:126 doi:10.1186/1471-2105-9-126

Received: 29 October 2007
Accepted: 27 February 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/126

© 2008 Zhang et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 4
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18304355
http://www.biomedcentral.com/1471-2105/9/126
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:126 http://www.biomedcentral.com/1471-2105/9/126
Several commercial docking programs, such as Glide [2],
LigandFit [3] and FlexX [4], can distribute docking jobs to
computers over the network. However, protocols that can
seamlessly dock millions of compounds and capture the
top percentage of high-scoring ligands are not standard.
There are two major requirements for such a protocol run-
ning on a Linux cluster: (1) the ability to launch parallel
docking jobs through a queuing system; and (2) the abil-
ity to process millions of compounds in a reasonable
time. Since the latter requirement may call for hundreds
of central processing units (CPUs) working simultane-
ously, the protocol should effectively handle the associ-
ated data flow through the file system without affecting
the performance of the cluster. In this note, we describe a
Linux cluster-based protocol using AutoDock [5] as the
docking engine.

AutoDock is a widely used docking program developed at
the Scripps Research Institute. Application of AutoDock
requires several separate pre-docking steps, e.g., ligand
preparation, receptor preparation, and grid map calcula-
tions, before the actual docking process can take place.
Existing tools, such as AutoDock Tools (ADT) [6] and BDT
[7], integrate individual AutoDock steps within a graphi-
cal user interface (GUI), and provide automated features
for docking runs. However, they do not contain the capa-
bility to effectively process millions of compounds in a
single execution. At the AutoDock Website [8], there is a
tutorial with scripts to teach users how to use AutoDock
and how to employ UNIX commands to perform virtual
screening. In the tutorial, first a user needs to manually
prepare the receptor, ligands, energy grids and a list of lig-
ands names; then every compound in the list is looped
through by a shell script, where the compound can be
docked either by executing AutoDock commands inside
the loop or by submitting the corresponding commands
to a queuing system. This approach works well for thou-
sands of compounds, however, it may not work for mil-
lions of compounds due to the limitations of the file and
queuing systems. Concurrently, AutoDock has also been
used in grid-computing projects, FightAIDS@Home [9]
and WISDOM [10]. In a grid-computing infrastructure,
tens to hundreds of thousand CPUs are used to setup a
computational grid. Through specialized middleware,
servers in a grid can schedule jobs, send applications and
data to a CPU, and retrieve results. Because of the large
number of CPUs involved, the computational power of a
grid is phenomenal. For example, in the WISDOM
project, 10 million docking experiments were performed
using AutoDock in 20 days. However, due to the nature of
its infrastructure, the job success rate was 65% and the
percentage of time spent running the application was
~50%. On the other hand, using a dedicated HPC plat-
form (e.g., a 128-node Linux cluster) with specialized soft-
ware tools for AutoDock, it is possible to screen millions

of compounds in a reasonable time at a much higher job
success rate and CPU efficiency.

Here, we describe a DOcking-based VIrtual Screening
(DOVIS) pipeline, based on AutoDock (version 3), where
Perl and shell scripts are used to integrate executables and
scripts from ADT, OpenBabel [11] and AutoDock. This
implementation has the following advantages: (1) a scal-
able parallelization scheme for AutoDock integrated with
queuing systems, such as the Load Sharing Facility (LSF),
Platform Computing Inc. (Ontario, Canada) and the Port-
able Batch System (PBS), Altair Grid Technologies (Troy,
MI); (2) a protocol to retain user-specified top percentage
of docked ligands based on their docking scores; (3) a X-
window's-based GUI for users to specify docking parame-
ters, submit docking jobs and query/visualize docked lig-
ands; and (4) a collection of pre-processed compounds
from the ZINC database [12] and the National Cancer
Institute (NCI) diversity dataset [13] in native AutoDock
pdbq format.

Implementation
A high-throughput screening campaign typically has
many more ligands (millions) than the number of CPUs
(hundreds) available. In this case, a straightforward
approach to process the ligands is via a parallelization
scheme where the input ligands (or database) are divided
into N equal partitions corresponding to the number of
CPUs available for docking. For each CPU, a single parti-
tion of ligands is docked to the target receptor. After all
docking jobs are completed, the results from the N CPUs
are consolidated and the final (user specified) top M scor-
ing ligands are returned to the user for further analysis.

The input parameters for screening are specified via a GUI,
which creates one master parameter file that is used to
drive all related scripts and programs. Inside DOVIS there
are three distinct implementation steps, pre-docking, par-
allel docking, and post-docking, which are integrated with
a queuing system.

Pre-docking
In this step, the receptor is converted to the native Auto-
Dock format and the ligands are partitioned into N files.
DOVIS accepts receptors with all hydrogen atoms speci-
fied in standard pdb or mol2 format. A Python script,
"prepare_receptor.py" from ADT, is used to convert the
receptor into the pdbqs format required by AutoDock.
The acceptable input formats for ligands include sd, mol2,
and pdbq. When the ligand is provided in the sd format,
it is converted into mol2 by OpenBabel. The mol2 files are
then partitioned into N files with roughly the same
number of molecules in each file. If the input ligands are
provided as pre-processed pdbq files, the list of ligand file
Page 2 of 4
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:126 http://www.biomedcentral.com/1471-2105/9/126
names is simply partitioned into N lists of roughly equal
length.

Parallel Docking
From the previous step, either a ligand file (containing
multiple ligands) or a list of ligands is assigned to each
CPU, where the ligands in each set are separately proc-
essed and docked to the receptor, one ligand at a time per
CPU. For ligands in the mol2 format, a Python script,
"prepare_ligand.py" from ADT, is used to generate the
corresponding pdbq file. We pre-compute energy grid
maps for all possible ligand atom types at the beginning
of each parallel job. Thus, any grid map needed by Auto-
Dock can be directly loaded without a separate calcula-
tion. After each docking, the docking log-file (dlg) is
parsed by a Perl script to extract the "estimated free energy
of binding," which is used as the criterion to select the top
M scoring dlg files from each CPU.

During testing, we found that there are more than 10 file
operations and over 10 Mb of data flow associated with
the docking of each ligand. If a Network File System (NFS)
is used with more than 100 CPUs running concurrently,
the data flow degrades the performance of the entire Linux
cluster. To overcome this problem, DOVIS provides the
option to use the local disk drive on each node or CPU to
store the energy grid maps and other intermediate files.

Post-docking
After all docking jobs are completed, a Perl script is used
to combine all saved results from each CPU and to collect
the top M scoring ligands from the consolidated list as the
final result. The dlg files of all selected top-scoring ligands
are collected and compressed into a directory.

Queue Integration
On large Linux clusters with distributed memory, it is
essential to integrate DOVIS with a queuing system. With
the job dependency support of a queuing system, the
three steps discussed above can be sequentially executed
and parallel jobs can be automatically launched. For the
parallel docking job, at each CPU, the same executables
are used to process different ligands. This computational
strategy is most efficiently handled by queuing systems
that support the functionality to bundle many single-
processor jobs using the same executables into a single
job, typically referred to as Job Array. Thus, DOVIS is suit-
able for any queuing system that supports Job Array and
job dependency. Currently, we have integrated DOVIS
with the LSF and the PBS queuing systems.

In order to run DOVIS on Linux clusters without a queu-
ing system, we provide a version of DOVIS that uses
multi-threading to run parallel docking jobs. This scheme
is especially suitable for shared-memory Linux clusters.

There is another issue related to shared queuing systems.
Usually, every job in the queue has a runtime limit. Once
the limit is reached, the job is terminated. When docking
large number of ligands, Job Array may not be able to
complete all tasks within the allowed runtime limit.
Therefore, we implemented a restart function, which
tracks the progress of each CPU and gives the user the
option to manually restart DOVIS from where it left off.

Graphic User Interface
A GUI was developed for DOVIS using Java Swing to pro-
vide a convenient way to specify the target receptor, the
ligand database and the docking parameters. Using the
GUI, users are also able to submit the job to the queuing
system. In addition, the JMol [14] molecular viewer is
embedded in the GUI to enable visualization of docked
ligands with the target receptor.

Results
In order to build a ligand database for testing and scien-
tific research purpose, we pre-processed the ZINC data-
base (version 5, 2.07 million compounds) and the NCI
diversity dataset (1,990 compounds) into AutoDock
pdbq format. Using the pre-processed ZINC database, we
tested how many ligands DOVIS could dock to a receptor
per day with varying numbers of CPUs. We performed
tests with up to 128 CPUs on a Linux cluster and observed
a near-linear speedup as a function of number of CPUs,
for the ZINC database. This indicates that our implemen-
tation achieves near-optimal performance. In addition,
we carried out the virtual screening of the ZINC database
against the ricin A chain (267 amino acids) as a receptor
target with 256 CPUs. The task was completed in 12 days,
corresponding to ~700 ligands per CPU per day, with two
manual restarts due to a four-day runtime limit in our
queuing system. See additional file 1 for the detailed
parameter choices.

Discussion
We developed DOVIS as a utility software to automate
docking jobs with AutoDock. It can reliably screen mil-
lions of compounds against a receptor and automatically
save the top percentage of high-scoring hits. The paralleli-
zation scheme employed here provides a straightforward
approach to such a problem. When all CPUs are started
around the same time, this scheme works well and all
CPUs shall complete their jobs at about the same time.
However, when the queuing system does not allow all
CPUs to be launched at the same time, with the equal
number of ligands assigned to each CPU, the efficiency of
DOVIS is compromised. This may become a problem with
a queuing system when a large number of CPUs are
requested for a calculation. To solve this problem, the
number of ligands assigned to each CPU should be re-dis-
tributed in a way that the CPUs launched earlier shall
Page 3 of 4
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:126 http://www.biomedcentral.com/1471-2105/9/126
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

docked more ligands than the CPUs launched later. Cur-
rently, we are working on an improvement to address this
issue.

Conclusion
Using AutoDock as its docking engine, DOVIS provides
an automated parallel docking package that is integrated
with a queuing system. This application is suitable for
conducting large-scale high-throughput virtual screening
on Linux cluster platforms. The DOVIS package is freely
available (see additional file 1 and 2 for detailed informa-
tion).

Authors' contributions
SZ implemented and tested the software. KK imple-
mented the GUI and tested the software. XJ participated in
the software design and testing, and drafted the manu-
script. JR and AW conceived the project, participated in
the software design and project coordination. All authors
read and approved the final manuscript.

Additional material

Acknowledgements
We would like to thank Drs. M. Lee and M. Olson for helpful suggestions.
This work was sponsored by the US Department of Defense High Perform-
ance Computing Modernization Program (HPCMP), under the High Per-
formance Computing Software Applications Institutes (HSAI) initiative. The
opinions or assertions contained herein are the private views of the authors
and are not to be construed as official or as reflecting the views of the US
Army or the US Department of Defense. This paper has been approved for
public release and distribution is unlimited.

References
1. Ghosh S, Nie AH, An J, Huang Z: Structure-based virtual screen-

ing for drug discovery. Curr Opin Chem Biol 2006, 10:194-202.
2. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT,

Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P,
Shenkin PS: Glide: a new approach for rapid, accurate docking
and scoring. 1. Method and assessment of docking accuracy.
J Med Chem 2004, 47(7):1739-49.

3. Venkatachalam CM, Jiang X, Oldfield T, Waldman M: LigandFit: a
novel method for the shape-directed rapid docking of ligands
to protein active sites. J Mol Graph Model 2003, 21(4):289-307.

4. Rarey M, Kramer B, Lengauer T: Time-efficient docking of flexi-
ble ligands into active sites of proteins. Proc Int Conf Intell Syst
Mol Biol 1995, 3:300-8.

5. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK,
Olson AJ: Automated docking using a Lamarckian genetic
algorithm and an empirical binding free energy function. J
Comput Chem 1998, 19:1639-1662.

6. AutoDock Tools [http://autodock.scripps.edu/resources/adt/
index_html]

7. Vaque M, Arola A, Aliagas C, Pujadas G: BDT: an easy-to-use
front-end application for automation of massive docking
tasks and complex docking strategies with AutoDock. Bioin-
formatics 2006, 22(14):1803-1804. Epub 2006 May 23.

8. Using AutoDock for Virtual Screening [http://auto
dock.scripps.edu/faqs-help/tutorial/using-autodock-for-virtual-
screening]

9. FightAIDS@Home [http://fightaidsathome.scripps.edu]
10. Jacq N, Salzemann J, Jacq F, Legre Y, Medernach E, Montagnat J, Maab

A, Reichstadt M, Schwichtenberg H, Sridhar M, Kasam V, Zimmer-
mann M, Hofmann M, Breton V: Grid-enabled Virtual Screening
Against Malaria. J Grid Computing 2008, 6:29-43.

11. OpenBabel [http://openbabel.sourceforge.net]
12. Irwin JJ, Shoichet BK: ZINC – a free database of commercially

available compounds for virtual screening. J Chem Inf Model
2005, 45(1):177-182.

13. Holbeck SL: Update on NCI in vitro drug screen utilities. Eur J
Cancer 2004, 40(6):785-93.

14. Jmol [http://jmol.sourceforge.net]

Additional file 1
Supplementary_material_DOVIS_paper. This file describes the software
packages required to setup DOVIS, the AutoDock parameters used to run
a virtual screening reported in the paper, and the DOVIS package instal-
lation options.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-126-S1.doc]

Additional file 2
DOVIS_alpha_Release.tar.gz. This file contains the DOVIS package
(DOVIS_alpha), release note and user manual.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-126-S2.GZ]
Page 4 of 4
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-126-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2105-9-126-S2.GZ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16675286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16675286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15027865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15027865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12479928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12479928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12479928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7584452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7584452
http://autodock.scripps.edu/resources/adt/index_html
http://autodock.scripps.edu/resources/adt/index_html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16720587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16720587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16720587
http://autodock.scripps.edu/faqs-help/tutorial/using-autodock-for-virtual-screening
http://autodock.scripps.edu/faqs-help/tutorial/using-autodock-for-virtual-screening
http://autodock.scripps.edu/faqs-help/tutorial/using-autodock-for-virtual-screening
http://fightaidsathome.scripps.edu
http://openbabel.sourceforge.net
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15667143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15667143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15120034
http://jmol.sourceforge.net
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Pre-docking
	Parallel Docking
	Post-docking
	Queue Integration
	Graphic User Interface

	Results
	Discussion
	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

