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We characterized and evaluated the functional attributes
of three yeast high-confidence protein-protein interaction
data sets derived from affinity purification/mass spec-
trometry, protein-fragment complementation assay, and
yeast two-hybrid experiments. The interacting proteins
retrieved from these data sets formed distinct, partially
overlapping sets with different protein-protein interaction
characteristics. These differences were primarily a func-
tion of the deployed experimental technologies used to
recover these interactions. This affected the total cover-
age of interactions and was especially evident in the re-
covery of interactions among different functional classes
of proteins. We found that the interaction data obtained by
the yeast two-hybrid method was the least biased toward
any particular functional characterization. In contrast, in-
teracting proteins in the affinity purification/mass spec-
trometry and protein-fragment complementation assay
data sets were over- and under-represented among dis-
tinct and different functional categories. We delineated
how these differences affected protein complex organi-
zation in the network of interactions, in particular for
strongly interacting complexes (e.g. RNA and protein syn-
thesis) versus weak and transient interacting complexes
(e.g. protein transport). We quantified methodological dif-
ferences in detecting protein interactions from larger pro-
tein complexes, in the correlation of protein abundance
among interacting proteins, and in their connectivity of
essential proteins. In the latter case, we showed that
minimizing inherent methodology biases removed many
of the ambiguous conclusions about protein essentiality
and protein connectivity. We used these findings to ra-
tionalize how biological insights obtained by analyzing
data sets originating from different sources sometimes do
not agree or may even contradict each other. An impor-
tant corollary of this work was that discrepancies in bio-
logical insights did not necessarily imply that one detec-
tion methodology was better or worse, but rather that, to

a large extent, the insights reflected the methodological
biases themselves. Consequently, interpreting the protein
interaction data within their experimental or cellular con-
text provided the best avenue for overcoming biases and
inferring biological knowledge. Molecular & Cellular
Proteomics 10: 10.1074/mcp.M111.012500, 1–17, 2011.

The collection of proteins and protein assemblies in a cell
constitutes a vital and integral part of the machinery required
to sustain all cellular functions and processes (1). Given that
most proteins are part of one or more protein complexes,
protein-protein interactions are essential in understanding the
nature of protein-mediated biological processes. Therefore,
because of the large number of potential protein interactions,
high-throughput technologies are essential for generating
whole-cell maps of these interactions (2, 3). Several large-
scale protein interaction data sets of the yeast Saccharomy-
ces cerevisiae have been determined using different high-
throughput technologies, namely the following: (1) affinity
purification followed by mass spectroscopy (AP/MS)1 (4–7),
(2) protein-fragment complementation assay (PCA) (8), and (3)
yeast two-hybrid (Y2H) (9–11). Each approach detects and
reports interactions in a distinct manner. The Y2H and PCA
techniques detect binary interactions, whereas the AP/MS
techniques purify and identify protein complexes. All three
methods at some point rely on modified protein constructs to
identify protein interactions. For example, although the
AP/MS uses tagged bait proteins to bind to prey proteins in
the native cellular environment, followed by affinity purifica-
tion and mass spectrometry detection of proteins, both Y2H
and PCA rely on separate protein complementation schemes
to ultimately report on whether a protein pair is interacting. In
addition, the AP/MS and PCA methods identify interactions at
approximate physiological cellular protein concentrations, the
concentrations of the interacting partners in the Y2H screens
are not necessarily comparable to that found in the nativeFrom the ‡Biotechnology HPC Software Applications Institute,
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environment. Furthermore, the Y2H method requires that in-
teracting partners are present in the nucleus in order for their
interaction to be detectable.

The reliability of each technique has been extensively re-
viewed in the literature and comprehensive analyses have
often resulted in contrasting conclusions (8, 11–17). For ex-
ample, the overlap of Y2H screens by different laboratories is
often small (18), suggesting high false-negative rates,
whereas AP/MS screens infer a substantial fraction of indirect
interactions (11), suggesting high false positive rates. How-
ever, it is generally accepted that any measure of reliability is
not absolute and largely dependent on the nature of the
selected gold standard reference set (11, 19). Several studies
have attempted to identify subsets of high-confidence inter-
actions in the raw AP/MS (6, 7, 14, 20, 21) and the Y2H data
(11). To date, only one comprehensive PCA data set exists for
yeast (8), limiting assessments of interlaboratory variability
and reproducibility of this method (22). Recently, Yu and
colleagues consolidated three Y2H data sets into a single
high-confidence set and showed that this set is more enriched
with interactions found in the manually curated binary gold
standard (BGS) data set than the combined set from two
AP/MS studies (11). More recently, our group developed a
novel approach to score pair-wise protein associations de-
rived from AP/MS data sets (14). This procedure, termed
interaction detection based on shuffling (IDBOS), computes a
co-occurrence significance score for two proteins by compar-
ing the number of times they are experimentally observed to
co-purify with those obtained from commensurate random-
ized simulations. This data set identifies binary interactions as
well as, or better than, the high confidence consolidated Y2H
set and previous high-confidence data sets based on AP/MS
purifications. These results are of particular importance be-
cause, unlike previous studies (7, 20), the IDBOS procedure,
which generates the high-confidence AP/MS set is a purely
numerical approach that requires no training set or machine
learning, resulting in data sets that are less likely to be biased
by previous knowledge. Topological analyses reveal stark
differences with respect to the modularity of the networks
between different data sets, in particular, our high-confidence
AP/MS network exhibits densely connected regions of pro-
teins (14) indicative of functional modules (23–25). Here, the
IDBOS-derived high-confidence data set is compared and
contrasted with the consolidated Y2H and the PCA high-
confidence data sets.

The apparent dependence of the protein interaction data or
network on the detection methodology raises two fundamen-
tal questions: what are the different methods actually detect-
ing and how does this influence the downstream analyses and
interpretation of the data as protein interaction data? The core
question of whether two proteins bind together is a thermo-
dynamic question that involves the binding free energy asso-
ciated with the bound protein complex as opposed to two
infinitely separated, noninteracting, proteins (26–29). This

quantity relates to the ability of two proteins to bind. Even if
this information were available, the chemical and biological
state of a cell will dynamically determine if binding actually
takes place (30). The uncertainty increases if we were to probe
this interaction via an experimental technique that would af-
fect the chemical and biological state of the cell as well as the
proteins’ microenvironment. Therefore, given that the results
are not independent of the experimental techniques and that
each experimental technique yields a completely different set
of interactions, how can one interpret the data in any mean-
ingful fashion? The most general approach is to keep each
data source separate and identify biological insights captured
by all methods. However, this approach is hampered by a lack
of sufficient overlap between the existing data sets and,
hence, could still produce contradictory conclusions about
the biology associated with or derived from the underlying
interaction data.

Herein, we have analyzed and compared three categories
of high-confidence high-throughput protein interaction data
sets to highlight the apparent differences in biological content
associated with these data sets. The high-confidence nature
of these data sets ensures that the experimental uncertainty
associated with large genomic-scale interaction screens is
minimized and allows us to focus on the inherent method-
ological differences. We found that there were marked differ-
ences in terms of which proteins were retrieved from these
screens, how their interactions were distributed among differ-
ent functional classes of proteins, and, in particular, that there
were strong methodological biases for the retrieval of proteins
belonging to small versus large interaction complexes. We
mapped known Munich Information Center for Protein Se-
quences (MIPS) (31, 32) protein complexes onto each high-
confidence protein-protein interaction network to highlight the
distinct higher-order organization between functional compo-
nents in the data sets. These differences were partly reflec-
tive of the experimental technology and were germane to
the downstream analyses and interpretations of each high-
confidence network in terms of correlation of protein abun-
dance among interacting proteins pairs and the location of
essential proteins in the composite protein interaction net-
work. In the latter case, we derived a consensus analysis
that minimized the experimental biases and showed that the
essentiality-connectivity correlation was present in these
data sets.

In summary, we quantified the differences between three
high-confidence protein-protein interaction networks in yeast
and showed how the different methodologies affect the biolog-
ical interpretation of the data. Specific interactions and conclu-
sions derived from selected protein interactions are, at the
current state of knowledge and experimental capacity, strongly
tied to the underlying experimental platforms and, hence, com-
parisons of biological insights derived from data sets with dif-
ferent biological characteristics may be contradictory without
accounting for the underlying experimental biases themselves.
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RESULTS AND DISCUSSION

We investigated three high-confidence high-throughput
protein-protein interaction data sets (AP/MS, PCA, and Y2H),
an unfiltered, raw interaction data set (raw-AP/MS), and the
manually curated BGS set which focuses on binary protein
interactions. The Methods Section describes the selection
and salient features of these data sets, whereas columns 1–3
of Table I summarize the number of proteins and interactions
contained in these data sets. Herein, we first discuss the
classification of detected proteins and their interactions
based on the detection methodology, and then we highlight
the impact of the observed differences in the biological prop-
erties of the interacting proteins.

Classification of Detected Proteins and Their Interactions

Functional Diversity in Protein Interaction Data Sets—Al-
though genomic-scale protein-protein interaction detection
campaigns are by design intended to probe as many interac-
tions as possible, it is well known that the retrieved interac-
tions do not actually overlap. Even for the high-confidence
data sets analyzed herein, the overlap between interactions in
the AP/MS:Y2H, AP/MS:PCA, and Y2H:PCA sets in Table I
were 175, 182, and 66, respectively. Out of all 13,112 high-
confidence interactions in Table I, only 18 interactions (0.1%)
were common among all three sets. This was despite a rela-
tively larger partial overlap between the constituent proteins
among the three data sets, with overlaps between the AP/MS:
Y2H, AP/MS:PCA, and Y2H:PCA data sets in Table I of 545,
357, and 440, respectively, with 182 proteins (4.2%) common
among all three sets. Although the overlap was larger than for
the interactions themselves, each protein set was quite dis-
tinct and a functional classification of these protein sets al-
lowed us to generalize the different characteristics between
the data sets. Fig. 1A shows the relative distribution of func-
tional classes for all S. cerevisiae proteins for ten selected
MIPS functional classes (labeled “Expected”) and the differ-
ence from these values for the interacting proteins from the

three high-confidence data sets, AP/MS, PCA, and Y2H.
Across all 17 MIPS functional classes, the Y2H and PCA data
sets showed the smallest deviation between the measured
and “Expected” values with root mean squared differences of
0.03 and 0.04, respectively, compared with 0.09 for the
AP/MS data. We found the largest deviations in the AP/MS
data set associated with under-representation of metabolic
proteins and cell rescue, and over-representations in the cat-
egories of transcription, protein synthesis, and protein bind-
ing. For the PCA data set, the largest under-representation
was of cell-cycle proteins and protein synthesis proteins, and
the largest over-representation was of cellular transport pro-
teins. If the selection of tested protein is unbiased, these
differences should reflect the unavoidable experimental bi-
ases associated with each detection method. For example,
the under-representation of metabolic proteins in the AP/MS
data can be rationalized by the fact that metabolic proteins, in
general, do not function in large complexes or bind strongly to
other proteins (33); hence, it is expected that the affinity
purification step will most likely result in loss of these proteins.
Similarly, proteins that function in larger, tightly organized
assemblies involved in transcription or protein synthesis
would be preferentially included in the AP/MS data set,
whereas the restriction imposed on the PCA and Y2H reporter
systems would not favor these protein classes.

The number of detected interactions each protein has with
other proteins was strongly dependent on the functional class
membership and detection methodology. Fig. 1B shows the
average number of interactions (or degree) distributed among
the same functional categories as in Fig. 1A for the three data
sets. There are large and clear differences between the
AP/MS data set on the one hand and the PCA and Y2H data
sets on the other hand, particularly for proteins involved in cell
cycle, transcription, protein synthesis, protein fate, protein
binding, and cell-component biogenesis. Fig. 1C shows the
relative distribution of these interactions among all detected
interactions for each experimental technique. These relative

TABLE I
Annotation coherence among interacting proteins for selected protein interaction data sets. For each top-level annotation class of “Function,”
“Location,” and “Complex” in the Munich Information Center for Protein Sequences, we classified an interaction as intra-annotation if both
proteins were annotated and shared at least one common annotation item, or interannotation if both proteins were annotated but no common
annotation was shared. The sum of the intra- and inter-annotation can add up to less than the total number of interactions due to cases where
at least one protein lacks any annotation. The number in parenthesis gives the percentage of the total number of interactions in Column 3. The
Methods Section provides descriptions and characteristics of the separate data sets. Abbreviations: AP/MS, affinity purification/mass

spectrometry; PCA, protein-fragment complementation assay; Y2H, yeast two-hybrid

Network Number of
Proteins

Number of
Interactions

Function Location Complex

Intra-annotation Inter-annotation Intra-annotation Inter-annotation Intra-annotation Inter-annotation

Manually curated binary interaction
BGS 1061 1239 1176 (95%) 41 (3%) 1092 (88%) 83 (7%) 521 (42%) 102 (8%)
High-confidence high-throughput
AP/MS 1274 7879 6722 (85%) 1007 (13%) 6914 (88%) 626 (8%) 2462 (31%) 819 (10%)
PCA 1076 2530 1315 (52%) 732 (29%) 1802 (71%) 530 (21%) 161 (6%) 109 (4%)
Y2H 1962 2703 1161 (43%) 834 (31%) 1691 (63%) 580 (21%) 148 (6%) 113 (4%)
Raw high-throughput
AP/MS 2551 18,043 9537 (53%) 7315 (40%) 12,486 (69%) 5048 (28%) 1393 (8%) 2731 (15%)
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distributions indicate that the data sets contained clearly dif-
ferentiated sets of distinct sets of interactions distributed
among varying functional classes. Thus, the AP/MS interac-
tion data were skewed toward proteins in transcription (23%)
and protein synthesis (15%), the PCA data were skewed
toward proteins in cellular transport (16%) and metabolism
(13%), and the two largest groups in the Y2H data were

proteins in metabolism (12%) and protein fate (12%). This
confirms that the different high-confidence interaction data
sets were associated with proteins in varying functional
classes whose proteins had a distinct number of interactions,
resulting in a unique distribution of interactions among spe-
cific protein sets.

Fig. 2 shows the projection of the three high-confidence
data sets on the protein-protein interaction matrix encom-
passing all possible binary interactions that can be formed
based on the yeast proteome. The proteins are ordered ac-
cording to their MIPS functional categorization and follow the
same order as in Fig. 1, i.e. metabolism, cell cycle, etc. It is
well known that the sparsity of the matrix is due to the rela-
tively low estimates of the yeast interactome (�105 unique
protein-protein interactions) compared with the total number
of possible pair-wise interactions (�107) (34, 35). The interac-
tions mapped out in Fig. 2 show that the different data sets
covered distinct parts of the interaction space, with some

FIG. 1. Functional diversity among proteins and interactions
present in the high-confidence data sets. A, The relative distribu-
tion of all proteins from Saccharomyces cerevisiae, as annotated
according to the Munich Information Center for Protein Sequences
functional categories, is shown by the gray line labeled “Expected.” It
denotes the relative fraction (coverage) of all yeast proteins that
belong to a given category. The deviations of the AP/MS, PCA, and
Y2H high-confidence data sets from this distribution are shown by the
different colored bars, e.g. proteins labeled “Metabolism” are rela-
tively under-represented in the AP/MS data set. B, The average
degree of the proteins in a given functional category for each high-
confidence data set. C, The relative distribution of protein-protein
interactions in the different functional categories for each high-con-
fidence data set.

FIG. 2. High-confidence data set coverage of the protein-pro-
tein interaction matrix. We have mapped each interaction in the
AP/MS, PCA, and Y2H data sets to the yeast proteome protein-
protein interaction matrix defined by all possible binary interactions.
The proteins were ordered according to their Munich Information
Center for Protein Sequences functional categories. We have indi-
cated the location of proteins belonging to the categories of metab-
olism (ME), cell cycle (CC), transcription (TR), protein synthesis (PS),
protein fate (PF), protein binding (PB), and cellular transport (CT). We
have enlarged the symbols of each interaction to make the differ-
ences among the data sets and functional categories more visible.
The different methodologies retrieved different interaction sets influ-
enced by the underlying experimental platform, e.g. AP/MS recovered
tightly bound protein complexes associated with transcription, pro-
tein synthesis, and proteins binding, whereas PCA recovered many
more weakly bound interactions, e.g. those involved in cellular
transport.
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functional categories relatively well covered whereas others
were disproportionately sparse. This observation is due partly
to biological reasons and partly to the methodological differ-
ences in detecting the interactions. Thus, we expected that
direct interactions among cell cycle proteins (CC) and pro-
teins involved in protein synthesis (PS) would be absent. We
confirmed this expectation for all three experimental plat-
forms. Similarly, the intersection between PS and protein fate
(PF) should be, and was, relatively free from interactions in all
three data sets. The methodological biases noted in Fig. 1
were also evident in the interaction mapping in Fig. 2; the
functional categories of PS and protein binding (PB) were well
represented by the AP/MS data set, whereas interactions
among metabolic proteins (ME) were relatively sparse among
all data sets. Fig. 2 also shows the high proportion of inter-
actions within the cellular transport (CT) category associated
with the PCA data set.

The protein-protein interaction matrix can also be used to
gauge the level of influence biological functions have on the
detected interactions. A randomly generated selection of in-
teractions, on the same order of magnitude as the number of
interactions among the high-confidence data sets (shown in
Table I), will not show any preferential clustering among or
between functional categories in the matrix (shown in Fig. 2).
We characterized this property by calculating the distribution
of distances between each two points within a data set in the
matrix and comparing the distributions of the data sets
(supplementary Fig. S1). This analysis showed that the inter-
actions in the Y2H data set were distributed most similarly to
those in the randomly selected interaction data compared
with the AP/MS and PCA data sets. This does not indicate
that the Y2H data were random; rather, it demonstrated that
the interactions detected in this data set were not biased
toward any particular functional set or classification (11). This
implied that the experimental detection of these interactions
was not influenced by the biological function of the tested
proteins and, therefore, provided a markedly unbiased test of
the proteins’ capability to interact. This leads to increased
confidence in the ability of this data set to provide a founda-
tion for a stricter thermodynamic evaluation of the proteins’
ability to interact under the given experimental conditions.

In contrast, native protein interactions are sensitive to local
chemical environments, protein concentrations, regulatory
and nonequilibrium processes, ATP-levels, phosphorylation
status, post-translational modifications, etc., which define the
“natural” environment. Although one advantage of the AP/MS
and PCA procedures is their probing of interactions in this
natural environment, an unbiased selection of protein interac-
tions similar to the Y2H methods was not achieved. Although
this may provide an advantage in detecting interactions that
actually occur in the cellular environment under the given
experimental conditions, the lack of direct overlap between
the AP/MS and PCA data sets highlights the sensitivity of
these methods to experimentally specific cellular conditions.

In the material below, we explored the consequences of these
biases in selecting protein interactions in the three data sets.

Annotation Consistency of High-Confidence Data Sets—In
order to characterize the retrieved protein sets (12, 36, 37), we
further stratified the interaction data according to three differ-
ent high-level MIPS annotation classes as follows: “Function,”
“Location,” and “Complex.” Table I summarizes these analy-
ses for a reference set of manually curated binary interactions
(BGS), the three high-confidence protein interaction data sets,
as well as for a raw high-throughput data set. For each of the
annotation classes we have further subdivided the interaction
data, based on whether interacting proteins share their anno-
tations, into inter- and intra-annotation groups. For example,
if both members of a protein-protein interaction pair belong
to the same functional category of “metabolism,” we classi-
fied the pair as an intra-annotation pair; otherwise, we clas-
sified the pair as an inter-annotation pair. For the annotation
class “Function,” we noted that the manually curated BGS
data set was heavily skewed toward protein annotations be-
longing to the same versus different functional categories
(95% versus 3%). The same holds true for the high-confi-
dence AP/MS set (85% versus 13%) in sharp contrast to the
corresponding raw data (53% versus 40%). In this case, the
extraction of the high-confidence subset from the raw data
resulted in recovering more protein interactions belonging to
the same functional category. The similar fraction of intra- and
interannotation pairs in the BGS and the high confidence
AP/MS data set was not caused by overlapping interactions
between these sets, as only 340 of the these interactions
coincided. This implies that the AP/MS technique, although
designed to detect complexes, actually possesses a large
binary interaction character (14). Neither the PCA nor the Y2H
data sets showed the same sharp distinction between intra-
and interannotations of protein interaction pairs. Of course,
the general statement that interacting proteins tend to belong
to the same functional category holds, regardless of the meth-
odology or any biases in selection of tested proteins. Simi-
larly, relative observations also hold true for the annotation
class “Location.” In the class “Complex,” which contains
proteins known to be associated with specific protein com-
plexes, the lack of a comprehensive set of protein annotations
sharply reduced the number of protein interactions that we
could classify, especially for the PCA and Y2H data sets.
However, it was clear that both the reference standard (BGS)
and the high-confidence AP/MS data sets were still enriched
in intra-annotation, compared with interannotation complex
pairs.

The observation that interacting proteins share a common
function indicates that the interaction data itself could carry
information about the organization of functional modules (23–
25). Consistent with the high intra-annotation fraction in the
AP/MS data set, Fig. 2 shows the densely populated diagonal
of the protein interaction matrix. The AP/MS interactions data
set was further characterized by distinct, densely connected
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off-diagonal regions, reflective of the high-confidence nature
of this data set. The top row of Fig. 3 illustrates this point by
showing the difference in connectivity between a low-confi-
dence raw network and higher confidence networks (com-
mensurate with 20 and 5% false positive rates (See Methods))
based on our IDBOS-analysis of the AP/MS data. The high
intra-annotation fraction of this data set manifested itself as
clusters of protein interactions among proteins with the same
biological function, effectively defining, as well as identifying,
clustered modules. The bottom row of Fig. 3 shows the highly
clustered annotations for the “Function,” “Location,” and
“Complex” annotation classes from Table I for the high-con-
fidence AP/MS data set (commensurate with a 5% false pos-
itive rate). The modularity of the organization of this protein
interaction network was evident by the concomitant clustering
of functional properties (same color) to distinct sets of pro-

teins. The interactions colored according to their “Complex”
annotations are explored in more detail in the “MIPS Complex
Annotation of Interaction Networks” Section.

Protein Complex Size Dependence—Proteins often assem-
ble into larger functional multiprotein complexes that strongly
determine how proteins interact and arrange themselves.
Herein, we demonstrated the systematic biases associated
with the detection techniques as manifested in the depend-
ence on the number of interacting proteins retrieved from a
given MIPS complex as a function of the size of the MIPS
complex. Fig. 4A shows the relative fraction of proteins from
intracomplex interactions detected for each high-confidence
data set as a function of the size of the complex. Although
there was some scatter in the data, it was clear that both the
PCA and Y2H data were enriched with proteins from smaller-
sized (less than 25) complexes compared with what would be

FIG. 3. Organization of interactions and biological processes in the AP/MS data set. The top row illustrates the effect of increasing the
fidelity of the network representation by decreasing the false positive rate (FPR) associated with the interactions. The data set commensurate
with a 5% false positive was designated as the high-confidence AP/MS data set in this work. The bottom row shows the projection of Munich
Information Center for Protein Sequences (MIPS) high-level annotations color coded for different “Function,” “Location,” and “Complex”
categories. We assigned each protein in the network only one of its MIPS function annotation item(s) to maximize the number of homogeneous
interactions of the network using a Monte Carlo algorithm (See Methods). We also outlined selected major biological processes in these
interaction maps. The complete color scheme and annotations for the “Complex” annotations are provided as an interactive and viewable map
in the Supporting Material.
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expected from an analysis of all MIPS yeast proteins. Both the
PCA and Y2H data lacked interaction data from larger-sized
complexes. This is in contrast to the AP/MS data, which
closely followed the Expected distribution present among all
annotated yeast proteins, even for the larger size MIPS clus-
ters. Although the general view is that AP/MS detects co-
complexes and Y2H detects binary interactions, this is an
over simplification. The high-confidence AP/MS data contain
a wealth of known binary interactions and conversely, as
shown here, the Y2H data capture many binary interactions
among MIPS complexes with less than 25 members.

Apart from experimental constraints in the PCA methodol-
ogy, which limits interaction detection to within an 8-nm res-
olution, protein crowding affects interaction detection in both
PCA and Y2H. Both of these detection methods explicitly rely
on the reconstitution of the biological activity of a particular
protein (transcription factor GAL4 for Y2H and the DFR1
enzyme for PCA). Even if two investigated proteins, as com-
ponents of a large native cellular complex, can interact and
constitute a functional unit, other components may bind to
this unit disturbing the activity reconstitution and conse-
quently preventing detection (8, 11). The probability of such
disturbance is roughly proportional to the number of compo-

nents in the complex, i.e. the complex size, effectively pre-
venting the detection of interactions within large complexes
using Y2H and PCA methods. The probability of this happen-
ing would be larger at the complex’s native cellular location
because of higher abundances of other complex compo-
nents, e.g. this may partially explain why we did not observe
any of the interactions between RNA polymerase II compo-
nents in any of the Y2H set (11). Methodological biases in
detecting interactions among specific RNA synthesis com-
plexes are characterized in more detail in the “MIPS Complex
Annotation of Interaction Networks” Section. The AP/MS data
sets strictly do not report an interaction per se, but rather a
colocalization of proteins in bait-prey affinity purifications.
Although these interactions should be less sensitive to the
location of the tagged baits, the influence of tagging cannot
be ignored because it has been previously demonstrated that
intraspecies overlap between AP/MS data sets from different
laboratories remains low (38). Therefore, whereas the high-
confidence subsets of the PCA and Y2H data sets can eval-
uate whether a protein pair interacts, the AP/MS experimental
data can also characterize nonbinary protein interactions. This
analysis confirms that AP/MS data may be more suitable for
understanding interactions and biological relationships re-
lated to structural complexes and larger molecular machines,
whereas the Y2H and PCA data sets capture many binary
interactions of smaller-size complexes.

False Positive Rate of AP/MS Interactions—The question
whether one data set or experimental technique is more ac-
curate than another cannot be directly addressed by the
analyses presented herein. However, one advantage of our
derivation of high-confidence interactions from the raw
AP/MS data is that we can select data at a given false positive
rate (See Methods), e.g. as shown in Fig. 3. As a further
analysis of the data in Table I, we calculated the fraction of
interacting protein pairs that contain only inter- or only intra-
functional annotations for the AP/MS data set as a function of
the false positive rate. Fig. 4B shows the decrease (increase)
of the intra (inter)-function fraction with an increasing false
positive rate, i.e. at a lower accuracy. The limiting behavior at
the highest accuracy (lowest false positive rate) approaches
the fractions found in the manually curated data set of high-
confidence interactions (BGS). Intrafunction annotation frac-
tions for the AP/MS data set remained consistently higher
than that for either the PCA or the Y2H data set, whereas the
inter-function annotation fractions leveled out at �30% at
higher false positive rates, similar to the PCA and Y2H data
sets. However, one should note that the fractions of intra- and
interfunction interactions are not indicative of the false posi-
tive rates in the PCA and Y2H data sets themselves. Although
the construction of the high-confidence AP/MS data set did
not discriminate between inter- or intrafunction protein-pro-
tein interactions, there was a systematic enrichment of
intrafunction interactions at the low false positive rates. As
previously reported (14), the binary data contained in our

FIG. 4. Complex size and intra- and interfunction detection.
A, The relative distribution of sizes of Munich Information Center for
Protein Sequences complexes in the Saccharomyces cerevisiae pro-
teome is shown by the gray line labeled “Expected.” The y axis shows
the fraction of proteins in a given data set that is associated with a
specific complex size. We have indicated the corresponding distribu-
tions for proteins found in the complexes of each high-confidence
data set by different symbols. Whereas both the PCA and Y2H data
sets lacked representations among the large-sized clusters, the
AP/MS data set roughly followed the “Expected” distribution derived
from all yeast proteins. B, The influence of the false positive rate on
the fraction of intra- and interfunction protein interactions detected in
the AP/MS data set. For reference, we have indicated by arrows the
PCA and Y2H values for intra- and interfunction annotation fractions
from Table I on the y axis.

Categorizing High-Throughput Detection Biases

Molecular & Cellular Proteomics 10.12 10.1074/mcp.M111.012500–7



high-confidence AP/MS data comprise interactions of the
same quality as the manually curated data set (BGS). Increas-
ing confidence (lowering the false positive rate) in the AP/MS
data increased the “binary” flavor of the interactions. This was
reflected both in the closer concordance with the intra- and
interfunction fractions (Fig. 4B) and in the fraction of proteins
retained for complexes with less than 25 members (data not
shown).

Biological Properties Associated with Interacting Proteins

We observed that the high-confidence high-throughput in-
teraction data sets contained strong remnants and signatures
reflecting their experimental creation with respect to func-
tional characteristics of the proteins retrieved and in the size
of the underlying protein complex from which the interactions
were detected. We now turn our attention to describing how
the different interaction data sets reconstitute important func-
tional components of the cell and their interactions, how the
different methods capture the cellular abundance between
interacting proteins, and how methodological biases influence
the connectivity of essential proteins in the reconstructed
interaction networks.

MIPS Complex Annotation of Interaction Networks—The
objective of detecting and cataloging a genome-wide range of
protein-protein interactions present in a cell is to understand
how these interactions mediate biological processes. The
premise of creating interaction networks is that biological
events can be partially deconstructed and understood by sets
of direct protein interactions. Because cellular processes are
often performed and mediated by protein complexes and
assemblies, it is expected that investigating the overall orga-
nization of protein interaction networks reconstituted from
interaction data should both recover known associations and
provide additional insights into these processes. Conse-
quently, we mapped known MIPS protein complexes (39)
onto each reconstituted high-confidence protein interaction
network to explore the biological implication of the network
organization. An interactive map of the annotated high-confi-
dence networks for use with the chemical structure viewer
Jmol (http://www.jmol.org/) is provided to facilitate further
explorations (see Live Cellular Machinery Map in the Supple-
mentary Information). The networks exhibited different de-
grees of patterns of connections between sets of proteins,
providing a wealth of information on interactions between
complexes and possible protein regulation of their biological
function.

Verification of known associations between functional mod-
ules serves to validate the inherent biological content of high-
confidence high-throughput networks (4–11). Given the high
degree of MIPS annotated intrafunction interactions in the
AP/MS data set, this reconstructed network provided well-
separated and distinct modules in comparison to the PCA and
Y2H data sets. Fig. 5 shows that the known protein com-

plexes from MIPS (with high-throughput complexes excluded,
see Methods) were recovered well in the AP/MS data set. The
preponderance of annotated intra- versus inter-complex in-
teractions, accentuated the modular nature of the network,
with many complexes of known biological connections linked
to each other via direct protein interactions. For example, the
two 20S and 19/22S regulator units of the proteasome were
directly linked to each other. The central and dominant part of
the connected network consisted mainly of protein com-
plexes responsible for RNA synthesis and other RNA-related
processes, protein synthesis, protein degradation, and DNA
replication and repair. As transport proteins were under-sam-
pled in the AP/MS data set (Fig. 1), many of the transport
systems (e.g. Transport Protein Particle, Golgi Transport, GIM
complexes, t-SNAREs, v-SNAREs, AP-2, AP-3, etc.) were not
connected to the central network and were represented as
isolated units on the periphery of this map.

A global comparison between individual interactions and
functional complex interactions at the protein level between
the three different high-confidence protein interaction data

FIG. 5. The “Complex” annotated protein interaction map.
Known complexes from the Munich Information Center for Protein
Sequences (MIPS) database and their biological relations were ap-
parent in the reconstructed protein-protein interaction network de-
rived from the high-confidence AP/MS data set. We colored compo-
nents in a same MIPS complex the same, with gray nodes
representing unannotated proteins. This reconstructed network cap-
tured a global organization of protein complexes, in particular for
protein assemblies related to RNA synthesis, chromatin remodeling,
DNA replication and repair, protein synthesis, and protein and RNA
degradation (proteasome and exosome). Proteins in transport com-
plexes were connected among themselves, but the proteins that they
transport were not captured in this mapping. Some labels have been
removed for clarity, and the complete annotations are provided in the
Supplementary Material.
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sets is not productive because of the almost negligible over-
lap of interactions. Instead, we have focused on a comparison
of interactions between select functional complexes associ-
ated with “RNA synthesis related complexes” and a separate
comparison of the “Protein transport machineries” to highlight
the inherent methodological biases of the three high-through-
put techniques.

RNA Synthesis Related Complexes—RNA synthesis is
closely connected to chromatin remodeling and other biolog-
ical processes that control DNA. Fig. 5 shows that RNA syn-
thesis complexes formed a highly interconnected cluster, in-
cluding RNA polymerases I, II, and III, Transcription factor
complexes II F (TFIIF) and III C (TFIIIC), which were connected
via direct protein-protein interactions with many other func-

tional complexes. Fig. 6A shows a comparison of the number
of detected intra- and intercomplex protein-protein interac-
tions among and between selected MIPS annotated com-
plexes. In particular, Fig. 6A highlights the intra- and intercon-
nectivity among RNA synthesis, chromatin remodeling, and
other DNA interacting protein complexes for the three high-
confidence interaction data sets. Consistent with the higher
intra-annotation fraction of the AP/MS data (Table I and Fig.
2), the diagonal elements for this data set were the most
populated. Therefore, the AP/MS data show that these three
biological processes are highly intraconnected via protein-
protein interactions; the PCA data capture part of these inter-
actions among RNA synthesis complexes and the Y2H data
capture protein interactions mainly among the DNA-associ-

FIG. 6. Connectivity among and between Munich Information Center for Protein Sequences complexes. A, The number of interactions
between proteins among the constituent functional complexes associated with RNA synthesis (rows and columns 1–5), Chromatin remodeling
(rows and columns 6–9), and Other DNA interactions (rows and columns 10–15) are color-coded from none (dark) to three or more (bright red).
The number of proteins in each of the 15 complexes is given in square brackets below the graph. Abbreviations: TFIIF, Transcription factor
complexes II F; TFIIIC, Transcription factor complexes III C; SWI/SNF, SWItch/Sucrose NonFermentable; TAFIIs, TATA-binding protein
associated factors; SAGA, Spt/Ada/GCN5/acetyltransferase; NuA4, nucleosome acetyltransferase of H4. B, The link between the cellular
locations of proteins and the different protein transport assemblies that interact with these proteins. The figure shows the connection Z-score
(See Methods) associated with co-occurring protein labels of interacting proteins as a function of their locations (rows and columns 1–5) and
association with different transporter complexes (rows and columns 6–16). Abbreviations: ER, Endoplasmic reticulum; TIM, the inner
mitochondrial membrane protein translocase; TOM, transport across the outer membrane; GIM, prefoldin protein complex; t-SNARE, target
SNAP (Soluble NSF Attachment Protein) Receptor; v-SNARE, vesicle SNAP (Soluble NSF Attachment Protein) Receptor; AP-2, Adaptor protein
complex-2; AP-3, Adaptor protein complex-3; ERV25, ER Vesicle 25.
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ated protein complexes, such as TATA-binding protein asso-
ciated factors (TAFIIs) and SAGA complexes. This is also
consistent with the observation that Y2H methods preferen-
tially detect protein interactions that contains specific DNA-
binding motifs (40).

The off-diagonal elements of Fig. 6A address protein inter-
action links between different functional complexes and draw
attention to the different types of interactions retrieved by the
three high-throughput methods. Chromatin remodeling is re-
quired to initiate and conduct RNA synthesis and DNA repli-
cation and repair. Fig. 5 shows the overall location of chro-
matin remodeling and RNA polymerase proteins of the AP/MS
data set, whereas Fig. 6A shows the detailed complex-com-
plex interaction mapping for the three high-confidence net-
works. The interaction data support the RNA polymerases II
and III connection with chromatin remodeling modules, via
RNA polymerases II interacting with the nucleosome remod-
eling complexes SWI/SNF and INO80 and via RNA polymer-
ases III interacting with the chromatin structure remodeling
(RSC) complex and nucleosomal protein complexes (his-
tones) (41, 42). DNA interacting assemblies, such as TAFIIs
and RNA polymerase II mediator complex (SRB), were also
directly linked via protein-protein interactions to RNA synthe-
sis complexes, whereas others, such as, histone acetyltrans-
ferase complexes [SAGA (43) and NuA4 (44)] and histone
deacetylase complex were indirectly linked (43–46). As shown
in Fig. 1, the AP/MS data set was relatively enriched in pro-
teins and protein interactions associate with cell cycle pro-
cesses compared with the PCA or Y2H data. Hence, the
organization of the AP/MS interaction network captured the
biological association of the functional components of the cell
cycle via the assembly of direct protein-protein interactions to
a higher degree than the PCA and Y2H networks.

Protein Transport Machineries—Fig. 5 shows the relative
isolation of transport complexes in the AP/MS network recon-
struction. Fig. 6B shows an overall comparison between de-
tected protein interactions within transport complexes in the
three high-confidence data sets as well as the interaction
tendency between the transporters and other proteins in dif-
ferent cellular compartments. Herein, we reported the co-
occurrences of MIPS labels (“Locations” and “Transporters”)
between interacting proteins based on Z-score calculations
(See Methods), where the green color indicates avoidance
and the red color indicates preferential co-occurrence. This
score measures the likelihood that proteins in different anno-
tation categories are associated and interact with each other.
For the transporters themselves, the AP/MS data recovered
the intracomplex interactions to a higher degree than in the
corresponding PCA and Y2H data sets. Conversely, interac-
tions between these transport complexes and proteins lo-
cated in the cytoplasm, nucleus, mitochondria, endoplasmic
reticulum (ER), and Golgi were strongly avoided in the AP/MS
data set. The PCA and Y2H data sets did not show this
avoidance; instead, many more interactions between trans-

porter complexes and other cellular proteins were present in
these data sets. As a specific example, members of the p24
family are engaged in protein transport between the ER and
the Golgi apparatus. Protein transport is executed via COPII-
coated vesicles, where four of the p24 member proteins
(ERV25, EMP24, ERP1, and ERP2) are known to form the
ERV25 complex that line the vesicles and interact with cyto-
plasmic coat proteins (47). Annotated as a cellular transport
protein, ERV25 was associated with 43 interactions in the
PCA data set, but with only five interactions in the AP/MS data
set. Fig. 6B also captured the gross features of this interaction
imbalance with a virtual absence of interactions in the AP/MS
data between the ERV25-complex and proteins in the five
locations shown, compared with an abundance of interac-
tions in the PCA data. Whereas none of these interactions
were present in the Y2H data set, only one protein (ERP1)
among these 43 PCA proteins coincided with the AP/MS set,
suggesting that a large portion of the detected PCA interac-
tions were weak or transient physical associations, such as
those between the transporters and the protein objects that
they transport.

The raw-AP/MS data set contains similar weak associations
between cellular machinery components and the objects they
operate upon. For example, as a sub-unit of the peripheral
membrane domain of the vacuolar H�-ATPase (V-ATPase),
VMA2 was associated with 512 and six interactions in the raw
and high-confidence AP/MS data sets, respectively. The high
number of interactions in the raw data set was most likely a
true reflection of the cellular function of the protein, i.e.
V-ATPase is an enzyme with remarkably diverse functions in
eukaryotic organisms and it acidifies a wide array of intracel-
lular organelles by pumping protons across plasma mem-
branes. Although other V-ATPase-interactions were present,
none of the VMA2 specific interactions was present in the
high-confidence PCA or the Y2H data sets (Fig. 6B). In gen-
eral, although PCA can capture some of the transient inter-
actions very accurately, the IDBOS-analysis of the AP/MS
purification data cannot distinguish transient or true weak
interactions from low-confidence promiscuous associations.

Although the overall coverage of interaction in the high-
confidence AP/MS data set remained small compared with
the complete interactome, we could still recover a rough
outline of many of the components of the cellular machinery
and connections among and between these components.
The clusters of proteins mapped-out in Fig. 5 defined bio-
logically distinct components and assemblies that consti-
tuted the bulk of the cellular machinery. These biological
units were, in turn, connected with other units and delin-
eated a global organization of the working components of
the cell. Thus, the high-confidence AP/MS data set yielded
different, complementary insights into protein properties,
protein assemblies, and how they are cross-connected in
the cell compared with the PCA and Y2H high-confidence
data sets.
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Protein Abundance of Interacting Protein Pairs—Previous
research has shown that proteins in stable complexes tend to
have similar mRNA expression profiles (48, 49). It is natural to
assume that two interacting proteins are more likely to be of
similar abundance than two noninteracting proteins. This as-
sumption may now be directly tested with the advent of
protein abundance measurements such as the recent mea-
surement of yeast cells in rich media (50). For all the proteins
in our study we retrieved the corresponding proteins’ cellular
abundance data from the study of Newman et al. (50). Fig. 7A
shows the calculated Spearman correlation coefficients be-
tween abundances of interacting proteins for the five data
sets in Table I. In order to verify that these correlations were
not spuriously related to the observed interactions, we cal-
culated the correlation coefficients using 1000 randomly
rewired versions of each protein interaction data set and
detected no significant correlations. Using the same cellular
abundance data, we also “colored” proteins in the high-
confidence AP/MS derived network from Fig. 3 according to

their abundance. Fig. 7B shows the corresponding abun-
dance map, which demonstrates that interactions were
much more likely to occur between proteins of similar
abundance.

The curated binary interaction data set (BGS) showed a
clear positive correlation of the protein abundance of the
interacting pairs, indicating that the assumption that interact-
ing proteins having similar concentrations tend to interact with
each other was a reasonable. All high-confidence data sets
exhibited statistically significant positive correlations to vary-
ing degrees. However, the magnitude of the positive correla-
tions for the high-confidence AP/MS, PCA, and Y2H data
sets, 0.53 (p value � 10�700), 0.17 (p value � 10�20), and 0.07
(p value � 10�5), respectively, varied substantially. Using the
intra- and interannotation schemes shown in Table I, we cal-
culated the corresponding intra-function correlation values.
Fig. 7A shows that the high-confidence AP/MS data retained
the higher abundance correlation for this subset of interac-
tions, whereas the PCA and Y2H intrafunction correlation
values increased to roughly 0.2 (p values � 10�30). The rela-
tively lower correlation values of the intrafunction Y2H and
PCA data sets with respect to the AP/MS ultimately depended
on the functional characteristics of the proteins sets retrieved
by the different methodologies. For example, the enrichment of
interactions in the AP/MS data set of highly coordinated func-
tions, such as cell cycle, transcriptions, and protein synthesis,
resulted in an enhanced abundance correlation. Likewise, the
enrichment of interactions in the PCA data set of transport
functions, which do not require the expression of proteins at the
same level, resulted in a decreased abundance correlation.

In contrast to the high-confidence data sets, we observed a
negative correlation in the raw AP/MS data set. This correla-
tion is an artifact of the experimental methodology and it
illustrates how technology can mislead a casual interpretation
of the data. In the raw affinity purification data, there is a
positive correlation between the number of interactions in
which a protein is engaged and the cellular abundance of the
proteins (49), i.e. proteins with many interaction partners
(hubs) are typically high-abundance proteins and proteins
with few interactions are typically low-abundance proteins.
However, there are fewer hub proteins that result in hub-
proteins in the raw data interacting with many more nonhub
proteins. Thus, the raw AP/MS data showed an overall inverse
correlation, i.e. interactions between high- and low-abun-
dance proteins are more likely to occur than between similarly
abundant proteins. Fig. 7A shows that neglecting protein pairs
that we inferred to have positive abundance correlations in the
raw-AP/MS data set, e.g. those occurring within the same
functions (Intra-function), and evaluating the abundance cor-
relation in the remaining set (Other, rSpearman � –0.34, p
value � 10�300) enhanced this effect.

The application of an intrafunction constraint to select in-
teracting proteins clearly increased the correlation of all these
data sets, but it also highlighted the inherent differences in the

FIG. 7. Protein abundance correlation between interacting pro-
tein pairs. A, Spearman rank-correlation coefficients rSpearman be-
tween abundance ranks of interacting proteins. The histograms are
shown for all interactions (All interactions), the subset that encom-
passes interactions that share the same intrafunction annotations
(Intrafunction), and all remaining ones that do not (Other). We indi-
cated correlations that were not statistically significant by a star (*).
B, Abundance map of the AP/MS data set. Abundance values (50)
were divided into 11 classes from 0 (smallest) to 10 (largest), and each
class was represented by a color. Class 0 is the collection of proteins
whose abundances were too small to be detected, and classes 1–10
were equally divided among proteins whose abundance could be
detected. Interacting proteins in each visible cluster tended to have
the same abundance values.

Categorizing High-Throughput Detection Biases

Molecular & Cellular Proteomics 10.12 10.1074/mcp.M111.012500–11



interaction data present in the high-confidence data sets. We
found, to a higher degree than for the PCA and Y2H data sets,
that the high-confidence AP/MS data were enriched with
interactions whose proteins were present at the same con-
centrations. To further confirm the assumption that interacting
proteins should be present in roughly the same concentra-
tions, we assessed whether interactions in the AP/MS data
sets were sensitive to their cellular location. The expectation
was that interactions present in the same cellular locations
(intralocation) should have significantly higher correlation val-
ues between proteins than those that do not share the same
cellular location (interlocation). We calculated the correlation
values for interactions in the intra- and interlocation set for the
AP/MS to be 0.55 (p value 10�729) and 0.10 (p value 0.004),
respectively. This was consistent with complexes isolated from
the AP/MS purifications retaining their natural composition,
commensurate with their native location, and not contaminated
with protein complexes from different cellular locations.

Essentiality of Proteins in the Different Interaction Data
Sets—Relating the essentiality of a protein to its position in a
protein interaction network has highlighted the uncertain na-
ture of biological interpretations of data-driven reconstruc-
tions of protein interaction networks. Because the time of the
earliest observation, based on one of the first Y2H sets (10),
that hubs that have more interactors are more likely to be
essential (51), other investigations have been carried out and
confirmed a positive correlation between essentiality and de-
gree, i.e. the essentiality-connectivity rule (52, 53). However,
different explanations to this rule also emerged: (1) hubs play
a vital role in maintaining the network connectivity (54); (2)
essentialities of proteins come from their interactions, and
hubs are more likely to be involved in essential interactions
(55); (3) rejecting explanations 1 and 2 above, Zotenko and
colleagues demonstrated instead that hubs tend to be essen-
tial because of their memberships in essential modules (56), a
previously suggested concept (21). In line with explanation 3,
another study has shown that large complexes tend to be
essential (57). However, a recent investigation of the consol-
idated Y2H set and the union of two original AP/MS sets,
invalidated the essentiality-connectivity rule (11), indicating
the dependence of this rule on the underlying interaction
networks. Herein, we quantified this dependence, highlighted
the inherent differences among the high-confidence data
sets, and provided a consensus analysis to finally infer a
consistent conclusion from all data sets.

Fig. 8A shows the fraction of essential proteins in the set of
proteins defined by a specific hub-threshold, where a hub-
threshold of 0.1 means that we selected the highest top 10%
connected proteins as hubs. The difference in essentiality-
connectivity correlations among all the protein interaction
data sets from Table I is quite evident. The PCA data exhibited
an opposite behavior, in that, the more connected the pro-
teins, the smaller was the fraction of essential proteins. In
contrast, our high-confidence AP/MS data showed a strong

correlation between essentiality and connectivity. In line with
the investigation by Yu et al. (11), we confirmed that previ-
ously constructed high-confidence AP/MS sets (6, 7, 20) did
not have such a strong correlation. Consistent with the ap-
parent neutral sampling of interaction in the Y2H data set, the
essential fraction was mainly independent of the hub-thresh-
old. The manually curated binary data set and the raw AP/MS
data exhibited similar modest correlations at lower hub-
thresholds, i.e. among highly connected proteins.

Given the pervasive belief that protein interaction data sets
are filled with “noise,” we investigated the consequences of
imposing a “high-confidence” filter in the AP/MS data set. Fig.
8B shows the effect on the essentiality-connectivity correla-
tion as a function of the false positive rate. Decreasing the
confidence from the designated high-confidence level at a 5%
false positive rate significantly weakened the essentiality-con-
nectivity correlation. At false positive rates at or above 20%,
the essentiality-connectivity correlation was similar to that of
the raw data for hub-thresholds less than 0.1. To determine
whether the high correlation for the high-confidence AP/MS
data set stemmed from the essentiality of large-sized com-
plexes, we used MIPS complexes to investigate the complex-
size essentiality correlation (data not shown). Contradicting a
previous study that used their self-defined complexes and
which suggested a positive correlation (57), we found that the
global complex-size essentiality correlation did not exist and
that there was a positive correlation only for small complexes
comprising less than 10 proteins.

Instead, we found that the largest influence on the essen-
tiality-connectivity correlation in the data sets was the de-
pendence of the functions of the retrieved proteins in the
different data sets. Fig. 8C shows the essential fraction of all
yeast proteins annotated by MIPS, which indicated that pro-
teins involved in “Transcription,” “Protein synthesis,” and
“Protein binding” tended to be more essential than other
groups. Comparing this figure to the retrieved proteins in the
high-confidence data sets and their interactions in Fig. 1C,
makes it clear that conflicting essentiality-connectivity corre-
lations of the high-confidence data sets were closely related
with their opposite interaction frequency profiles in functional
categories. For example, as mentioned above, AP/MS sam-
pled a large fraction of interactions involved in transcription,
whereas PCA sampled much fewer of these interactions. The
negative essentiality-connectivity correlation in the PCA data
set in Fig. 8A was a direct consequence of the relatively higher
number of interactions sampled in the “Cellular transport”
category (Fig. 1C) and these proteins’ relatively low fraction of
essential proteins (Fig. 8C). To exclude the effect of the inter-
action sampling difference, we investigated which proteins
were more likely to be essential within a given functional
category. Thus, for each data set, we separated proteins in
each MIPS category with degrees above and below the cat-
egory average into two groups, and found that the above-
average group (“Higher-connectivity proteins” in Fig. 8D) was
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significantly more enriched with essential proteins. This con-
sensus observation demonstrated that when removing sam-
pling biases, more connected components in a functional
category tended to be essential.

CONCLUSIONS

Recent advances in high-throughput experimental tech-
niques have identified large numbers of possible protein-
protein interactions. Although the protein sets tested for in-
teractions overlap, the actual detected protein interactions
among these data sets do not overlap to any significant
degree. Consequently, extracting and interpreting biological
information from networks reconstructed from such data de-
pend on the underlying detection methodology. Using pro-
tein-protein interaction networks in systems biology ap-
proaches to study phenotypic behavior requires that the
networks contain the relevant proteins responsible for the
underlying biological processes (17, 58). Herein, our system-
atic classification of interactions according to their functional
characteristics and each technology’s ability to detect these
interactions, shed insight into the underlying biases of the

content of these data sets. The comparison between three
different high-confidence high-throughput data sets derived
from different methodologies provided a quantitative measure
of the functional biases of the retrieved interactions and pro-
teins. This confirmed the unbiased nature of the Y2H data,
preferential retrieval of co-complex interactions from AP/MS,
and the ability of the PCA method to detect many transient
interactions. However, we also noted the large extent of bi-
nary interactions present in the high-confidence AP/MS, and
the presence of many binary interactions from complexes that
were retrieved in the Y2H and PCA data sets. The high-
confidence protein interaction data sets were associated with
biologically conflicting properties, such as protein abundance
and essentiality, biased by the underlying detection method-
ology. These biases determined, to large extent, the biological
insights derived from each data set and were more influential
than the topological properties of the network themselves.
Although these biases could be removed for certain analyses,
e.g. consistently relating protein connectivity with gene es-
sentiality, much work remains in defining the properties and
the range of suitable applications of the experimentally deter-

FIG. 8. Distribution of essential proteins. A, The fraction of essential proteins among hub proteins as a function of hub threshold,
represented as the fraction of (hub) proteins with degrees larger than a given degree among all proteins of the studied protein interaction
network. For example, a hub threshold of 0.1 means that we selected the highest top 10% connected proteins as hubs. B, The essential fraction
of proteins in the AP/MS data are shown for several different false positive rates, indicating the sensitivity of the essentiality-connectivity
correlation to the confidence level of the data. C, The fraction of all yeast proteins that were essential as a function of the Munich Information
Center for Protein Sequences (MIPS) function categories. D, More connected proteins within the same MIPS function category tended to be
essential for all five data sets. For each MIPS complex, we calculated the average degree and extracted proteins of above-average degrees
(Higher-connectivity proteins) into a group and those with below-average degrees (Lower-connectivity proteins) into another group. After
scanning all MIPS complexes, we calculated the fraction of essential proteins in each group. The consensus conclusion indicated that
higher-connectivity proteins were indeed more essential than lower-connectivity ones.
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mined, partially complete interactome in systems biology
studies.

A proper and consistent interpretation of biological proper-
ties derived from high-throughput protein interaction data
sets requires careful consideration of potential methodologi-
cal biases incorporated in the data. A facile way to quantify
this is to compare the functional characteristics of the con-
stituent proteins by comparing the relative distribution of
these proteins among functional categories. Although analy-
ses of data with the same protein characteristics should yield
consistent insights, apparent contradictory results derived
from different data sets may tell us more about the underlying
experimental biases themselves than the underlying biology.

MATERIALS AND METHODS

Protein Interaction Data Sets—We investigated the follow-
ing protein interaction data sets, comprising three high-con-
fidence high-throughput data sets derived from AP/MS, PCA,
and Y2H experiments, an unfiltered, raw interaction data set
(denoted as raw-AP/MS), and a manually curated set focusing
on binary protein interactions (BGS). Columns 1–3 of Table I
summarize the number of proteins and interactions contained
in the following five data sets:

AP/MS—We have previously developed and applied the
IDBOS method to extract and analyze high-confidence pro-
tein interaction networks from each of three individual AP/MS
data sets (14). It was determined that the data of Gavin et al.
(6) showed the highest specificity of protein associations and
no abundance bias, i.e. high-abundance proteins tend not to
have more interactions, and for these reasons we opted to
study this data set as the best representation of a high-
confidence AP/MS data. This data set is also included in the
supplemental material as an annotated, downloadable file.

PCA—The recent PCA strategy detects in vivo protein in-
teractions via fusions to enzyme fragments that, when recon-
stituted, restores catalytic activity and, consequently, cell
growth (59). This methodology does not depend upon the
expression of a reporter protein as required in Y2H screens.
The PCA technique was applied on a genome-wide scale for
yeast and yielded many new, previously undiscovered protein
interactions (8). Although we are aware of only one large-scale
interaction data set determined using the PCA technique, the
reported 98% positive predictive value of these interactions
defines them as a high-confidence data set.

Y2H—The Y2H method was the first high-throughput tech-
nology to assess protein interactions on a genomic scale, and
Yu et al. have consolidated three large-scale Y2H data sets
(10, 11, 60) into one high-quality representative S. cerevisiae
data set (11). This data set was representative of high-confi-
dence Y2H interactions.

Raw-AP/MS—To illustrate the importance of using a high-
confidence network, we also analyzed the raw interaction
data of Gavin et al. (6), where we used the spoke model to
construct a corresponding protein interaction set. In this

model, we retained the bait-prey pairs from the purification
and did not include all possible prey-prey pairs.

BGS—The BGS interaction data set is a manually curated
set of high-confidence physical binary interactions that rep-
resent direct protein associations, rather than indirect ones
(11). This interaction set has been shown to have considerable
overlaps with high-throughput Y2H data sets (11).

High-Confidence AP/MS Protein Interaction Network—Our
IDBOS procedure for AP/MS data can be summarized as
follows (14): For a given affinity purification data set in which
individual purifications are specified, we counted, for each
unique protein pair i and j, the total number of times they
co-occurred in the same purification oij. This analysis corre-
sponds to a matrix enumeration of possible interacting protein
pairs within each purification. We then constructed 106 random-
ized, or shuffled, purification sets and computed average shuf-
fled co-occurrences, o� ij, and associated standard deviations,
�ij, over these sets. A shuffled purification set was constructed
by shuffling, or exchanging, pairs of prey proteins in the data
set. The co-occurrence score (CSij) for each protein pair was
then determined as the Z-score of the observed co-occur-
rences given by:

CSij �
oij � o� ij

�ij
. (Eq. 1)

In order to gauge the significance of these scores, we also
constructed the scores associated with randomly shuffled pairs
themselves. First, we constructed an additional 105 shuffled
sets in the same manner as that described above. Second, for
each shuffled set, we determined the Z-scores for protein pairs
having a shuffled co-occurrence of greater than one as:

Zij
n �

cij
n � o� ij

�ij
, (Eq. 2)

where cij
n (� 1) denote the co-occurrence of proteins i and j in

the nth shuffled set, and o� ij and �ij denote the mean co-
occurrences and standard deviations, respectively, deter-
mined from the shuffled sets as in Equation 1. We can then
determine the CS-score cutoff that yields a particular false
positive rate by comparing the normalized experimental (PE)
and random (PR) score distributions generated from the data.
For a given score threshold �, we computed the fractions of
protein pairs in the commensurate random (fR) and experi-
mental (fE) distributions that have a higher score than � as:

fR��� ��
�

	

PR�x�dx (Eq. 3)

and

fE��� ��
�

	

PE�x�dx. (Eq. 4)
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We then approximated the false positive rate (FPR) as the
ratio of these fractions at a given score threshold �, as:

FPR��� �
fR���

fE���
. (Eq. 5)

For example, for a false positive rate of 5% we computed the
corresponding score cutoff �0.05 for the high-confidence
AP/MS data set to be 5.95. We compiled high-confidence
data sets at different false positive rates by including only
interactions having higher CS scores than their respective
cutoffs.

Protein Annotation and Essentiality Data—The Munich In-
formation Center for Protein Sequences (MIPS) protein data
were downloaded from the MIPS database (ftp://ftpmips.
gsf.de/yeast/catalogues/) (31). We used the top-level protein
function (funcat/) and location (subcellcat/) annotation labels
to characterize proteins. The function labels ranged from me-
tabolism to cell differentiation, whereas the location labels
ranged from extracellular to lipid particles. We only consid-
ered protein complexes (complexcat/) identified in small-scale
experiments, by excluding complexes listed under category
550, labeled as “complexes by systematic analysis.” Essen-
tiality data were merged from both MIPS (gene_disruption/)
and the Saccharomyces Genome Database (http://www.
yeastgenome.org/) (47), where a protein was considered es-
sential if it were labeled so in at least one of the data sets.

Assignment of a Single Property to Multiply Annotated Pro-
teins in Network Visualization—It is often the case that MIPS
annotations assign more than one function and/or location to
a protein. These “moonlighting” proteins presented no prob-
lem in our analyses; however, for the network visualization, it
was convenient to select a unique annotation item for each
protein from each MIPS annotation category. These were
chosen in order to maximize the number of homogeneous
interactions, i.e. those between proteins having the same
annotation item. By assuming that each homogeneous inter-
action had energy –1 and others had energy 0, we trans-
formed the problem into a typical energy-minimization one.
The total system energy was minimized using a Metropolis
Monte Carlo annealing algorithm on a random initial annota-
tion configuration in which each moonlighting protein was
randomly assigned one of its MIPS annotation labels. For a
protein interaction network, we uniformly annealed the system
from a temperature of 50 to 0.2 (for simplicity sake, both
energy and temperature have the same unit) in 10,000 steps.
A step consisted of a loop of operations on every moonlight-
ing protein. In one operation, the current annotation label for
the protein was temporally replaced by another, which was
randomly selected from its set of MIPS annotation labels. The
operation was accepted if the new system energy was lower,
or accepted with a probability of exp(–
E/T) if the new system
energy was higher, where 
E denotes the energy change
caused by the operation and T denotes temperature. The

annotation configuration was updated when the operation
was accepted and remained unchanged when the operation
was rejected. The lowest-energy configuration in the simula-
tion was chosen for the visualization of this data set.

Connection Z-Scores of Labels of Interacting Proteins—To
gauge the statistical connections between the functional cat-
egories assigned to the constituent proteins in an interaction,
we compared the originally annotated interactions with shuf-
fled annotations. During a shuffle, all annotations assigned to
a protein were kept as a single package. In a shuffle simula-
tion, each annotated protein was randomly chosen to switch
their annotation packages with another protein. For each
high-confidence interaction data set, we carried out 10,000
simulations. The connection significance between annotation
categories i and j was represented as a Z-score, as follows:

Zij �
Cij � C� ij

�ij
, (Eq. 6)

where Cij denotes the number of interactions between a pro-
tein annotated with category i and another annotated with
category j in the data set, C� ij represents the average Cij over
the 10,000 simulations, and �ij is the corresponding standard
deviation.
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