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INTRODUCTION

The continual advancements in genome sequencing technol-

ogy are contributing to the exponential increase of the rate at

which we accumulate protein sequence data.1,2 Unfortunately,

our ability to experimentally ascertain the function and anno-

tate protein sequences has not increased at the same rate, con-

tinually increasing the gap between protein sequence data and

their functional annotation.3,4 Hence, although not perfect,

computational methods arguably offer the only feasible solution

for addressing this disparity and providing high-throughput

annotation of protein function. Among the various protein

functions to be annotated, enzyme catalytic functions are of

great importance because about 20–40% of the genes in

genomes of the three domains of life code for enzymes,5 which

play many critical roles in a variety of biological processes in

living organisms.6–8

Traditionally, the computational prediction of protein cata-

lytic functions has been based on function transfer among ho-

mologous proteins, which assumes that functions are shared

among proteins with similar sequences or structures.9 BLAST10

and other equivalent search methods have enabled for fast and

efficient searches of similar sequences in large databases. It has

become a common practice to perform BLAST searches of a

query protein against a function-annotated protein sequence

database, such as the Swiss-Prot database (http://expasy.org/

sprot/), and transfer the annotated proteins’ functions to the

query protein for those proteins that exceed a specified

sequence similarity threshold (i.e., an E-value cutoff). However,

the accuracy of such methods is frequently questioned.

Although most proteins with high sequence similarity very

likely share similar functions, exceptions have been reported.

Particularly for enzymes, small changes in key residues have

shown to change protein function.11,12 More accurate function
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ABSTRACT

In this article, we present a new method termed Cat-

Fam (Catalytic Families) to automatically infer the

functions of catalytic proteins, which account for 20–

40% of all proteins in living organisms and play a

critical role in a variety of biological processes. Cat-

Fam is a sequence-based method that generates

sequence profiles to represent and infer protein cata-

lytic functions. CatFam generates profiles through a

stepwise procedure that carefully controls profile qual-

ity and employs nonenzymes as negative samples to

establish profile-specific thresholds associated with a

predefined nominal false-positive rate (FPR) of predic-

tions. The adjustable FPR allows for fine precision

control of each profile and enables the generation of

profile databases that meet different needs: function

annotation with high precision and hypothesis genera-

tion with moderate precision but better recall. Multi-

ple tests of CatFam databases (generated with distinct

nominal FPRs) against enzyme and nonenzyme data-

sets show that the method’s predictions have consis-

tently high precision and recall. For example, a 1%

FPR database predicts protein catalytic functions for a

dataset of enzymes and nonenzymes with 98.6% preci-

sion and 95.0% recall. Comparisons of CatFam data-

bases against other established profile-based methods

for the functional annotation of 13 bacterial genomes

indicate that CatFam consistently achieves higher pre-

cision and (in most cases) higher recall, and that (on

average) CatFam provides 21.9% additional catalytic

functions not inferred by the other similarly reliable

methods. These results strongly suggest that the pro-

posed method provides a valuable contribution to the

automated prediction of protein catalytic functions.

The CatFam databases and the database search pro-

gram are freely available at http://www.bhsai.org/

downloads/catfam.tar.gz.
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predictions may be achieved by structure-based homol-

ogy methods. For example, George et al.11 proposed a

method based on the presence of particular amino acid

residues at a few active sites in the three-dimensional

(3D) structure of a protein.13 However, the lack of 3D

structural information for the majority of the sequenced

proteins significantly limits its application. Homology-

based methods are also constrained by the limited num-

ber of homologous proteins that have been well anno-

tated and by the difficulty in making reliable predictions

for proteins with very low sequence similarity. Homology

methods can completely fail to determine ‘‘orphan

enzyme’’ activity, that is, a catalytic activity for which no

sequence information is available,14–16 or the activity of

an ‘‘orphan gene’’ that has no detectable homologs in

other organisms.16

An alternative approach that may complement homol-

ogy-based methods is the one based on ab initio meth-

ods. They employ statistical and machine-learning-based

techniques,17–22 such as Bayesian classification, decision

trees, association rules, neural networks,18 and support

vector machines,19,20 to classify protein catalytic func-

tions using various features derived from sequence and/

or structure information of proteins with known func-

tions. These features include sequence-related physico-

chemical properties,18,19 such as polarity, hydrophobic-

ity, Van der Waals volume, and glycosylation, as well as

structure-related information, such as predicted second-

ary structure.18,22 Despite the potential complementary

benefit of utilizing these approaches when homology

methods fail, the reported ab initio methods17–20,22

only predict the first two digits of the four-digit Enzyme

Commission (EC) number used for catalytic function

characterization. Therefore, given the ever increasing

amount and availability of protein sequence data,

improved sequence-based homology methods currently

provide the most practical computational solution for

predicting catalytic function on a genome-wide scale.

In one such effort, a novel probabilistic method was

proposed23,24 to improve catalytic function predictions

based on BLAST searches of a database of annotated

enzymes. For a query enzyme, the method takes into

account all BLAST search results and employs Bayesian

statistics to determine the most probable EC number for

the query enzyme. The method predicts enzyme functions

with high precision but is limited to the cases where the

query protein is known to be an enzyme. A more general

approach that has shown to significantly improve the ac-

curacy of sequence-based methods25 is to generate

sequence ‘‘profiles’’ to characterize the functions of similar

protein sequences that share a common functional anno-

tation. Recently, two methods based on sequence profiles,

PRIAM26 and EFICAz,27,28 have been proposed for pre-

dicting protein catalytic functions and have proven to be

highly accurate in estimating catalytic functions repre-

sented by EC number for a variety of enzymes.

PRIAM and EFICAz generate enzyme profiles by segre-

gating enzymes with known EC numbers gathered from

the Swiss-Prot database. Enzymes that share a common

EC number are grouped together to generate one or

more profiles to characterize the EC number (or func-

tion) of the proteins in the group. In PRIAM, the short-

est sequence in an EC group is selected as the seed for

PSI-BLAST25 searches against the proteins in the group.

The searches generate a sequence profile, which is repre-

sented in the form of a Position Specific Scoring Matrix

(PSSM), and identify enzymes in the group that are simi-

lar to the profile. The identified enzymes are then

removed from the group, and the process is sequentially

repeated, each time generating a new profile until all

enzymes in the group have been removed. For all pro-

files, PRIAM uses the same E-value cutoff to determine

whether to transfer the function of the profile to the

query protein. Conversely, rather than sequentially gener-

ating multiple profiles for each EC number, EFICAz first

clusters enzymes by sequence similarity within an EC

number group and then uses Hidden Markov Models29

to generate profiles for each cluster of enzymes. This

reduces the possibility of separating proteins with very

similar sequences in the generation of multiple profiles.

More importantly, EFICAz employs sequence identity

and negative samples, that is, proteins associated with

functions different from the considered function, to es-

tablish a specific cutoff for each profile. This can be

effective in reducing excessive false predictions for partic-

ular EC numbers, whereas methods that employ a single

cutoff for all profiles (e.g., PRIAM) can only assure an

overall, average performance.

In this article, we present a new method termed Cat-

Fam (Catalytic Families) to automatically infer protein

catalytic functions using sequence profiles. CatFam’s pro-

file generation procedure is similar to that of EFICAz. It

uses a hierarchical clustering algorithm to cluster enzyme

sequences and employs negative samples to generate pro-

file-specific cutoffs that determine whether to transfer the

function of the profile to the query protein. However,

CatFam employs ClustalW30 and PSI-BLAST to generate

profiles in PSSM format and uses a stepwise procedure

to control the quality of a profile during its generation.

More importantly, unlike EFICAz, which uses sequence

identity between the query protein and the sequences

used to generate the profile to determine whether to

transfer the function of the profile to the query protein,

CatFam uses the raw score threshold (RST) of the profile

itself. In contrast to sequence identity, the raw score of

the sequence-profile alignment provides a direct measure

of the similarity between the query protein and the

enzyme profiles characterizing the catalytic functions.

Furthermore, this direct measure obviates the need to

maintain a sequence database of the enzymes used to

generate the profiles, which is needed to compute

sequence identity of the query protein. Moreover, because
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RST is associated with predefined nominal false positive

rates (FPRs), it enables the generation of distinct profile

databases with different levels of precision and recall that

are yet to be implemented by other prediction methods.

Next, we present the CatFam profile generation algo-

rithm. Then, we assess the performance of the CatFam

enzyme profile databases in various test cases by compar-

ing them against BLAST and the two well-established

profile-based methods, PRIAM and EFICAz, for protein

catalytic function prediction. Finally, we conclude by

summarizing the major features of CatFam and contrast-

ing it against the two profile-based methods.

METHOD

Data preparation

We employ enzyme and nonenzyme protein data

annotated in the Swiss-Prot database to construct data-

sets for the generation and testing of CatFam databases.

The enzyme data consist of protein sequences and their

corresponding EC numbers. The EC numbers are consist-

ent with records in the Enzyme Nomenclature Database

(http://www.expasy.ch/enzyme/), which cross-reference all

enzymes in Swiss-Prot. We label proteins as nonenzymes

by following a rule adapted from that used by EFICAz: a

protein in Swiss-Prot is classified as a nonenzyme if no

EC number, no enzyme keywords, and no words indicat-

ing less reliable function annotation, such as hypothetical

and putative, are associated with the protein.

We assume that the manual annotations in the Swiss-

Prot database provide an appropriate ‘‘gold standard’’ to

train CatFam. Although errors inevitably exist in this

database, a recent study indicates that most errors are

due to under-annotation, that is, missed enzyme annota-

tions, and a substantial number of such omissions will be

corrected in the next Swiss-Prot release.31 Moreover, the

detrimental effect of sporadic annotations of wrong pro-

tein functions for a small number of enzymes can be

reduced when they are merged with a large number of

correctly annotated enzymes to generate a sequence pro-

file. In combination with precision control during profile

generation, this ensures that annotations performed by

CatFam do not lead to over-predictions, which are the

most detrimental type of errors propagated in data-

bases.32

The primary dataset used in this study consists of

189,178 proteins (75,687 enzymes and 113,491 nonen-

zymes) from Swiss-Prot released in November 2006.

About 90% of the enzymes and nonenzymes are ran-

domly selected to form a training dataset Dtr to generate

CatFam databases. The remaining proteins, 7600 enzymes

and 11,349 nonenzymes, are set aside to form a testing

enzyme dataset Denz1 and a testing nonenzyme dataset

Dnz, respectively. Using the latest Swiss-Prot release (Au-

gust 2007), we form a secondary testing enzyme dataset

Denz2, consisting of 8399 newly added enzymes. We use

Denz2 as a surrogate to assess how well the CatFam data-

bases can predict the catalytic functions of future, yet

unannotated proteins.

Enzyme profile database generation

A sequence profile generated from protein sequences

of a common function reveals the functionally conserved

amino acid patterns of the sequences. Hence, a protein

that matches such a profile can be annotated by the

function associated with the profile. We generate profiles

from enzymes that are annotated with the same EC num-

ber in the training dataset Dtr. For each EC number g,

one or more profiles are generated by the following

procedures:

a. Create a subset of enzymes Dg from Dtr, consisting

of enzymes with EC number g.

b. Compute the sequence similarity between each pair

of enzymes in Dg. This is performed by all-against-all

BLAST searches, where sequence similarity is measured

based on the E-value of the alignment of each pair of

sequences.

c. Cluster enzymes by their sequence similarity, that is,

E-value, using a hierarchical clustering algorithm.33 Ini-

tially, each sequence forms a cluster. Then, we perform a

pairwise search among all clusters and merge two clus-

ters, Ci and Cj, which have the smallest cost function

FðCi;CjÞ ¼ max½Eða; bÞ; 8a 2 Ci; 8b 2 Cj �; ð1Þ

into one cluster. Here, E(a,b) denotes the E-value

between protein sequences a and b in clusters Ci and Cj,

respectively. Next, we sequentially continue this merging

procedure until the cost function F exceeds a preset limit,

at which point we have partitioned Dg into a total of K

distinct clusters Ck, k 5 1,2,. . .,K. The proteins in each

cluster are used to initialize a profile-generation set Sk
for cluster Ck.

d. Generate one profile for cluster Ck. This is achieved

by using ClustalW to perform multiple sequence align-

ment (MSA) for protein sequences in set Sk, followed by

PSI-BLAST searches to generate a PSSM format profile

pk,m, m 5 1,2,. . .,M, where M is the total number of pro-

files used to represent cluster Ck.

e. Expand the set Sk by adding one additional sequence

s from Dg. The expanded set is used to generate a new

profile for Ck. The added sequence s is selected as the

one that is most similar to all sequences already in Sk,

that is, the sequence that has the smallest cost function

Fðs; SkÞ ¼ max½Eðs; bÞ; 8b 2 Sk�: ð2Þ

This gradual addition of divergent sequences preserves

the quality of the MSA used to generate the profile for

Ck.

Catalytic Families (CatFam) Database
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f. Return to Step (d) to generate another profile pk,m
for Ck unless one of the two following conditions that

terminate the expansion of the set Sk in Step (e) is met:

(1) there are no remaining proteins in Dg, or (2) the

MSA does not have a single fully conserved position. The

second condition prevents the addition of proteins to Sk
that are too divergent and would have significantly low-

ered the quality of the generated profile for Ck.

g. Select the best profile for cluster Ck. A series of pro-

files pk,1,pk,2,. . .,pk,M are generated through iterations of

Steps (d) and (e). For each profile, we first use PSI-

BLAST to align all proteins in Dtr with that profile.

Then, we rank order the proteins according to their raw

score value and compute the FPR (i.e., the fraction of

proteins with EC number other than g) associated with

each score. Next, starting with the largest raw score, we

search through the list of ranked proteins and identify

the one associated with the largest FPR that passes a pre-

defined threshold. The corresponding raw score is labeled

the RST, which is used as the cutoff for the profile.

Finally, for each profile, we compute the number of true

positives (i.e., number of proteins with EC number g)

associated with the corresponding RST and select as the

best profile for cluster Ck the one with the largest num-

ber of true positives.

h. Return to Step (d) to generate a profile for another

cluster Ck until the procedure is completed for all K

clusters.

This procedure allows the user to define the nominal

FPR for each EC number during the generation of the

CatFam databases. Therefore, the user can select low

FPRs to generate databases with highly accurate enzyme

annotation or high FPRs to construct databases with

high recall.

RESULTS

We assess the performance of the CatFam databases by

comparing and contrasting them against well-established

resources for predicting protein catalytic function, such

as BLAST, PRIAM, and EFICAz. The availability of

BLAST and PRIAM’s source code allows us to compara-

tively assess CatFam’s performance for the three custom-

ized testing datasets, Denz1, Denz2, and Dnz, discussed ear-

lier. Conversely, due to the unavailability of the EFICAz

code, comparisons with it are limited to precomputed

enzyme functions available on its Web-site in September

2007 (http://cssb2.biology.gatech.edu/EFICAz/).

CatFam databases

To test the performance of the proposed enzyme-pre-

diction algorithm, we construct four CatFam databases,

consisting of enzyme profiles and their associated EC

numbers and raw score thresholds. We construct each of

the four databases to satisfy one nominal FPR (1, 5, 10,

and 25%) specified during profile generation and test

their ability to predict enzymes labeled by four-digit EC

numbers. Table I lists the distribution of distinct EC

numbers used in the development of the CatFam data-

bases. Out of the 2220 distinct EC numbers in the Swiss-

Prot database, 1885 (86%) are covered in the training

dataset Dtr. Each of the 335 not covered EC numbers cor-

responds to only one enzyme in the Swiss-Prot database,

making them unsuitable for profile generation. For a 1%

FPR, CatFam generates 8080 profiles for 1653 EC num-

bers, comprising 88% of the EC numbers in Dtr. For the

remaining 12%, profiles are not generated because of the

insufficient number of training enzymes. For the other

FPRs, CatFam generates similar number of profiles, cov-

ering a comparable amount of EC numbers. Because the

testing dataset Denz1 is created by randomly selecting

10% of the enzymes for each EC number, no testing

enzymes are selected for EC numbers associated with less

than 10 enzymes. Thus, the testing dataset Denz1 only

covers about half of the EC numbers in the CatFam data-

bases. Interestingly, the dataset Denz2, which contains

newly annotated enzymes, has even fewer distinct EC

numbers than Denz1.

Assessment of CatFam’s performance

We first assess the capability of the CatFam databases

to discriminate between enzymes and nonenzymes and

compare their performance against BLAST searches on

the training dataset Dtr. A query protein is labeled as an

enzyme if an EC number is assigned to it by CatFam or

if a BLAST search finds an enzyme in Dtr with E-value

less a given cutoff. Figure 1 shows the combined results

against the enzyme (Denz1) and nonenzyme (Dnz) data-

sets. As expected, smaller E-value cutoffs in BLAST

searches decrease the false identification of nonenzymes,

while increasing the misidentification of enzymes. The

results of the CatFam databases with decreasing FPRs

yield a similar trend. However, when compared with

BLAST, for a fixed number of misidentified enzymes,

CatFam yields a much smaller number of falsely identi-

fied nonenzymes. This suggests that the CatFam profiles

are effective in characterizing enzyme catalytic functions,

effectively distinguishing enzymes and nonenzymes.

Table I
Distribution of EC Numbers Used in the Development of the CatFam

Databases

Distinct EC numbers in the Swiss-Prot databasea 2220
Distinct EC numbers in the training dataset Dtr 1885
Number of profiles in the CatFam databaseb 8080
Distinct EC numbers in the CatFam databaseb 1653
Distinct EC numbers in Denz1 856
Distinct EC numbers in Denz2 545

aSwiss-Prot database released in November 2006.
bThese numbers correspond to the CatFam database with 1% false positive rate.

The numbers for other CatFam databases are slightly larger.
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We further assess the catalytic function prediction of

the four CatFam databases by computing precision and

recall for the two testing enzyme datasets, Denz1 and

Denz2, and for the nonenzyme dataset, Dnz, and compar-

ing the results against PRIAM’s predictions. Precision

and recall are defined as:

Precision 5 TP/(TP 1 FP)

Recall 5 TP/(TP 1 FN)

where TP, FP, and FN denote true positives, false positives,

and false negatives, respectively. For each testing set, TP is

the number of predicted EC numbers that are consistent

with the proteins’ original EC number assignments, FP is the

number of predicted EC numbers that do not match the pro-

teins’ original assignments, and FN is the number of origi-

nally assigned EC numbers that are not predicted.

Table II compares the performance of the two methods

for the different testing datasets. The results for the two

testing enzyme datasets indicate each method’s perform-

ance for the case where all proteins are enzymes. Situa-

tions like these may arise in genome reannotations per-

formed to update or refine existing enzyme annotations.

The results for the dataset that combines Denz1 and Dnz

mimic the performance of automated protein annota-

tions for newly sequenced genomes, involving both

enzymes and nonenzymes.

As expected, the CatFam databases consistently achieve

higher precision and lower recall with smaller preset

FPRs. In the case of Denz1, when the FPR changes from

25% to 1%, precision increases from 96.0 to 99.2% and

recall decreases from 97.6 to 95.0%. When compared

with Denz1, the precision of each CatFam database for

Denz2, which consists of enzymes recently annotated and

added to the Swiss-Prot database, drops by less than

1.0%. This suggests a consistently high reliability of Cat-

Fam’s predictions. Conversely, recall for Denz2 drops

slightly more than 10.0% for each of the CatFam data-

bases. The lower recall is attributed to CatFam databases,

trained on a previous release of Swiss-Prot, not being

able to characterize new sequence patterns in enzymes

recently added to the Swiss-Prot database. This is sup-

ported by our observation that there are as many as 665

(8%) proteins in Denz2, compared with 51 (0.7%) pro-

teins in Denz1, that have less than 15% sequence similar-

ity with the enzymes used to train the CatFam profiles,

as shown in Figures 2(a,b). In addition, if enzymes in

Denz2 have catalytic functions associated with orphan

enzymes or orphan genes in the previous Swiss-Prot

database, they will not be predicted either. When com-

paring the precision of the composite dataset that com-

bines both enzymes and nonenzymes Denz1 1 Dnz with

Denz1, we find that the addition of nonenzymes causes a

slight decrement in precision, monotonically decreasing

it by 1.5–0.6% as the preset FPR changes from 25% to

1%. This further indicates that CatFam databases can

accurately discriminate enzymes from nonenzymes.

Comparisons between PRIAM and the CatFam data-

bases show that both PRIAM’s precision and recall are

consistently and systematically lower than those of all

four CatFam databases’ results for all testing datasets.

Although PRIAM’s precision for the enzyme datasets,

Denz1 and Denz2, is only about 4.0% lower than CatFam’s

results for 25% FPR, its recall is about 10.0% lower. Con-

sistently, PRIAM’s precision and recall for the composite

dataset, Denz1 1 Dnz, are about 10.0% lower than those

for CatFam’s with 25% FPR. These results clearly suggest

that CatFam outperforms PRIAM in discriminating

between enzymes and nonenzymes.

The performance of sequence-based protein function

annotation methods is highly dependent on the sequence

identity between the query protein and the proteins with

known function used for method development. To

Figure 1
Comparison of CatFam databases and BLAST searches for the

discrimination of enzymes and nonenzymes in datasets Denz1 and Dnz.
A query protein is labeled as an enzyme if an EC number is assigned by

CatFam or if a BLAST search against the training dataset Dtr finds an

enzyme with E-value less than a given cutoff. The figure shows some of

these E-value cutoffs.

Table II
Comparison of Catalytic Function Predictions of Four CatFam

Databases Versus PRIAM, Using Two Testing Enzyme Datasets, Denz1

and Denz2, and One Nonenzyme Dataset, Dnz

Preset false positive rate
(FPR)

CatFam

PRIAM1% 5% 10% 25%

Denz1 Precision (%) 99.2 98.5 97.2 96.0 93.4
Recall (%) 95.0 96.4 97.0 97.6 87.9

Denz2 Precision (%) 99.0 97.9 96.6 95.3 91.4
Recall (%) 82.3 84.5 86.3 87.4 76.3

Denz1 1 Dnz Precision (%) 98.6 97.5 95.9 94.5 82.6
Recall (%) 95.0 96.4 97.0 97.6 87.9

Catalytic Families (CatFam) Database
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compare the performance of CatFam and PRIAM as a

function of protein sequence identity, we sort the testing

results according to the maximum sequence identity

(MSI) between the query proteins and the proteins used

for profile generation. In such comparison, we make an

assumption that the distribution of proteins used to con-

struct PRIAM, which we do not know, would result in

similar MSI when queried against Denz1 and Denz2. This

assumption is reasonable because both PRIAM and Cat-

Fam are based on the Swiss-Prot database, and their

release dates are within 4 months of each other. The

resulting distribution of the query proteins in these two

datasets against the proteins used for profile generation

in CatFam are shown in Figures 2(a,b), respectively,

where the MSIs are binned in 5% increments, ranging

from 15 to 95%. Figures 2(c–g) show precision and recall

results for PRIAM and the 1 and 25% FPR CatFam data-

bases as a function of MSI. The performance of the 5

and 10% FPR CatFam databases is not shown because

they have similar trends and are bounded by the pre-

sented plots.

We observe similar trends for all precision curves: pre-

cision is kept high and does not significantly decrease

until the MSI decreases to a turning point, from which

precision decreases with decreasing MSI. This point cor-

responds to 25–30% MSI for the CatFam databases and

about 35–40% MSI for PRIAM. In particular, for query

proteins with more than 30% MSI, catalytic function

predictions with the 1% FPR CatFam database can

achieve better than 93.0% precision and as much as

98.0% if it is known [like in Figures 2(c,d)] that the

query proteins are enzymes. For the CatFam database

with 25% FPR, while still high, precision is reduced to

87.0% and 93.0%, respectively, for the composite dataset

Figure 2
Precision and recall as a function of maximum sequence identity (MSI) for PRIAM and two catalytic family (CatFam) databases, one with 1% false

positive rate (FPR) and another with 25% FPR. The MSI distribution for proteins in the testing datasets Denz1 and Denz2 are shown in Figure

2(a,b), respectively.
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and enzyme datasets. PRIAM’s precision is consistently

below the corresponding values for the two CatFam data-

bases. The plots for recall shown in Figures 2(f,g) show

similar behavior. For Denz1, the 1% FPR CatFam database

can achieve better than 89.0% recall when the MSI is

larger than 45%, whereas such recall is achieved when

the MSI is larger than 35.0% for the database with 25%

FPR. For Denz2, the MSI needs to be larger than 50% for

the two CatFam databases to achieve better than 89.0%

recall. PRIAM’s recall for either of the two testing data-

sets rarely achieves the 89.0% mark.

Predictions for multi-domain and
multi-functional enzymes

CatFam was not developed to identify functional

domains in protein sequences and reveal their connec-

tions with catalytic functions. However, we find that the

clustering step in the profile generation process does clas-

sify multi-functional enzymes, which quite likely contain

multiple domains. For example, the training set of 395

enzymes used to generate profiles for EC 2.7.7.48 (RNA

directed RNA polymerase) includes 246 multi-functional

enzymes, which are grouped into 47 clusters with differ-

ent catalytic functions in addition to EC 2.7.7.48. One of

such clusters contains 20 enzymes with EC 2.1.1.56, and

another contains 22 enzymes with EC 3.1.3.33. Out of

the 47 clusters, only three clusters contain enzymes that

do not share other EC numbers. This suggests that

multi-functional enzymes, sharing a common secondary

function, are further grouped into clusters according to

their shared secondary functions or, perhaps, different

domain structures. In addition, training enzymes with

multiple functions are used to generate profiles related to

each of their EC numbers. This enables the determina-

tion of all EC numbers for a multi-functional enzyme.

For example, the 1% FPR CatFam database correctly pre-

dicts 569 (91%) out of 622 EC numbers that are assigned

to 283 multi-functional enzymes in the testing enzyme

dataset Denz1, with only three false predictions.

Analysis of false predictions

We analyze the small number of false predictions made

by the 1% FPR CatFam database for enzymes in the

Denz1 dataset and for nonenzymes in the Dnz dataset. For

the 7600 enzyme in the Denz1 dataset, CatFam incorrectly

predicts 58 EC numbers (or 0.76%) for 57 enzymes. Ta-

ble III lists these 58 predictions along with their true EC

annotations based on the Swiss-Prot database (November

2006, release). These correspond to 36 distinct EC num-

bers out of a total of 856 distinct EC numbers in Denz1.

Our analysis finds that eight out of the 58 EC predic-

tions (highlighted with bold font in the table) that are in

fact correct. These include two EC numbers predicted for

protein DPOL_HBVAW, whose annotation has been re-

vised in the most recent Swiss-Prot database (February

2008). The other six predicted EC numbers represent cat-

alytic activities that either subsume or are subsumed by

the EC numbers assigned by Swiss-Prot. For example, EC

2.4.1.21 (starch synthase using ADP-glucose) predicted

for proteins SSG1_HORVU and SSG1_MANES are sub-

sumed by EC 2.4.1.242 (starch synthase using either

ADP-glucose or UDP-glucose). In another example, EC

2.7.1.1 (hexokinase) is predicted for protein HXK4_RAT,

which subsumes EC 2.7.1.2 (glucokinase). For the other

50 false predictions, we find that 39 of them correspond

to EC numbers (and functions) that are very similar to

the true annotations. The differences are only at the sub-

strate or cofactor levels, which are usually reflected on

the last of the four-digit EC number annotation. Such

differences account for 30 out of these 39 false predic-

tions. The other nine false predictions are also associated

with substrate-level inferences, although related to multi-

ple EC-digit errors. In eight of such cases, CatFam misi-

dentifies NADH dehydrogenase that acts on quinione

(EC 1.6.99.5) for NADH dehydrogenase that acts on

ubiquinone (EC 1.6.5.3), and in one case CatFam makes

the converse mistake, that is, it predicts EC 1.6.99.5 for

EC 1.6.5.3.

It should be noted that CatFam does not make system-

atic errors for particular EC numbers, in that one EC

number is not always predicted for another. This is

observed in Table III, which shows that only eight EC

numbers (underlined) have error rates higher than 10%.

Most of these EC numbers are underrepresented in both

the training and the testing datasets, significantly contrib-

uting to the higher error rates.

For the 11,349 nonenzymes in the Dnz dataset, CatFam

incorrectly provides an EC number for 47 (or 0.41%),

which are distributed through 27 distinct EC numbers.

Table IV lists the six EC numbers that are incorrectly

assigned to more than one nonenzyme and the corre-

sponding number of enzymes used to train the related

CatFam profiles. Except for EC 2.4.1.129, the number of

nonenzymes incorrectly predicted is roughly proportional

to the number of training enzymes. This is a consequence

of the constraints imposed by the specified FPR during

the training process. For a large number of training

enzymes, a fixed rate of acceptable false predictions yields

a large number of incorrectly predicted nonenzymes. The

false prediction related with EC 2.4.1.129 is attributed to

the small number of proteins (13) used to construct its

profile. In addition, CatFam occasionally predicts EC

numbers for close homologs of enzymes that do not pos-

sess catalytic activity, as they lack the necessary active

sites. For example, CatFam predicts EC 3.2.1.17 for pro-

teins SACA3_HUMAN and SACA_MOUSE that have

50% sequence similarity with the training enzymes. How-

ever, these two proteins lack catalytic activity because the

required residues at positions 122 (Glu) and 139 (Asp)

are not conserved. In another case, CatFam predicts EC
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Table III
Analysis of 58 Incorrect EC Predictions for the Testing Enzyme Dataset Denz1

Protein accessiona Predicted EC True ECb Error rate (%)c Catalytic function descriptiond

LDH_BOTBR 1.1.1.37 1.1.1.27 9.0 L-lactate dehydrogenase [Malate dehydrogenase]
LDH_THEMA 1.1.1.37 1.1.1.27
GPDA_TRYBB 1.1.1.94 1.1.1.8 4.0 Glycerol-3-phosphate dehydrogenase (NAD(1))

[Glycerol-3-phosphate dehydrogenase (NAD(P)(1))]
NUOH1_RHOPB 1.6.5.3 1.6.99.5 6.0 NADH dehydrogenase (quinone)
NUOH_AZOSE 1.6.5.3 1.6.99.5 [NADH dehydrogenase (ubiquinone)]
NUOH_BORPA 1.6.5.3 1.6.99.5
NUOH_RHORT 1.6.5.3 1.6.99.5
NUOH_THICR 1.6.5.3 1.6.99.5
NUOI1_RHOS4 1.6.5.3 1.6.99.5
NUOI_RHORT 1.6.5.3 1.6.99.5
NUOK_RHOCA 1.6.5.3 1.6.99.5
NUOG_RICCN 1.6.99.3 1.6.99.5 5.0 NADH dehydrogenase (quinone)
NUOG_RICPR 1.6.99.3 1.6.99.5 [NADH dehydrogenase]
NDUS2_RECAM 1.6.99.5 1.6.99.3 5.0
NU1M_METSE 1.6.99.5 1.6.5.3
ODP2_ACHLA 2.3.1.61 2.3.1.12 33e Dihydrolipoyllysine-residue acetyltransferase [Dihydrolipoyllysine-residue

succinyltransferase]
AMY_BACCI 2.4.1.19 3.2.1.1 50 1,4-a-D-glucan glucanohydrolase [Cyclodextrin glucanotransferase]
SSG1_HORVUf 2.4.1.21 2.4.1.242 Starch synthase that uses either UDP- or ADP- glucose [Starch synthase that

uses ADP glucose]SSG1_MANES 2.4.1.21 2.4.1.242
APT_YERPE 2.4.2.10 2.4.2.7 9.0 Adenine phosphoribosyltransferase [Orotate phosphoribosyltransferase]
OAT_OCEIH 2.6.1.11 2.6.1.13 8.0 Ornithine aminotransferase [Acetylornithine aminotransferase]
HXK4_RAT 2.7.1.1 2.7.1.2 Glucokinase [Hexokinase]
FER_HUMAN 2.7.10.1 2.7.10.2 4.0 Protein-tyrosine kinase [Protein-tyrosine kinase with an additional

transmembrane domain]
PPK5_SCHPO 2.7.12.1 2.7.11.1 Nonspecific serine/threonine protein kinase [Dual-specificity kinase for both

serine/threonine and tyrosine]
KAPB_YEAST 2.7.11.1 2.7.11.11 4.0 cAMP dependent protein kinase
KPCD_CANFA 2.7.11.1 2.7.11.13 Calcium-dependent protein kinase
PLK4_MOUSE 2.7.11.1 2.7.11.21 Polo serine/threonine protein kinase, catalyzes same reaction but associates

with the spindle pole
PSK1_SCHPO 2.7.11.1 2.7.11.22 Cyclin-dependent protein kinase
ARGA_PSESM 2.7.2.8 2.3.1.1 6.0 Amino-acid N-acetyltransferase [Acetylglutamate kinase]
DPOL_HBVAW 2.7.7.49 2.7.7.49 RNA-directed DNA polymerase
DPOL_HBVAW 3.1.26.4 3.1.26.4 Ribonuclease
UBC2_MIMIV 2.7.7.6 6.3.2.19 1.0 Ubiquitin protein ligase [DNA-directed RNA polymerase]
TREX2_HUMAN 2.7.7.7 3.1.11.2 1.0 30-50 exonuclease [DNA-directed DNA polymerase]
MGTA_THENE 3.2.1.1 2.4.1.25 14 4-a-glucanotransferase [a-amylase]
GUX6_HUMIN 3.2.1.4 3.2.1.91 12 Exoglucanase [Endoglucanase]
GUX_CELFI 3.2.1.4 3.2.1.91
GUNB_CALSA 3.2.1.8 3.2.1.4 11 Endoglucanase [Endo-1,4-b-xylanase]
ATPL_PROMO 3.6.3.14 3.6.3.15 0.4 Sodium ion specific ATP synthase [ATP synthase]
ULAD_MYCPN 4.1.1.23 4.1.1.85 3.0 3-dehydro-L-gulonate-6-phosphate decarboxylase [Orotidine-5 0-phosphate

decarboxylase]
TRPF_KLULA 4.1.1.48 5.3.1.24 18 Phosphoribosylanthranilate isomerase [Indole-3-glycerol-phosphate synthase]
TRPF_ZYGBA 4.1.1.48 5.3.1.24
PABB_BACSU 4.1.3.27 2.6.1.85 9.0 Aminodeoxychorismate synthase [Anthranilate synthase]
LYS4_SCHPO 4.2.1.33 4.2.1.36 3.0 Homoaconitate hydratase [3-isopropylmalate dehydratase]
ISPD_RHOS4 4.6.1.12 2.7.7.60 4.0 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase [2-C-methyl-D-erythritol-2,4-

cyclodiphosphate synthase]
PHEA_METJA 5.4.99.5 4.2.1.51 50 Prephenate dehydratase [Chorismate mutase]
SYWC_BOVIN 6.1.1.1 6.1.1.2 14 Tryptophan translase [Tyrosine translase]
SYWC_MOUSE 6.1.1.1 6.1.1.2
SYWC_RABIT 6.1.1.1 6.1.1.2
SYW_CLOLO 6.1.1.1 6.1.1.2
SYN_PYRKO 6.1.1.12 6.1.1.22 4.0 Asparagine translase [Aspartic acid translase]
SYT_THET8 6.1.1.15 6.1.1.3 3.0 Threonine translase [Proline translase]
SYQ_CLOPE 6.1.1.17 6.1.1.18 5.0 Glutamine translase [Glutamic acid translase]
SYQ_PSESM 6.1.1.17 6.1.1.18
SYK_STRMU 6.1.1.20 6.1.1.6 4.0 Lysine translase [Phenylalanine translase]
SYMC_CAEEL 6.1.1.20 6.1.1.10 4.0 Methionine translase [Phenylalanine translase]
E2AK4_HUMAN 6.1.1.21 2.7.11.1 3.0 Nonspecific serine/threonine protein kinase [Histidine translase]

a,bProtein accessions and their true EC numbers are obtained from the Swiss-Prot database released in November 2006.
cError rate is the percentage of false predictions for a given EC number.
dOfficial enzyme names for the true EC number (normal font) and the predicted EC number (italic font in the square brackets).
eError rates greater than 10% are underlined.
fEC predictions that are in fact correct are highlighted by bold font.



3.1.1.4 (phospholipase) for protein PA2H_ZHAMA,

which has 82% sequence similarity with the training

enzymes and has active sites and sequence patterns

recorded by PROSITE34 for that EC number. However,

experimental studies do not show catalytic activity for

that protein.35

Catalytic function annotation for
whole genomes

To evaluate the performance of CatFam for whole ge-

nome annotation, we select two Yersinia genomes [Y. pes-

tis mediaevails (ypm) and Y. pseudotuberculosis IP 32953

(yps)] and 11 category A and B bacterial pathogens listed

by the Centers for Disease Control and Prevention [Ba-

cillus anthracis Ames Ancestor (bar), Burkholderia mallei

ATCC 23344 (bma), Burkholderia pseudomallei K96243

(bps), Brucella melitensis 16M (bme), Clostridium botuli-

num Hall (cbh), Coxiella burnetii RSA 493 (cbu), Franci-

sella tularensis SCHU S4 (ftu), Rickettsia prowazekii Ma-

drid E (rpr), Salmonella enterica serovar Typhi CT18

(sty), Vibrio cholerae N16961 (vch), and Y. pestis CO92

(ype)]. For benchmarking purposes, we consider the

enzyme annotations in the KEGG database (http://

www.genome.jp/kegg/) as the gold standard, since these

annotations combine the results of multiple resources

and are partially curated. Figure 3 shows the CatFam

results along with the predictions obtained with PRIAM

and EFICAz (http://cssb2.biology.gatech.edu/EFICAz/). In

this test, we use the genome-oriented release of PRIAM,

which is slightly different from the gene-oriented release

used in the tests discussed earlier. EFICAz’s predictions

and the KEGG’s annotations are directly downloaded

from their Web-sites in September 2007. Here, we use

the CatFam database with FPR preset to 10% because it

provides a good trade-off between precision and recall.

Figure 3(a) shows the fraction of catalytic function pre-

dictions that agrees with KEGG’s annotations, that is, it

provides a measure of precision, whereas Figure 3(b)

shows the fraction of KEGG’s catalytic function annota-

tions that are predicted by each method, that is, recall.

Comparison of the three methods indicates that the

CatFam predictions yield the largest precision for all 13

genomes [Figure 3(a)]. EFICAz’s precision is almost as

good as CatFam’s, both of which are substantially better

than that of PRIAM. All of CatFam’s precisions are in

the 70–80% range except for C. botulinum. This genome

was recently sequenced, and only 21 of its proteins are

recorded in the most recent Swiss-Prot database. The

lack of appropriate training proteins may explain why

both CatFam and PRIAM reach their lowest precision

values, which are about 55 and 40%, respectively, for this

genome. The EFICAz Web-site does not provide predic-

tions for C. botulinum. Figure 3(b) shows that CatFam

yields the highest recall for seven genomes and that in

three cases its recall is substantially lower than that of

PRIAM. This is consistent with the fact that often

PRIAM predicts many more enzymes than the other two

methods, increasing recall at the expense of deteriorating

precision. Compared with PRIAM, both CatFam and

EFICAz are more conservative tools, optimized for accu-

rate enzyme function predictions.

Despite the overall comparable performance of CatFam

and EFICAz, we observe substantial differences when

comparing the predictions for each of the 13 bacterial

genomes. Similar differences are observed when compar-

ing with PRIAM’s predictions as well. For example, the

Venn diagram in Figure 4 shows the overlap of the three

methods’ catalytic function predictions for Y. pestis CO92

(ype). Although the majority of the three methods’

Table IV
Distribution of EC Numbers Incorrectly Assigned to More Than One

Nonenzyme in the Dnz Dataset

Predicted EC
number

Number of nonenzymes
incorrectly predicted

Number of training
enzymes

2.4.1.129 2 13
2.4.2.7 2 183
2.7.7.48 4 432
2.7.7.6 13 1762
3.1.1.4 2 270
3.2.1.17 2 155

Figure 3
Comparison of catalytic function predictions based on CatFam,

EFICAz, and PRIAM for 13 bacterial genomes, using KEGG as the gold

standard. (a) shows the fraction of catalytic function predictions that

agrees with KEGG’s annotations, that is, precision. (b) Shows the

fraction of KEGG’s catalytic function annotations that are predicted by

each method, that is, recall. The rightmost bars in each of the two
panels indicate the average values over the 13 genomes. [Color figure

can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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predictions yield the same functions (631), each provides

additional catalytic function predictions that are not

inferred by the others. PRIAM provides the largest num-

ber of unique predictions (331), consisting of 30.0% of

its total predictions. Between CatFam and EFICAz, about

19.0% of the predictions from one method are not pro-

vided by the other. We observe similar results for all bac-

terial genomes except for C. botulinum. On average,

21.9% of CatFam’s predictions are not inferred by EFI-

CAz and 26.0% of EFICAz’s predictions are not inferred

by CatFam. False predictions may contribute to some of

these unique predictions. However, we expect the major-

ity of these differences to be attributed to slight meth-

odological differences, especially for the differences

between CatFam and EFICAz, which are designed for

making highly accurate predictions.

Automated metabolic pathway
reconstruction

Reconstruction of an organism’s metabolic pathways is

a key element for understanding the meaning of protein

functions within a cellular context. Manual curation is

the best way to obtain high-quality metabolic pathways,

but it is labor intensive and time consuming. Several

tools for automated metabolic pathway reconstructions

have been developed (http:/www.pathguide.org). How-

ever, the quality of the reconstructed pathways is highly

dependent on the precision and extent to which the

organism’s enzymatic functions are known or predicted.

We reconstruct the metabolic pathway of two organisms,

Y. pestis CO92 and F. tularensis SCHU S4, employing the

Pathway Tools software.36 Initially, GenBank (http://

www.ncbi.nlm.nih.gov/Genbank/) is used as the sole

source of enzyme function annotation and then it is

employed in combination with each of the three methods

(CatFam, PRIAM, and EFICAz).

Table V compares the total number of reactions and

pathways predicted by the PathoLogic-module of Path-

way Tools. As expected, the number of predicted reac-

tions and pathways increases as automated enzyme anno-

tations are added to GenBank. The number of predicted

pathways is largest when the PRIAM predictions are

added to GenBank because, usually, PRIAM provides the

largest number of enzyme function predictions for a

given genome. However, according to the analysis dis-

cussed earlier, some of these predictions are false posi-

tives. Biasing the reconstruction toward false positives

may be desirable to provide more information to manual

curators. For such an application, PRIAM is a valuable

tool and is already in use.37 A combination of multiple

prediction tools with complementary enzyme coverage is

also valuable, as demonstrated by the joint predictions of

CatFam, PRIAM, and EFICAz with GenBank. Combined,

when compared against GenBank, they increase the num-

ber of predicted pathways for Y. pestis and F. tularensis

by 22.6 and 19.8%, respectively. When manual curation

Figure 4
The Venn diagram of catalytic function predictions based on CatFam,

EFICAz, and PRIAM for Y. pestis CO92 (ype). The number of common

predictions is labeled in each intersecting area. The number of

predictions solely provided by each method is labeled in each

nonintersecting area. The total number of annotations from each

method is labeled outside of the diagram.

Table V
Comparison of Predicted Pathways for Y. pestis and F. tularensis

Organism Annotation
Number of

enzyme-catalyzed reactions
Number of

predicted pathways
Number of

pathways with holes

Yersinia pestis CO92 GenBank 1000 239 142
GenBank 1 CatFam 1060 254 133
GenBank 1 PRIAM 1186 278 145
GenBank 1 EFICAz 1088 261 141
GenBank 1 CatFam 1 PRIAM 1 EFICAz 1226 284 145

Francisella
tularensis SCHU S4

GenBank 717 169 106
GenBank 1 CatFam 745 178 107
GenBank 1 PRIAM 818 188 113
GenBank 1 EFICAz 754 181 106
GenBank 1 CatFam 1 PRIAM 1 EFICAz 859 194 114

Various enzyme annotations are used for reconstruction: GenBank, GenBank enhanced by CatFam predictions, GenBank enhanced by PRIAM predictions, GenBank

enhanced by EFICAz predictions, and GenBank enhanced by all of the three automated prediction methods.

C. Yu et al.
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is not available or not feasible because of the large num-

ber of sequenced genomes, more precise prediction tools,

such as EFICAz and CatFam, are more appropriate. The

number of predicted pathways for these tools is similar,

with approximately 95% overlap.

More than 50% of the pathways contain enzymes

without assigned genes, the so-called ‘‘pathway holes.’’

Some of the pathway holes are filled as automated

enzyme annotations are provided by the three methods,

but many remain to be filled, perhaps by using the path-

way hole filler module of PathoLogic.38,39 Fully auto-

mated application of pathway hole filler introduces addi-

tional false positives and is not used for pathway recon-

structions in this analysis.

DISCUSSION

The presented results indicate that the CatFam enzyme

profiles are effective in discriminating enzymes from

nonenzymes, and in predicting a broad range of protein

catalytic functions. Although the issue of multi-domain,

multi-functional enzymes is not especially considered in

the profile generation process, different domain combina-

tions are represented by distinct profiles, enabling the

prediction of catalytic functions for multi-functional

enzymes.

We observe that four-digit EC numbers do not always

classify catalytic functions into distinct categories. A cata-

lytic function classified by one EC number may be sub-

sumed by other function classified by a different EC

number. Therefore, we argue that eight of 58 false predic-

tions from a testing set of 7600 enzymes are in fact cor-

rect. These include two predicted EC numbers for one

protein whose annotation were revised in the most recent

Swiss-Prot database, suggesting that CatFam may be ro-

bust to under-annotation errors in Swiss-Prot. Con-

versely, our analysis reveals CatFam’s limitations in dis-

tinguishing enzymes with very similar catalytic functions.

Enzymes that catalyze the same type of reaction but act

on different, yet very similar, substrates or require differ-

ent cofactors are difficult to distinguish and may be

missed by CatFam. In addition, CatFam occasionally pre-

dicts EC numbers for nonenzymes that are homologous

to known enzymes but do not possess active sites. Fur-

thermore, precision control through FPRs may also give

rise to a relatively large number of false predictions for

EC numbers that are overrepresented in the training

dataset.

CONCLUSIONS

We present a new method termed CatFam that gener-

ates enzyme sequence profiles to infer protein catalytic

functions. The method provides a procedure for specify-

ing the nominal FPR of each profile, thereby controlling

the reliability of the predicted protein functions. This

enables the generation of profile databases not only for

highly precise function annotation but also for moder-

ately precise annotation with better recall, which can be

useful for generating hypothetical protein functions. The

use of profile-specific thresholds also ensures equal preci-

sion for each profile and avoids the problem of having a

single E-value threshold for all profiles, which yields

good overall results but poor performance for some

profiles.

Comparisons with well-established resources demon-

strate the effectiveness of the enzyme profile generation

method and the CatFam databases. They not only

achieve overall excellent precision and recall but also per-

form well for enzymes with low sequence identity. Com-

parisons based on three testing datasets and 13 bacterial

genomes consistently indicate that CatFam outperforms

PRIAM in precision and, most of the time, in recall as

well. In addition to various improvements in the profile

generation procedure, use of negative samples and pro-

file-specific thresholds may be the major contributors for

CatFam’s superior performance. This is supported by the

consistently high precision of CatFam in discriminating

enzymes from nonenzymes, whereas PRIAM’s perform-

ance deteriorates in such applications.

Overall, comparisons between CatFam and EFICAz on

whole-genome annotation examples indicate very similar

performance. This could be attributed to the similar pro-

cedure used to generate the CatFam databases and one of

EFICAz’s databases. However, the predictions do not

completely overlap. On average, 21.9% of the catalytic

function predictions inferred by CatFam for 13 bacterial

genomes (excluding C. botulinum, which EFICAz does

not provide predictions for) are not inferred by EFICAz,

whereas 26.0% of EFICAz’s predictions are not inferred

by CatFam. This is perhaps due to methodological or

training dataset differences in the profile generation.

Although further comparisons may reveal when each

method performs best, for now, it seems appropriate to

use them complementarily, even combined with PRIAM,

for more comprehensive enzyme annotation. We observe

a roughly 20% increase in coverage in the reconstruction

of metabolic pathways when we combine the predictions

of all three methods.
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