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A b s t r a c t Objective: The development and application of data-driven decision-support systems for medical
triage, diagnostics, and prognostics pose special requirements on physiologic data. In particular, that data are reliable in
order to produce meaningful results. The authors describe a method that automatically estimates the reliability of ref-
erence heart rates (HRr) derived from electrocardiogram (ECG) waveforms and photoplethysmogram (PPG) waveforms
recorded by vital-signs monitors. The reliability is quantitatively expressed through a quality index (QI) for each HRr.

Design: The proposed method estimates the reliability of heart rates from vital-signs monitors by (1) assessing the
quality of the ECG and PPG waveforms, (2) separately computing heart rates from these waveforms, and (3) concisely
combining this information into a QI that considers the physical redundancy of the signal sources and independence of
heart rate calculations. The assessment of the waveforms is performed by a Support Vector Machine classifier and the
independent computation of heart rate from the waveforms is performed by an adaptive peak identification technique,
termed ADAPIT, which is designed to filter out motion-induced noise.

Results: The authors evaluated the method against 158 randomly selected data samples of trauma patients collected
during helicopter transport, each sample consisting of 7-second ECG and PPG waveform segments and their associated
HRr. They compared the results of the algorithm against manual analysis performed by human experts and found that
in 92% of the cases, the algorithm either matches or is more conservative than the human’s QI qualification. In the
remaining 8% of the cases, the algorithm infers a less conservative QI, though in most cases this was because of
algorithm/human disagreement over ambiguous waveform quality. If these ambiguous waveforms were relabeled,
the misclassification rate would drop from 8% to 3%.

Conclusion: This method provides a robust approach for automatically assessing the reliability of large quantities of
heart rate data and the waveforms from which they are derived.
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Decision-support algorithms that automatically interpret stream-
ing physiologic time-series data are valuable tools for a broad
range of medical surveillance applications. Examples of such
applications include acute monitoring of patients in intensive

care, home care, and ad hoc monitoring to continuously assess
the health status of personnel, such as firefighters and
soldiers, who are at risk of sudden injury.1 Advances in
vital-signs monitoring software/hardware, miniaturization,
storage capacity, wireless transmission, and computational
power now allow recording and analysis of large quantities
of physiologic data in a timely fashion. These data are invalu-
able for the development of triage, diagnostic, and prognostic
algorithms. However, collection of time-series vital-signs data
is subject to many factors that affect the quality of the data. In
particular, because vital-signs data are mostly collected in a
noninvasive fashion, sensor motion artifact is of significant
concern when the subject is moving or being transported.
Other factors that may degrade data quality include electrical
interference, sensor/monitor malfunction, and poor sensor
placement on the subject. If valid decision-support algorithms
are to be developed, and subsequently used to monitor
patients, it is critical that reliable data be distinguished from
artifact. Moreover, the process of distinguishing reliable from
unreliable data must be automated since the sheer volume of
collected time-series vital-signs data makes post hoc manual
assessment an overwhelming task, while real-time streaming
data cannot be manually evaluated at all.

Heart rate (HR) is a critical vital sign that is continuously
monitored during transport of trauma patients from the scene
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of injury to the hospital. It is used as an input for existing pre-
hospital trauma severity scores, such as the prehospital in-
dex,2,3 and may be used for future triage scoring systems.
Also, studies of heart rate variability (HRV) suggest that de-
creasing HRV may be associated with worsening patient sta-
tus. Unfortunately, we have observed that randomly imposed
noise spikes are sometimes counted as heart beats by a vital-
signs monitor. These sorts of data corruption can mislead di-
agnosis and compromise the development and application of
inductive algorithms based on the synthesis of time-series
physiologic data. Therefore, it is imperative that validated
HRs be available for clinical use and development of
advanced automated monitoring systems.

Automated HR calculation is usually based on the identifica-
tion of heart beat signals, which could be taken from the QRS
complex or simply the R waves in electrocardiogram (ECG)
waveforms, or the pulse waves in photoplethysmogram
(PPG) waveforms,4–6 and dependent on the count of heart
beats over a period of time. Given noisy waveforms, however,
true heart beat signals may be masked or noise artifacts may
resemble and be counted as true heart beats. Therefore, the
quality of the HR calculated from the waveform depends
on the quality of the waveform, making the qualification of
waveforms a necessary step in validating HRs provided by
a vital-signs monitor. Here, we refer to the monitor-calculated
HRs as reference HRs (HRr). Accordingly, such HRr can be
categorized as unreliable when the associated waveform is
determined to be of suboptimal quality. For a conservative
validation method, a high standard for good-quality wave-
forms is preferred to minimize the possibility that bad-quality
HRs are falsely categorized as good. However, an overly
stringent threshold is not advisable since it will increase the
chance that good-quality HRs are falsely categorized as bad
and, for post hoc data analysis, will considerably reduce the
amount of available good-quality HR for the development
of data-driven, decision-support algorithms.

In this paper, we present an approach to automatically and
systematically qualify ECG HRr and PPG HRr provided by
a vital-signs monitor. We assume that the monitor also pro-
vides the corresponding waveforms from which they are de-
rived and that the monitored individuals are alive and have
been subject to a trauma injury, where arrhythmia is seldom
observed. The approach numerically qualifies each sampled
HRr by assigning to it a quality index (QI) that concisely ex-
presses its reliability. The approach exploits the physical
redundancy provided by ECG HRr and PPG HRr and em-
ploys an independent method for recomputing HRs from
the provided waveforms. This work addresses the first and
key step of automatic and systematic qualification of large
amounts of time-series data of our trauma database, so that
we can next address our ultimate goal: mining these data to
find predictive information for some clinical outcome.

Figure 1 illustrates the three components of the approach. In
the first component, we use the newly developed adaptive
peak identification technique, termed ADAPIT, to indepen-
dently compute HRs (HRc) from both ECG and PPG wave-
form segments corresponding to the HRr we wish to
validate. ADAPIT is a computationally simple peak detection
algorithm, yet robust in the presence of random, motion-
induced noise spikes that are often observed in waveforms
collected during transport of trauma patients. Unless

accounted for, these noise spikes are likely to be counted as
heart beats by the vital-signs monitor. Next, we separately
qualify ECG waveform segments and PPG waveform seg-
ments as either good (excellent quality) or bad (suboptimal
quality) through the use of a machine-learning algorithm in
the form of support vector machines (SVMs).7 In the third
and final component, through a decision-logic algorithm,
we combine the results of the two previous steps, the
ADAPIT-computed ECG HRc and PPG HRc and the quality
of their corresponding waveform segments, and compare
them against ECG HRr and PPG HRr provided by a vital-signs
monitor to infer a QI for the two HRr. A QI is inferred each time
a HRr is provided by a vital-signs monitor and ranges from
zero to three, with three representing the best-possible quality.
In the absence of one of the waveforms, the decision–logic al-
gorithm still provides a QI by assuming that the absent signal
is present but possesses poor quality. Should additional HR
sources be available, the approach could be extended by prop-
erly accounting for the quality of the new signal information
and modifying the QI decision rules.

The approach is modular, self-contained, and independent of
the data collection hardware. The waveform qualification al-
gorithm (SVM), the HR recomputation algorithm (ADAPIT),
and the QI decision rules are developed independently of
each other and can be separately exchanged by functionally
equivalent modules based on other methods. The three
components form an effective, stand-alone system to validate
reference HRs. Our approach is simply based on recorded
time-series data from a vital-signs monitor, which is taken
as a black box. From this point of view, the approach is inde-
pendent of the data collection hardware.

Methods
In this section, we briefly describe the three components
depicted in Figure 1: the HR estimation via the ADAPIT
algorithm, the waveform qualification via an SVM algorithm,
and the QI determination. We start by describing the data that
precipitated the development of these components and that
are used for the synthesis and testing of our algorithms.

Data
This study is based on physiologic time-series data collected
during transport of trauma patients from the scene of injury
by helicopter service to the Level I unit at the Memorial
Hermann Hospital in Houston, TX.8,9 The data were collected
by ProPaq 206EL vital-signs monitors10 on the helicopters
and downloaded to an attached personal digital assistant.
The data include, among other time-series data, ECG and

F i g u r e 1 . The three elements of the algorithm used to
infer a quality index for reference heart rates provided by a
vital-signs monitor.
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PPG waveform signals and their corresponding monitor-
calculated HRr. The time series sampling rates are approxi-
mately 182 Hz for the ECG waveform, 91 Hz for the PPG
waveform, and 1 Hz for the HRr. Complete vital-signs data
for a total of 726 patients were deposited into our Physiology
Analysis System,11 which provides curated data and the abil-
ity to query and analyze discrete and time-series data over
the Internet with a Web browser. The patient population is
composed of 538 males and 186 females (two genders not
noted), with a mean age of 37.7 years. The predominant type
of injury is blunt trauma (641 patients), followed by penetrat-
ing trauma (78 patients).

Heart Rate Estimation with the ADAPIT Algorithm
The first component of our approach is the independent esti-
mation of ECG and PPG HRs from their corresponding high-
frequency waveforms. While we acknowledge that a large
body of work has been developed over the past two

decades,4–6 most of the approaches are rather involved be-
cause they are designed to accommodate irregular morphol-
ogies and irregular rhythms, even though such phenomena
are rarely observed in our data set of trauma victims. Due
to the ambulatory nature and dynamic environment in which
trauma data are collected, the major challenge is the filtering
of noise and artifacts in the waveforms. Furthermore, most
approaches are limited to the estimation of ECG-derived
HRs through the detection and analysis of the QRS complex,6

while we also need to estimate PPG-derived HRs. To achieve
these objectives, we developed the ADAPIT algorithm.
ADAPIT is a generic algorithm that, through changes in pa-
rameter settings and one computational step, is equally appli-
cable to the estimation of HRs from both ECG and PPG
waveforms and is designed to filter out noise and artifacts
so they are not counted as heart beats. ADAPIT, however,
may have limited ability to compute HRs in settings of highly
irregular rhythms.

F i g u r e 2 . Illustration of the identification of heart beats by the ADAPIT algorithm. (a) Original 7-second ECG waveform seg-
ment. (b) Waveform after application of a median filter. (c) Difference of the original waveform in a minus the median-filtered
waveform in b. The threshold T1 defines the segment’s baseline range [2T1, T1] and the threshold T2 provides a first cut on
the lower limit of the peaks’ magnitude. (d) The first estimates of the actual peaks and threshold T3 (horizontal line) are used to
eliminate small-magnitude spikes that clearly are not actual peaks. (e) String of markers with constant period P. (f ) Best alignment
between the actual peaks and markers, which is used to estimate heart rates. (g) The heart beats found by the ADAPIT algorithm
are marked on the original electrocardiogram waveform.
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Estimation from Electrocardiogram Waveforms
The ADAPIT algorithm computes an HRc at each time point
(i.e., each second) t that a HRr is provided by the vital-signs
monitor. This computation is performed based on a 7-second
ECG waveform from time t-7 to t, which is approximately the
same waveform length used by the vital-signs monitor,10 to
estimate one HRr. Figure 2 illustrates the four major steps
of the algorithm to compute HRc at t 5 0 (see Appendix 1
for additional technical details).

Step 1. ADAPIT applies a median filter (with a 55-ms window
size) to the original 7-second waveform (Fig. 2a) and then
subtracts the filtered signal (Fig. 2b) from the original one
to yield the waveform in Figure 2c. This step de-trends the
waveform, retains the amplitude of sharp R waves, and atten-
uates broad waves, such as the P wave and T wave.

Step 2. This step provides a first estimate of the actual peaks of
the waveform through the sequential computation of two
thresholds, T1 and T2. T1, illustrated in Figure 2c, is taken as
2s1, where s1 denotes the standard deviation of all data point
values of the 7-second waveform and defines the segment’s
baseline range [2T1, T1], from which the baseline standard
deviation s2 is calculated. T2, set to 3s2, is used as a lower
limit of the waveform amplitude for considering potential
peaks. Peaks greater than T2 are taken as the first estimate
of the actual peaks (Fig. 2d).

Step 3. To eliminate small-amplitude spikes that clearly are
not R waves, a threshold T3 is defined as one half of the me-
dian amplitude of all peaks identified in Step 2 (Fig. 2d). All
peaks less than T3 are eliminated, as illustrated in Figure 2e.

Step 4. To determine actual R waves from the peaks retained
in Step 3, strings of markers with period P (Fig. 2e) are itera-
tively generated and moved along the time line to align with
the retained peaks. Through this iterative process, P is modi-
fied to range from lengths equivalent to HRs between 25 and
250 beats per minute (bpm). The string with the largest P
aligned to the largest number of retained peaks is selected.
Next, each unaligned marker of the selected string is allowed
to move back and forth along the time line by as much as one
half of P in an attempt to line up any unaligned peak (Fig. 2f).
Finally, all aligned peaks, marked with circles on the original
ECG waveform in Figure 2g, are assumed to be actual R
waves. It should be noted that ADAPIT computes HRc based
on all markers rather than the aligned peaks because an R
wave could have been dropped during data collection or fil-
tered out during the ADAPIT four-step process.

To verify ADAPIT’s capability to filter out motion-induced
artifacts and correctly compute HR of ambulatory trauma vic-
tims, we had a human expert visually estimate the HR of
80 seven-second, good-quality waveform samples from our
database. Considering the human’s estimations as the gold
standard, we compare them against ADAPIT, HRr, and a
well-established QRS-based detection program termed
ecgpuwave.12

Figure 3 shows the difference between the algorithms’ and the
human’s estimations for each of the 80 samples. The mean
differences of ADAPIT, HRr, and ecgpuwave are, respec-
tively, 20.62, 0.78, and 1.03 bpm, and the root mean square
differences are 7.1, 5.1, and 7.1 bpm, respectively. These results
indicate that in the process of filtering out noise, so as not
to be counted as heart beats, ADAPIT tends to underestimate

HRs, while the two other algorithms tend to overestimate
them. This feature of ADAPITis noticed, in particular, in wave-
forms with highly irregular rhythms (samples 33 and 76) and
provides a lower bound estimate for the HRs that allows for a
conservative consistency check (larger delta) between HRr
and HRc.

Estimation from Photoplethysmogram Waveforms
ADAPIT employs the same four-step process with two small
modifications in the estimation of PPG-derived HRc. First, in
Step 1, the median filter window size is extended to 550 ms to
preserve broad pulse waves and attenuate sharp dicrotic
notches. Second, after the identification of peaks in Step 3,
each peak is smoothed with a moving-average filter of win-
dow size equal to 110 ms. This additional filtering is needed
to smooth out the broad and often distorted pulse waves
and reduce the ambiguity in detecting the exact time of a
heart beat, assumed to occur when the smoothed pulse
wave reaches its maximum.

Waveform Qualification
This component of the approach implements our premise that
the reliability of HRr is highly dependent on the quality of the
underlying waveforms from which they are derived. A ma-
chine learning classifier, implemented by an SVM, automates
the categorization of waveforms by attempting to mimic the
performance of human experts who rely on visual inspection
and the application of some implicit or explicit rules of
thumb. A classifier ‘‘learns’’ these rules by finding coefficients
that optimize the ‘‘correlations’’ between a set of waveform-
extracted features and waveform quality obtained from man-
ually categorized waveform samples.

Figure 4 illustrates the four steps in the development of a
machine-learning classifier: (1) manually categorize sample
waveform segments, (2) define candidate waveform features
that distinguish good/bad waveforms, (3) select the most in-
formative features, and (4) train and test the classifier. Once
trained and given input features, the classifier categorizes
waveform segments as being good or bad.

Manual Waveform Categorization
To develop the SVM classifier, human experts visually exam-
ined and categorized 7-second waveform segments for 362

F i g u r e 3 . Difference in heart rates computed by three dif-
ferent algorithms (ADAPIT, reference heart rate [HRr], and
ecgpuwave) and a human expert.
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ECG samples and 388 PPG samples randomly selected from
different patients. Of these, 194/168 ECG samples and 180/
208 PPG samples were categorized as good/bad based on
the following rules:

An ECG segment is ranked as bad (suboptimal) if more than one ex-
pected R wave is not observed or if the R wave is indistinguishable
from noisy peaks. Otherwise it is ranked as good. A PPG segment
is ranked as bad (suboptimal) if more than one expected pulse
wave is not observed or if any one pulse wave peak cannot be distin-
guished from a dicrotic notch. Otherwise it is ranked as good.

These rules express the hypothesis that if more than one heart
beat signal in a 7-second waveform segment is ambiguous,
the HR calculated from such segment may be inaccurately ex-
trapolated. The rules are conservative by design so that the in-
ductively constructed classifiers are equally conservative and
attempt to ensure that even if the classifier produces occa-
sional false good waveform evaluations, those false good
waveforms will still be of sufficient quality for estimation of
HRs.

Candidate Waveform Features
A key phase in the development of machine-learning classifiers
involves the definition and extraction of candidate features
that can be used as class discriminators. For the characteriza-
tion of waveforms as good or bad, we define three features in
the frequency domain from ECG waveforms and three features
in the time domain from ECG and PPG waveforms. Their def-
initions are presented in Appendix 2.

Similar to the ADAPIT algorithm, we extract features from
7-second waveform segments that immediately precede
each HRr we wish to qualify. The three frequency-domain fea-
tures, high-frequency energy (HFE), low-frequency energy
(LFE), and their ratio LFE/HFE, are obtained by applying

the discrete-time fast Fourier transform13 to the ECG time-
series data. These features are designed to exclude ECG fre-
quency components that are associated with a QRS complex,
while capturing high- and low-frequency component charac-
teristics that may be attributed to noise and baseline drifts
and shifts.

The first time-domain feature is the fraction of aligned waves
FW, which provides a measure of temporal regularity of po-
tential heart beat signals. The second time-domain feature is
a specific signal-to-noise ratio SN, which provides a measure
of the distinctiveness of potential heart beat signals above the
baseline. The pulse-wave variability (PV), extracted from PPG
waveform segments, is the third time-domain feature and
provides a measure of the variability of the time interval
between two adjacent pulse waves.

Feature Selection
The goal of automatic feature selection is to choose and retain
a subset of salient features from the original list of candidate
features such that the process of pattern discovery by the
machine-learning classifier is implemented in a reduced space
without degrading its performance. The underlying philoso-
phy is to retain features that can clearly characterize or dis-
criminate the quality of the waveforms and eliminate
features that are redundant, and hence, do not contribute
additional information. Here, we employ information en-
tropy14,15 as a measure of discriminatory power of the fea-
tures. The most discriminatory (informative) feature has the
lowest entropy.

Our previously developed Rule Generator (RG) program14,15

is used to compute entropies of candidate ECG and PPG
waveform features. The RG program also defines patterns
formed by these features and populated by the previously
characterized samples to discriminate good/bad waveforms.
The features that characterize the most discriminatory pat-
terns, defined as the patterns that discriminate the largest
number of samples, are selected as the most informative.
Through this procedure, we find that HFE, FW, and SN are
the most discriminatory features for ECG waveform classifi-
cation and that FW and PV are the most informative features
for PPG waveform classification.

Support Vector Machine Classifier
In this study, we employ our previously developed version of
an SVM algorithm16 to classify ECG and PPG waveforms.
The SVM, a recently proposed supervised machine-learning
algorithm,7 has been shown to be an effective classifier in a
wide variety of applications, including the categorization of
ECG data.17–20 As a supervised-learning algorithm, the devel-
opment (or ‘‘training’’) of an SVM requires a set of input/out-
put training samples, where the inputs consist of a list of
discriminatory features, such as the three ECG features and
two PPG features selected in the previous section, and the
outputs consist of labeled binary classes, good and bad.
Once trained to implicitly ‘‘learn’’ the ‘‘rules’’ embedded in
the training samples, given the values of the input features,
extracted from a waveform segment that we wish to classify,
the SVM automatically categorizes the segment as good or
bad. An in-depth description of SVMs can be found in
Vapnik.7

We trained and tested an SVM classifier through a cross-
validation procedure employing the manually categorized

F i g u r e 4 . The development of machine-learning classi-
fiers requires (1) manual categorization of good/bad wave-
form-segment samples, (2) definition and extraction of
candidate waveform features, (3) selection of the most discrim-
inatory features, and (4) training and testing of the machine-
learning classifier. Once trained and given input features, the
classifier categorizes waveform segments as being good or
bad.
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waveform samples (362 ECG and 388 PPG), where at each of
200 cross-validation repetitions 70%–30% of the samples were
used for training-testing the classifier. For all simulations, we
used the same SVM model with a linear kernel function and
at the end of the 200 simulations computed average perfor-
mance measures, such as sensitivity and specificity, for the
classifier. We did not attempt to optimize the SVM classifier.
Classifier sensitivity provides a measure of the incorrectly
classified (i.e., missed) bad waveform segments, whereas
classifier specificity provides a measure of false hits, i.e., the
fraction of good segments classified as bad.

Averaged over the 200 cross-validation repetitions, the SVM
yielded 93% sensitivity and 96% specificity for the ECG wave-
forms, and 91% sensitivity and 88% specificity for the PPG
waveforms. The slightly worse performance for the PPG
waveforms reflects the increased difficulty in classifying this
waveform due to a lack of more distinct characteristics of
its profile. Considering that very conservative rules were
used to categorize bad waveform segments, the 93% and
91% sensitivity result can be taken as conservative estimates
of the classifier’s ability to correctly categorize truly bad
waveforms. Indeed, for those segments assigned bad quality
by human experts that the SVM misclassified, our visual esti-
mates of the HRs are compared and agree with those HRr
provided by the vital-signs monitor. This indicates that mis-
classification of bad waveforms by the classifier may still
lead to correct estimation of HRc.

Quality Index Determination
The final component of the algorithm is the numerical quali-
fication of the ECG HRr and PPG HRr provided by the vital-
signs monitor. The qualification combines the independent
estimation of ECG HRc and PPG HRc from redundant sour-
ces, their reference values HRr, and the results of the wave-
form SVM classifier to assign a QI that concisely expresses
the reliability of each HRr provided by a vital-signs monitor.
A QI of 3 indicates that both ECG HRr and the PPG HRr are
‘‘highly’’ reliable, a QI of 2 indicates that ECG HRr is ‘‘fairly’’
reliable, a QI of 1 indicates that PPG HRr is ‘‘somewhat’’ reli-
able, and a QI of 0 indicates that neither HRr is reliable. The
qualification algorithm assumes that good-quality HRr
should come from high-quality waveforms and should be
consistent with our independently calculated HRc. Another
implicit assumption is that the data originate from live
patients.

Table 1 describes the rules used to generate the four QIs. The
entries in the second and third columns indicate the quality of
the two waveforms. The entries in the fourth and fifth
columns indicate whether the ECG HRr and PPG HRr, re-
spectively, are consistent with their corresponding HR com-
puted by ADAPIT. HRr and HRc are consistent with each
other when the discrepancy e1 , 5%, with

e1 5
jHRr 2 HRcj

0:5 ðHRr 1 HRcÞ: ð1Þ

The entries in the last column indicate whether all four HRs
are consistent. Consistency is achieved when the discrepancy
e2 , 10%, where e2 is defined as the ratio of the largest abso-
lute difference among the six possible pairwise comparisons
and the average HR over the four values. The table entries
denoted with a dash indicate that consistency is not required.

For example, a QI of 3 is inferred when both ECG and PPG
waveforms are classified by the SVM as having good quality,
ECG HRr and PPG HRr are consistent with their correspond-
ing ADAPIT-computed HR, and all four HRs are consistent
with each other. This rule infers that the two HRr, which orig-
inate from redundant sources (ECG vs. PPG) and are inde-
pendently calculated (vital-signs monitor vs. ADAPIT), are
in agreement and, with high confidence, correctly represent
the actual HR. In this case, either ECG HRr or PPG HRr could
be used to represent the actual HR. A QI of 2 is inferred in two
possible scenarios. First, when both ECG and PPG wave-
forms have good quality and ECG HRr is consistent with
ECG HRc. Second, when the ECG waveform has good qual-
ity, the PPG waveform has bad quality, and ECG HRr is con-
sistent with ECG HRc. In essence, this rule expresses the
situation where the ECG provides reliable information and
ECG HRr alone should be used to represent the actual HR.
Conversely, a QI of 1 indicates the situation where the PPG
provides reliable information and PPG HRr alone should be
used. Note that for equivalent requirements in the rules for a
QI of 1 and QI of 2, we assign a higher confidence for the
ECG HRr. This is to reflect that the ECG waveform is generally
more reliable, possesses distinctive features that facilitate char-
acterization, and is the one often used as the gold standard for
HR computation. Finally, by exclusion, when none of the
above conditions are satisfied, we assign a QI of 0 to indicate
that neither HRr should be used to represent the actual HR.
In the absence of one of the waveforms or their derived HRs,
the decision–logic algorithm still provides a QI by assuming
that the absent signal is present but possesses poor quality.

In summary, the highest reliability (QI 5 3) is achieved only
when the redundantly measured and independently com-
puted HRs corroborate each other, while the lower reliability
levels (QI 5 2 and QI 5 1) only require agreement between
independent computations from the same source.

Results and Discussion
We demonstrate the performance of our algorithm through
the analysis of two examples illustrated in Figures 5 and 6.
Figure 5 shows an example where the ECG waveform is
mostly noisy over a 40-second interval and the PPG wave-
form is partially noisy. The thick horizontal bars on the top
panel of the figure indicate segments of bad-quality wave-
forms determined by the SVM classifier. The middle panel
shows a deviance of the ECG HRr that is considerably larger
than the other three HRs, which, in contrast, are more consis-
tent. This suggests that noise spikes counted by the vital-signs
monitor as heart beats are filtered out by ADAPIT in spite of

Table 1 j Rules Describing the Four Quality Indices

Waveform Quality Heart Rate Consistency

Quality Index ECG PPG ECG PPG All Four

3 Good Good Yes Yes Yes
2 Good Good Yes No –

Good Bad Yes – –
1 Good Good No Yes –

Bad Good – Yes –
0 All other cases that do not match conditions above

– represents that consistency is not required.
ECG 5 electrocardiogram; PPG 5 photoplethysmogram.
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the bad quality of the waveform. Based on our decision logic,
the bad quality of the ECG waveform for most of the segment
limits the value of the QI, illustrated in the lower panel, to #1.

The lack of distinguishable pulse waves in the PPG waveform
between 106 and 116 seconds causes our algorithm to provide a
lower estimate for PPG HRc (middle panel, Fig. 5).
Surprisingly, the PPG HRr remains unaffected during this
time interval. A possible explanation is that the vital-signs
monitor outputs extrapolated HRr values based on previous
records when it cannot detect pulse waves. The use of such
HR is inappropriate, as it does not correctly reflect the quality
of the PPG waveform. This discrepancy between PPG HRr and
PPG HRc is caught by our method, which correctly assigns a
QI of 0 for this time segment where both waveforms are judged
to have bad quality and neither of the two HRr provides a re-
liable estimate. The algorithm provides a QI of 1 for the
remaining time intervals, where the PPG waveform possesses
good quality and there is good agreement (,5% discrepancy)
between reference and ADAPIT-calculated PPG HRs.

The data in Figure 6 provide another example in which the
use of redundant signal sources and independent computa-
tion of HR provide a powerful method to assess HR reliabil-
ity. It shows a case where the HRr are clearly overestimated in
spite of the pristine nature of the waveforms. The ECG HRr
and PPG HRr are about 15 bpm greater than their ADAPIT

counterparts, which are around 143 bpm. Manual counting
of the heart beats confirms the accuracy of the ADAPIT calcu-
lation. This example suggests that the reliability of the HRr
cannot be inferred solely through the determination of wave-
form quality. A discrepancy .5% between ECG HRr and
ECG HRc and between PPG HRr and PPG HRc causes the
algorithm to infer a QI of 0 for the entire interval because
neither of the two HRr is reliable.

We evaluate our methodology against 173 randomly selected
samples reviewed by two human experts. Each sample con-
sists of one ECG HRr, one PPG HRr, and their associated,
simultaneously recorded 7-second waveforms. The experts
are asked to duplicate the decision logic in Table 1 by visually
classifying the quality of the waveforms using the rules
described in the ‘‘Manual Waveform Categorization’’ section
above to estimate ECG and PPG HRs and to provide a QI for
each data sample. Of the 173 samples, 158 (91%) were
assigned the same QI by the two experts. We use these con-
sensus samples as the gold standard against which we tested
our methodology.

Table 2 compares the QI assignment of our method against
the human experts for the 158 samples. Our method agrees
with the experts’ QI assignment in 135 (85%) of the samples
(shaded diagonal entries in the table), overestimates the ex-
perts in 13 (8%) of the samples (entries above the diagonal),

F i g u r e 5 . Validation of reference heart rates (HRr) from low-quality electrocardiogram (ECG) and photoplethysmogram
(PPG) waveforms (patient 23). (Top) The thick bars indicate the bad-quality regions in the ECG and PPG waveforms, as deter-
mined by the waveform qualification algorithm. (Middle) ECG HRr is considerably larger than the other HRs and the PPG
HRr is almost constant during times where the PPG waveform has bad quality. (Bottom) Quality index (QI) values, which, due
to the bad-quality of the ECG waveform, never reach values .1.
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and underestimates the experts in 10 (6%) of the samples (en-
tries below the diagonal). The fraction of exact matches (85%)
is slightly lower than those observed between the two human
experts (91%) in the original 173 samples, and in 92% of the
cases, the method’s HR qualifications either match or are
more conservative than the human’s qualifications.

It is important to note that although we designed the algo-
rithm to be conservative, so that when it rates a HRr as reli-
able, the user would have confidence that the HRr is
trustworthy and can be used to develop decision–support al-
gorithms, the results in Table 2 seem to contradict our intent,
as the method’s overestimation rate (8%) is slightly higher
than its underestimation rate (6%). This results from the
method’s categorization of bad-quality waveforms as good.
However, because the SVM waveform classifier was devel-
oped based on very conservatively categorized waveforms,
when it occasionally produces false good waveform evalua-
tions, those false good waveforms are generally still of suffi-
cient quality for accurate HR estimation. Indeed, when we
further examined the 13 overestimated samples, we found
that in at least nine samples, the experts’ estimated HRs agree
with the HRr within 5%, indicating that it is possible to obtain
accurate HR from suboptimally classified waveforms. This
suggests that the method’s actual overestimation rate could
be as low as 3% (4/158).

We also evaluate the sensitivity (the performance measure of
interest) of the two components of the method, the SVM

waveform classifier and the ADAPIT HRc, against the
experts’ evaluation for the same 158 samples (Table 3). ECG
HRr and PPG HRr are separately evaluated. The human ex-
perts evaluated a sample as good when the waveform was
of good quality and the human’s estimated HR was within
5% of the corresponding HRr. In the second column, the
waveform quality inferred by the SVM is used as the

F i g u r e 6 . Incorrect electrocardiogram reference heart rate and photoplethysmogram reference heart rate computed from
pristine waveforms (patient 128).

Table 2 j Comparision of Human Expert Versus
Algorithm Assignment of Heart Rate Quality for
158 Samples
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indicator of the HRr quality. In the third column, consistency
(i.e., agreement within 5%) between HRc and HRr is used as
the sole indicator of the HRr quality, and in the last column,
both waveform quality and HR consistency are used to infer
the HRr quality. The results indicate that sensitivity is highest
when we employ both components of the method. Waveform
quality alone provides a slightly lower sensitivity, as in a few
cases inconsistent HRr are associated with waveforms catego-
rized as good by the SVM classifier. Consistency between
HRc and HRr provide considerably lower sensitivity, as al-
though the two derived HRs are in agreement, due to the con-
servative nature of the rules used to categorize good-quality
waveforms, the human experts deem their corresponding
waveforms to be bad.

Our method was also applied to qualify the records of the
726 trauma patients deposited in our Physiology Analysis
System,11 where, on average, each record consists of approx-
imately 25-minutes of time-series data per variable. Table 4
summarizes the qualification results for the HRr and the 7-
second waveform segment, one segment at a time, for the
entire time-series record. Approximately half of the ECG
waveforms (48%) and a third of the PPG waveforms (30%)
have good quality. A significant portion of the bad-quality
waveform is attributed to motion artifacts that occur during
patient transport to the trauma center, especially for the sick-
est patients requiring life-saving interventions. This is partic-
ularly true for PPG waveforms that are easily degraded by
movement or slippage of the sensor clipped on the patient’s
finger. Also of note is the small incidence of unreliable HRs
with associated good-quality waveforms, which is about 4%
for both ECG HRr and PPG HRr. This observation is corrob-
orated by the high sensitivity of the waveform qualification in
the second column of Table 3. This suggests that, for high-
quality waveforms, there is good agreement between HRs es-
timated by the vital-signs monitor and ADAPIT, and reflects
the very stringent rules that define good-quality waveforms.
If we relax the rules, there will be an increase in the fraction of
waveforms qualified as good, increasing the fraction of unre-
liable HRs associated with these good-quality waveforms and
shifting the classification burden to the consistency check be-
tween HRc and HRr. We also find that 21% of the HRr have
the highest possible quality (QI of 3) and that very rarely

(0.05%) the four computed HRs do not match within 10%
when the first four criteria for a QI of 3 are satisfied.

Conclusions
Validated HR data allow investigators to select high-quality
records for data mining, diagnosis and prognosis of trauma
patients, and the development of advanced trauma scoring
methods. This paper presents an effective, systematic, and au-
tomated method for validating vital-signs monitor HRr de-
rived from ECG and PPG waveforms, where each sampled
HRr is assigned a numerical QI that concisely expresses its re-
liability. The method exploits the physical redundancy pro-
vided by these two distinct signal sources as well as the use
of independent methods for separately estimating HRs from
these sources. Moreover, it can be readily modified if only
one source of waveform data is available and it is not tied
to any specific vital-signs monitor. The method especially
focuses on HR data collected during transport of trauma
patients when ECG and PPG waveforms are more likely to
be deteriorated by movement artifacts.

The reliability of ECG and PPG HRr is highly dependent on
the quality of the underlying waveforms from which the
HRs are derived. It is possible to develop a machine-learning
classifier to distinguish bad-quality waveforms, so that the as-
sociated HRs are also classified as bad (or at least of question-
able) quality. Our study suggests that SVM classifiers using
features extracted from the time domain and the frequency
domain are capable of assessing the quality of ECG
and PPG waveforms as good or bad with sensitivity and
specificity around 90%. In our study, very stringent rules
are applied by human experts to characterize waveform qual-
ity used to develop the SVM classifier, which tends to ensure
a high HRr reliability when waveforms are assessed as hav-
ing good quality. This leads to conservative HR qualification
results, which are desired for the development of data-driven
decision-support algorithms and models. However, extreme
conservatism may eliminate usable waveforms and constrain
the size of the data set, precluding the development of data-
driven algorithms.

The quality of HRr is not always tied to the quality of the un-
derlying waveforms (Fig. 6). The ability to compare the refer-
ence HR with one calculated by an independent method
provides another level of assurance, with agreement between
the two suggesting good-quality data. Randomly imposed
noise spikes are often observed in ECG waveforms collected
during transport of trauma patients, and, if not properly fil-
tered out, these spikes may be counted as heart beats. The

Table 3 j Comparison of the Contribution of the Two
Components of the Heart Rate Qualification
Algorithm

Waveform Quality HR Consistency Both Components

Bad Good Bad Good Bad Good

ECG HRr
Human

Bad cases 77 12 29 60 83 6
Good cases 4 65 2 67 7 62
Sensitivity 87% (77/89) 33% (29/89) 93% (83/89)

PPG HRr
Human

Bad cases 124 15 68 71 131 8
Good cases 2 17 2 17 4 15
Sensitivity 89% (124/139) 49% (68/139) 94% (131/139)

HR 5 heart rate; ECG 5 electrocardiogram; HRr 5 reference heart
rate; PPG 5 photoplethysmogram.

Table 4 j Percentage of Good-Quality Time-series
Data in the Database as Assessed by the
Validation Algorithm

Condition % of Time-series Data

Good-quality ECG waveforms 48
Reliable ECG HRr (QI 5 3 or QI 5 2) 44
Good quality PPG waveforms 30
Reliable PPG HRr (QI 5 3 or QI 5 1) 26
Very reliable HRr (QI 5 3) 21
Criteria for QI 5 3 are met, except that all four

heart rates do not match within 10%
0.05

ECG 5 electrocardiogram; HRr 5 reference heart rate; QI 5 quality
index; PPG 5 photoplethysmogram.
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ADAPIT algorithm presented here is designed to identify real
heart beats from randomly imposed noise by assuming quasi-
constant intervals between real heart beats. While this assump-
tion has been effective in filtering out random noise, it also
precludes the correct estimation of HR in settings of highly ir-
regular rhythms, which is rarely observed in our data set of
trauma victims. The algorithm, however, does allow for suffi-
cient variation between adjacent intervals such that modest
physiologic HR variability is not falsely identified as noise.

Our approach splits the qualification burden between two
tasks, the assessment of waveform quality and the compari-
son of HRs through redundant and independent means,
where the split is regulated by the stringency of the rules
used to develop the classifier. For example, the very stringent
rules used in this study shift the burden toward the waveform
qualification. Our results show that when ECG and PPG
waveforms are categorized as having good quality, 90% of
the associated HRr are deemed reliable. This implies that
the comparison of HRs is responsible for filtering out only
10% of the data, and indicates that, for good-quality wave-
forms, the vital-signs monitor HR predictions compare well
with ours. However, as we relax the classifier rules, the bur-
den shifts away from the waveform qualification and toward
the HR comparisons, as a larger percentage of the data will be
filtered out through HR comparisons. Our decision logic com-
bines these two elements in assessing the reliability of HRs re-
corded by vital-signs monitors and succinctly expresses them
through a QI.
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APPENDIX 1
Heart Rate Estimation with the ADAPIT Algorithm

ADAPIT Estimation of Electrocardiogram-Derived
Heart Rate
Step 1. Given the 7-second ECG waveform segment (Fig. 2a),
ADAPIT first applies a median filter (Fig. 2b) to remove base-
line drifts, preserve R waves, and attenuate broad waves,
such as the P wave and the T wave. Next, it subtracts the me-
dian-filtered signal from the original waveform (the wave-
form in Figure 2c) that serves as the starting point for the
next step. The selection of a correct window size for the me-
dian filter is critical for preserving the sharp QRS complex
and attenuating broad waves in the subtracted signal.
A rule of thumb is to choose a window size of length close
to the average width of typical R waves, which generally
ranges from 40 to 100 ms.6 Here, we use 55 ms, equivalent
to ten sampled points at 182 Hz.

Step 2. At the second step, ADAPIT provides a first-estimate
of the actual peaks of the waveform, i.e., the R waves in the
case of ECG, through the sequential computation of two
thresholds. The first threshold T1 (Fig. 2c) is taken as 2s1,
with s1 denoting the standard deviation of all data point
values that make up the waveform over the 7-second seg-
ment. The waveform values in the range [2T1, T1] around
zero define the segment’s baseline range from which the base-
line standard deviation s2 is calculated. The second threshold
T2 is set to 3s2. Those peaks with magnitude greater than T2 (i.e.,
the peaks in Figure 2d) are taken as the first estimates of the ac-
tual peaks and are used as the starting point of the next step.

Step 3. At the third step, ADAPIT employs another threshold,
T3, to eliminate small-magnitude spikes that clearly are not
actual peaks, i.e., spikes that are not part of a QRS complex.
T3 (Fig. 2d) is set at one half of the median magnitude of all
peaks identified in Step 2 over the 7-second segment. The
Np peaks of magnitude greater than T3 (Np 5 10, in this
case) are kept and taken to the last step of the algorithm.

Step 4. In this last step, ADAPIT uses an adaptive iterative ap-
proach to discard ambiguous spikes, identify QRS complexes,
and compute the HR at time zero. The iterative approach starts
by first generating a string of Nr markers of constant period P,
with P initially set to 240 ms, corresponding to an assumed
maximum HR of 250 bpm and Nr 5 29 markers in the 7-second
segment. Figure 2e shows the case for Nr 5 11. Next, the string
of Nr markers is allowed to move along the time line in order to

optimize their alignment with the Np peaks identified in Step
3. This is achieved when the fraction of aligned waves,

FW 5
Na

Np 1 Nr 2 Na
; ðA1Þ

is maximized, where Na denotes the number of aligned
waves. FW attains its maximum of 1.0 when Np 5 Nr 5 Na

and its minimum of 0.0 when Na is zero. Next, the period P
of the markers is increased by 11 ms, and the alignment is op-
timized by finding the maximum FW corresponding to the
updated P. This process is repeated until P reaches its maxi-
mum value of 2,396 ms, corresponding to an assumed mini-
mum HR of 25 bpm. Then, the string of markers with
period P* corresponding to the maximum FW over the range
of P values [240, 2,396] is selected, and each unaligned marker
of the string is allowed to move back and forth along the time
line by as much as one half of P* in an attempt to line up the
misaligned peaks (Fig. 2f), after which FW is recomputed.
This adjustment allows the algorithm to account for expected
heart beat variations.

Figure 2g shows the heart beats found by ADAPIT, which are
marked with circles on the original ECG waveform. ADAPIT
computes HR based on the number of markers Nr in the seg-
ment, rather than the number of aligned peaks Na. This
avoids potential errors, should an actual QRS complex be
dropped in the data collection process or filtered out during
the ADAPIT four-step process.

ADAPIT Estimation of PPG-Derived Heart Rate
ADAPIT employs the same four-step process with two small
modifications in the estimation of PPG-derived HRs. First, in
step 1, the window size of the medium filter is extended to
550 ms, equivalent to 50 sampled points at about 91 Hz.
This widening preserves the broad pulse waves associated
with the heart beats and attenuates the sharp dicrotic notches.
Second, after the algorithm identifies the Np peaks of magni-
tude greater than T3 in step 3, each peak is smoothed with a
moving-average filter of window size equal to 110 ms. This
additional filtering is needed to smooth out the broad and of-
ten distorted pulse waves and reduce the ambiguity in detect-
ing the exact time of a heart beat assumed to occur when the
smoothed pulse wave reaches its maximum.

APPENDIX 2
Definitions of Candidate Waveform Features

The three frequency-domain features are obtained by apply-
ing the discrete-time fast Fourier transform to the ECG
time-series data to compute the power spectral density PSD
( f ), which describes how the power of a time series is distrib-
uted as a function of frequency f.13 Accordingly, we define the
low-frequency energy (LFE) feature and the high-frequency
energy (HFE) feature,

LFE 5

Z fL

0

PSDðfÞ df and ðA2Þ

HFE5

Z fs

fH

PSDðfÞ df ; ðA3Þ

by integrating the PSD( f ) over the low- and high-frequency

ranges, respectively, where the low-frequency cutoff fL is set

to 1 Hz and the cutoff for the high frequencies is set to fH 5

40 Hz and fS 5 91 Hz (corresponding to half of the ECG sam-

pling frequency).

These features are designed to exclude ECG frequency com-

ponents that are associated with a QRS complex, which typ-

ically range from about 10 to 25 Hz,6 and capture low- and

high-frequency components associated with potential arti-

facts. The HFE captures high-frequency noise and the LFE

characterizes baseline drifts and shifts. For instance, a large

LFE is characteristic of bad-quality waveforms. The third
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frequency-domain feature is defined by the ratio LFE/HFE,
which is intended to characterize the rate of attenuation of
the PSD from low to high frequencies.

The first time-domain feature is the fraction of aligned waves
FW defined in Equation A1 at the end of step 4 of the ADAPIT
HR estimation. FW provides a measure of regularity of the
frequency of heart beats computed from ECG and PPG wave-
forms. The SN of a waveform is the second time-domain fea-
ture. Based on statistics computed in step 2 of the ADAPIT
algorithm, SN is defined as the log ratio of the median value
m over the waveform data points above the threshold T2 cor-
responding to the points making up the upper region of the
QRS complex (or pulse-waves in PPG waveforms), and the
standard deviation s2 of the waveform values that define
the ‘‘noise’’ component of the waveform around the baseline
range [2T1, T1]. Thus,

SN 5
1

2
log

m

s2
; ðA4Þ

is greater than zero, as m . s2, and attains larger values as the
QRS complexes (or pulse waves in PPG waveforms) become
more distinguishable from the baseline.

The third time-series feature provides a measure of the varia-
bility of the time interval or period P between two adjacent
pulse waves in a 7-second PPG segment. Disregarding dis-
ease-driven HR arrhythmia, we observed that pulse-wave
variability PV can be used as a waveform discriminator, with
good/bad waveforms having small/large values of PV.
Accordingly, we define

PV 5
sHRc

HRc
ðA5Þ

where HRc and sHRc denote the mean value and standard
deviation, respectively, of the ADAPIT-computed HR over
the 7-second PPG segment, with HRc taken as 60/P with
period P expressed in seconds.
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