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ABSTRACT
Summary: The classification of protein sequences obtained
from patients with various immunoglobulin-related conform-
ational diseases may provide insight into structural correl-
ates of pathogenicity. However, clinical data are very sparse
and, in the case of antibody-related proteins, the collected
sequences have large variability with only a small subset
of variations relevant to the protein pathogenicity (function).
On this basis, these sequences represent a model system
for development of strategies to recognize the small sub-
set of function-determining variations among the much larger
number of primary structure diversifications introduced during
evolution. Under such conditions, most protein classification
algorithms have limited accuracy. To address this problem, we
propose a support vector machine (SVM)-based classifier that
combines sequence and 3D structural averaging information.
Each amino acid in the sequence is represented by a set of
six physicochemical properties: hydrophobicity, hydrophilicity,
volume, surface area, bulkiness and refractivity. Each position
in the sequence is described by the properties of the amino
acid at that position and the properties of its neighbors in 3D
space or in the sequence. A structure template is selected to
determine neighbors in 3D space and a window size is used
to determine the neighbors in the sequence. The test data
consist of 209 proteins of human antibody immunoglobulin
light chains, each represented by aligned sequences of 120
amino acids. The methodology is applied to the classification
of protein sequences collected from patients with and without
amyloidosis, and indicates that the proposed modified classifi-
ers are more robust to sequence variability than standard SVM
classifiers, improving classification error between 5 and 25%
and sensitivity between 9 and 17%. The classification results
might also suggest possible mechanisms for the propensity of
immunoglobulin light chains to amyloid formation.
Contact: cyu@bioanalysis.org
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1 INTRODUCTION
Critical information relating amino acid changes with the
spectrum of functional attributes exhibited by a protein is usu-
ally buried among sequence mutations irrelevant for invest-
igated attributes. Immunoglobulin-type beta-domains, which
are found in approximately 400 functional distinct forms in
humans alone, provide the immense genetic variation within
limited conformational changes. A protein database com-
piled from patients with and without amyloidosis provides
unique features to serve as a model system, not only for
conformational disease studies but also for the development
of computational methods for analysis of structure–function
relationships among evolutionarily related families. We are
developing computational tools based on the support vector
machine (SVM) (Vapnik, 1998) algorithm to classify proteins
into pathogenic and benign classes and to identify amino acid
variations that contribute to the functional attribute of patho-
genic self-assembly in some human antibody light chains
produced by patients with amyloidosis.

SVMs have been used recently in a wide variety of applica-
tions in computational biology (Noble, 2004). Most applica-
tions of the SVM algorithm for protein classification are based
on sequence information alone (Jaakkolaet al., 2000; Hua
and Sun, 2001; Leslieet al., 2002; Caiet al., 2003), as pro-
tein structures are usually unknown. Earlier, we developed
an iterative SVM-based algorithm for immunoglobulin light
chain classification based on protein sequence information
(Zavaljevski et al., 2002), where each amino acid in the
sequence was represented by the same numerical value of
six physicochemical properties, regardless of the amino acid
position. Identification of the most discriminative sequence
positions was accomplished in an iterative procedure by com-
puting a normalized sensitivity index based on the output
of the SVM. This approach was successfully applied to a
study of theκ1 subgroup of immunoglobulin light chains
and revealed specific amino acid positions in which muta-
tion clearly indicated amyloid formation. However, no similar
positions could be found for subgroups of theλ family. This
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could be explained by the absence of significant single point
mutations in this family and/or by a higher degree of sequence
heterogeneity in the available data.

Propensity of some proteins to amyloid formation could
be characterized by specific sequence motifs, as recently
investigated in some experimental studies (Lopez de la Paz
and Serrano, 2004). In addition, more genetic variability is
present among theλ light chains than among theκ light
chains (Williamset al., 1996). To enable the analysis of mul-
tiple consecutive mutations and account for the high degree of
sequence variability, we perform classification based on pos-
itional neighborhoods where both sequential and structural
neighbors are considered, separately.

Practical assumptions are made in considering structural
neighborhoods. Although there are a large number of immun-
oglobulin structures in the PDB, the vast majority of them
are for mice—not humans—and the detailed structural neigh-
borhoods are not known for most of the light chains in
our database. However, since immunoglobulin light chains
share a similar 3D structure, we assume that the structure of
one light chain can be used for the classification of closely
related light chains. We anticipate that classification could
be improved, in the future, by combining information from
molecular dynamics simulations with that of experimentally
determined structures to infer structural information that is
optimized for each sequence.

2 APPROACH
2.1 Datasets
We use a database of human light chain sequences from
209 patients with and without amyloidosis. Many of
these sequences are reported in a previous paper (Stevens
et al., 1998), and others are available in flatfiles at ftp://
bioinformatics.anl.gov/VL-Database/. The database includes
bothκ andλ gene families encoded on separate chromosomes
incorporating substantial amino acid variation. Theκ family
is represented by four major subgroups, of which theκ1 sub-
group is the most common. Theλ family is represented by
six subgroups, of which three subgroups are analyzed in this
paper. The sequences are manually aligned to 120 positions,
taking into account conserved positions in immunoglobulin
light chain structures. The variability of the sequences in the
analyzed dataset can be quantified by similarity scores based
on any established scoring matrix. Table 1 presents the simil-
arity scores based on the BLOSUM80 matrix (Henikoff and
Henikoff, 1992). In Table 1,S(b,p) denotes the average sim-
ilarity score between a chain of classb and a chain of classp,
with b denoting the benign class andp the pathogenic class.

Two facts important for the classification accuracy can be
observed from Table 1. First, the general sequence variability,
described by the standard deviation of the similarity score,
shown inside the parenthesis, is much larger for theλ family.
This means that there is more noise in theλ family than in

Table 1. Data similarity scores (mean values)

Subgroup λ1 λ2 λ3 κ1

Size 28/21a 19/20 20/31 36/34
S(b,b) 363(173)b 427(65) 376(90) 474(43)
S(p,p) 419(116) 416(90) 402(90) 467(31)
S(b,p) 385(154) 416(81) 387(93) 468(37)

aThe number of sequences in the pathogenic and the benign classes.
bThe number in parenthesis represents the standard deviation of the score.

the κ family. Second, for each family and each subgroup,
there are negligible differences between the average intraclass
similarity scores,S(b,b) andS(p,p), and the interclass simil-
arity scores,S(b,p), which represents a problem for sequence
encoding based on the amino acid alphabet alone. This implies
that a successful classifier ought to use additional information,
such as that contained in 3D and sequence structural neighbor-
hoods, so that the encoding (i.e. the weight) of each residue
in the sequence is based not only on the amino acid type but
on its position in the sequence.

2.2 SVM encoding strategy
Since experimental studies have indicated significant correl-
ation between protein physicochemical and structural prop-
erties and protein structural stability (Gromihaet al., 1999;
Raffenet al., 1999), we implement sequence encoding based
on six physicochemical properties: hydrophobicity, hydro-
philicity, volume, surface area, bulkiness and refractivity
(Lohman et al., 1994). This type of encoding, therefore,
provides additional information for amyloid and benign
protein discrimination.

Hence, the encoding of the protein sequence into the SVM
algorithm is represented by a real-value vector of dimen-
sionality equal to the length of the protein sequence (120)
multiplied by the number of physicochemical properties (6)
used to represent each residue. This method enables the
SVM kernel function to account for the physicochemical
changes in the protein sequences and simplifies the incorpor-
ation of the neighborhood information in the SVM algorithm.
It is important to point out, however, that while the selec-
ted set of physicochemical properties used here was proven
to be successful in our previous work (Zavaljevskiet al.,
2002), it is, most likely, not the optimum set. Many differ-
ent physicochemical encoding strategies could be used; and
the identification of the near-optimum set and its implications
on the classifier are a worthwhile effort to be considered.

2.3 Methods
The classification is based on a similarity measure of a protein
sequence with protein sequences of known attributes. Thus,
the similarity measure, also known as kernel function, plays an
important role in the SVM algorithm. In addition to standard
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SVM kernels, such as the linear kernel (LK), the Gaussian
kernel and the polynomial kernel, a variety of string kernels,
such as the mismatch kernels (Leslieet al., 2002), have been
designed specially for protein and gene classification. The
mismatch kernels are based on inexact-matching occurrences
of k-length subsequences (kmers).

Here, we extend a standard kernel that takes the inner
product of two vectors representing two protein sequences
to kernels, that first average the properties of a residue and
its sequential or geometrical neighbors for each residue of the
sequence and then take the inner product of the two vectors
with averaged property entries. This allows for an area-to-
area comparison instead of a position-to-position comparison
conducted by a standard kernel. The position-to-position
comparison, as the simplest representation, is able to discrim-
inate amyloidogenic proteins characterized by point muta-
tion. Taking into account environmental structural changes
in a neighborhood area, the area-to-area comparison should
be more suitable to discriminate amyloidogenic and non-
amyloidogenic proteins characterized by multiple mutational
and genetic differences in the amino acid sequence.

Two kernels are introduced in this paper, sequential and
structural (geometric) kernels. The geometric kernel, denoted
as GeoNB, is defined as

K(xk,xm) = K(S(xk,T ),S(xm,T ))

= K(sk, sm), (1)

wherexk and xm are vectors representing two amino acid
sequencesk andm respectively. S denotes a mapping from
the linear sequence to the 3D structure, andT is the threshold
that limits the size of the 3D neighborhood to be considered.
We use the maximum neighbor distance suggested in protein
structural studies, i.e.T = 8.0 Å (Gromihaet al., 1999). The
elements of the vectorssk andsm are represented by weighted
averaging of the physicochemical properties in the geometric
neighborhood. The average value of propertyj for positionp

in sequencem is denoted bysm,p,j and given by

sm,p,j =
∑np

i=1 xm,Ip(i),jwIp(i)∑np

i=1 wIp(i)

, (2)

whereIp is the vector of neighbor positions for positionp,
xm,Ip(i),j is the value of propertyj for the residue at position
Ip(i) in sequencem, np is the number of neighbors at position
p andwIp(i)is the weight for the neighbor with indexi in the
vectorIp. The weights are defined as the difference between
the maximum distanceT and the neighbor distance. The dis-
tances between two residues are computed using the Contact
of Structural Units software (Sobolevet al., 1999).

Since the exact structures for each sequence in our data set
are not known, we use a representative structural template. A
different structural template is used for each immunoglobulin
light chain subgroup to determine the 3D neighbors for each

position in the amino acid sequence. It is assumed that the
geometrical neighborhoods are conserved, i.e. the neighbor
positions and their distances for each sequence in the database
are the same as those of the template. This assumption could
be lifted in the future through the use of molecular dynamics
refinement algorithms for the template structural information.

The second kernel, denoted as SeqNB, is the sequential
kernel. This kernel is also described by Equations (1) and (2),
but the number of neighbors around the residue, designated
byn, is specifieda priori along the sequence. A fixed average
distance� = 1.3 Å between any two consecutive residues is
assumed and used to compute the weightswIp(i). The distance
between two residues separated byi positions in the sequence
is i�. For symmetric neighborhoods withn/2 neighbors on
each side, the thresholdT for the weight computation isn�/2.

Note that Equation (2) explicitly defines the feature space
and that the kernel in Equation (1) is computed as the inner
product of these features. As a consequence, the Mercer con-
dition (Vapnik, 1998) is satisfied and these kernels are valid
kernels.

This classification problem is run on a previously developed
computer program, ActiveSVM (Yu and Zavaljevski, 2003),
which employs an efficient implementation of the active set
method for solving the quadratic optimization, along with two
regularization parameters to provide control for the sensitivity
and specificity of the classifier (Veropouloset al., 1999).

3 RESULTS
3.1 Classification performance
The ActiveSVM algorithm with three different kernels was
applied to four subgroups of immunoglobulin light chains.
The geometric kernel is denoted by GeoNB(id), where id rep-
resents the PDB identification of the selected template. The
sequential kernel is denoted by SeqNB(n), wheren represents
the number of sequential neighbors in the sequence segment of
lengthn+1, withn/2 neighbors on each side. The third kernel
in our implementation is LK. The LK is selected here to rep-
resent a standard kernel, as it was found to be the best kernel in
our previous study (Zavaljevskiet al., 2002). Table 2 shows the
performance based on the leave-one-out training/testing pro-
cedure. In addition to the overall classification error, Table 2
also presents the classifier sensitivity. For this application,
sensitivity is considered more important than specificity. The
standard SVM classification with pure sequence encoding,
i.e. without property averaging, in the LK is compared against
the geometric kernel and the sequential kernel. The sequential
kernel calculations are performed for two sequential neigh-
borhoods of lengthsn = 2 andn = 4. The geometric kernel
calculations are performed for four different immunoglobulin
light chain structural templates for each of the four subgroups,
λ1, λ2, λ3 andκ1. One structural template, identified by its
structural database code (1BJM, 1DCL, 1LIL and 1REI), is
selected from each immunoglobulin light chain subgroup.
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Table 2. Classification performance

Sub group LK SeqNB(n) GeoNB(id)
n = 2 n = 4 1BJM

(λ1)

1DCL
(λ2)

1LIL
(λ3)

1REI
(κ1)

λ1 e(%)a 33 22 22 39 29 29 31
s(%) 68 86 82 68 71 75 71

λ2 e(%) 44 35 28 39 39 41 39
s(%) 53 63 74 58 63 53 63

λ3 e(%) 35 43 37 35 33 26 31
s(%) 45 45 55 55 55 75 55

κ1 e(%) 23 30 26 30 36 30 34
s(%) 72 69 75 69 64 67 64

ae: error; s: sensitivity.

The results in Table 2 show significant variability in kernel
performance for different subgroups. The best results for each
subgroup are highlighted in bold face.

While averaging improves performance for the highly vari-
able λ family, it has a detrimental effect on theκ family.
In the previous study, several critical point mutations were
found in theκ family. When the sequences that have low
noise content are averaged, averaging reduces information
content. On the contrary, for sequences with high variabil-
ity, averaging can improve the signal to noise ratio and thus
improves classification. This is the case for theλ family, where
averaging consistently provides better performance than the
standard LK.

A rather surprising result is the critical dependence of
the performance of the geometric kernel on the selection
of the structural templates. A significant improvement is
obtained for only theλ3 subgroup. However, it is prob-
able that more specific structural templates could improve
the results for the other groups as well. Without a struc-
tural template, the classification error for theλ3 subgroup
is 35% while the structural template 1LIL reduces the error
to 26% with a significant increase in sensitivity from 45 to
75%. This is the best kernel for theλ3 subgroup. The per-
formance results using the structural templates from the other
immunoglobulin light chains (1BJM, 1DCL and 1REI) are
also improved for this subgroup, when compared with the
results provided by the LK. The best kernels for subgroupsλ1

andλ2 are SeqNB(2) and SeqNB(4), respectively, although
for λ1 the difference in the performance between SeqNB(2)
and SeqNB(4) is insignificant. The number of neighbors ran-
ging from 2 to 4 is similar to the 3-amino acid motifs found
in some amyloid proteins by Lopez de la Paz and Serrano
(2004). Small motifs do not appear to be significant for theλ3

subgroup.
Figure 1 shows the receiver operating characteristic (ROC)

curves for each of the threeλ subgroups. It shows that the
results obtained with the best kernel for a given subgroup is
substantially better than those obtained with the LK.
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Fig. 1. ROC curve for theλ family.

Since the datasets are very small, the observed improvement
in the sequential kernel is tested for statistical significance
using resampling. Subgroupsλ1 and λ3 are resampled by
generating 20 random samples from the benign class and 20
random samples from the pathogenic class. The size of the
dataset for theλ2 subgroup being too small for this proced-
ure, this subgroup is resampled together with theλ1 subgroup
to produce a dataset of 35 benign and 35 pathogenic proteins.
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Table 3. Error, sensitivity and significance results of the SVM classification

Subgroups Error (%) Sensitivity (%)
Mean Significance (P -value)a Mean Significance (P -value)
LK SeqNB LK SeqNB

λ1 37.9 28.3 6.0× 10−11 58.1 67.3 1.0× 10−8

λ1 + λ2 37.3 33.1 1.0× 10−4 59.8 66.5 9.2× 10−6

λ3 43.3 38.0 4.5× 10−3 53.4 62.5 1.5× 10−5

λ1 + λ2 + λ3 40.2 38.2 5.4× 10−2 57.9 63.1 1.5× 10−4

aTheP -value indicates the probability that the differences between two results are due to chance.

Finally, all data are pooled together to produce a dataset of
45 benign and 45 pathogenic proteins. Averaging is performed
usingn = 4 neighbors for theλ1 andλ2 subgroups andn = 6
neighbors for theλ3 subgroup, as Table 2 and additional sim-
ulations (not shown here) suggest a larger neighborhood for
λ3. The average results over 50 such resamplings are given
in Table 3. The Wilcoxon signed rank test (Myers and Well,
2003) is performed on the error and sensitivity results for each
subgroup. The results show statistically significant improve-
ment in performance when sequential averaging is used in the
SVM kernel. Improvement in sensitivity is more significant.
The performance for the pooled data is worse than the per-
formance for the individual subgroups and is driven by the
larger classification error of theλ3 data.

3.2 Possible biological interpretations
Classification results suggest that the mechanisms of amyloid
generation might be different for theλ3 subgroup, perhaps
related to a difference in intrinsic propensity towards fibril
formation.

Further insight into possible mechanisms for this sub-
group is gained by calculating the scoresχ2

p for positionp

defined as

χ2
p =

6∑
j=1

B∑
b=1

[
(m+

pbj − Ppbjm
+)2

Ppbjm+ + (m−
pbjPpbjm

−)2

Ppbjm−

]
,

(3)

wherej is the index for the residue properties,B is the number
of bins used to partition the probability distribution for each
property,b is the bin index,m+

pbj is the number of pathogenic

samples at positionp with propertyj in bin b, m−
pbj is the

corresponding number of benign samples,m+ is the number
of pathogenic samples,m− is the number of benign samples
andPpbj denotes the probability that propertyj at positionp
belongs to binb. A large score at a specific position indic-
ates increased importance of that position for discriminating
between the benign and pathogenic classes.

The effect of the structural template can be analyzed by
computing the differenceXp in χ2

p scores, defined as

Xp = χ2
p

∣∣∣
W

− χ2
p

∣∣∣
T

, (4)
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Fig. 2. Difference inχ2
p scores for each position without and with

the 1LIL template.

whereχ2
p|W denotes the score computed without the struc-

tural template andχ2
p|T denotes the score computed with the

template 1LIL. This difference for the 120 amino acid posi-
tions is presented in Figure 2. The three highlighted regions
are highly variable regions outside of the protein hydrophobic
core, known as the complementarity-determining regions
(CDRs). It has been suggested that amyloidosis is related to
the protein hydrophobic core (Hoshinoet al., 2002). As a con-
sequence, CDRs contribute less to amyloid formation. When
the structural template is introduced, a significant increase in
importance (denoted by a negative value inXp) of some pos-
itions outside of the CDRs can be observed. The importance
of the variable regions is either suppressed or insignific-
ant, except for a few positions in CDR3. The overall effect
of the structural template improves amyloid discrimination,
since the importance of regions that are expected to contrib-
ute to amyloid formation, such as hydrophobic regions, is
increased with respect to less informative CDRs. The sig-
nificance of hydrophobic regions has also been observed
by Serrano’s group (Lopez de la Paz and Serrano, 2004;
Fernandez-Escamillaet al., 2004).

The difference between benign and pathogenic proteins
around positions 23 and 88, where two cysteines make a
disulfide bridge to stabilize the proteins 3D structure, might
have some biological significance. Although the bridge is
conserved, the residues around the cysteines are different for
benign and pathogenic proteins and might lead to decreased
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stability and amyloidosis. The difference at the position of
Tyr86 also has structural importance. This amino acid is
involved in the classic ‘tyrosine corner’ in which it forms
a buried hydrogen bond to the backbone carbonyl of Asp82.
The salt bridge between Asp82 and Arg61 was implicated as
a ‘risk factor’ inκ family amyloidogenesis (Stevens, 2000).

4 CONCLUSIONS
Preliminary results presented in this study indicate that modi-
fications of the standard SVM kernels improve discrimin-
ation of benign and pathogenic sequences in the presence
of high sequence variability. Proper neighborhood struc-
tures are applied for averaging of physicochemical properties
that encode sequence data. Thus, the major contribution of
this work is the provision of an encoding strategy, which
together with special kernel functions tailored for this applic-
ation provides a mechanism for differential weighting of each
residue in the sequence that considers the interactions with
neighboring residues. In this way, the encoding of each residue
in the sequence considers not only the amino acid type in that
position but also the location of the amino acid in the sequence.

For the specific case of immunoglobulin light chains, the
variability of neighborhood structures among light chain
subgroups might suggest various mechanisms of amyloid
formation for each subgroup. For example, for theκ1 sub-
group, propensity for amyloid formation could be traced to
single point mutations at specific positions. For theλ1 and
λ2 subgroups, short motifs of 3–5 amino acids in protein
sequences could indicate propensity for amyloid formation.
Interpretation of mechanisms for theλ3 subgroup is more
difficult, but might suggest effects of non-local interactions
in amyloid formation, since a significant improvement is
obtained for this subgroup only when structural neighbor-
hood is included. However, due to very limited data, these
conclusions are only tentative and should be validated as
more experimental data become available. The importance
of a larger database of human immunoglobulin light chains
is particularly critical for determination of risk factors in the
form of single point mutations or sequence motifs. For lar-
ger datasets, more sophisticated methods for sequence motif
extraction could be implemented.

Feature selection, i.e. the identification of the key amino
acids in a sequence that are important in the characterization
of protein function, is of great importance in the develop-
ment of protein classifiers. It reduces the dimensionality of
the input space while reducing the amount of noise in the data
(Zavaljevskiet al., 2002). Hence, future efforts will be devoted
to identifying new feature selection strategies. In particular,
we shall further investigate the recently developed statistical
mechanics algorithm TANGO (Fernandez-Escamillaet al.,
2004). Preliminary evaluation on several proteins in our
database indicates that TANGO scores could be used to
eliminate non-informative regions in protein sequences prior

to classification. In this manner, we could reduce the dimen-
sionality of the encoding vector input to the SVM, reducing
noise and potentially improving classification accuracy.

Another future direction for potentially improving pro-
tein classification is the computation of optimized structural
templates. Strategies to be evaluated could include: cre-
ating models that incorporate all (human and non-human)
sequences in the database and employing molecular dynamics
for protein structure refinement. A second strategy addresses
missing templates, i.e. germline representatives for which no
structural representative currently exists in the database. In
this case, models would be constructed by amino acid replace-
ments of the most similar representative in the database,
followed by energy minimization/molecular dynamics.

Many functionally diverse proteins share very similar
folds. The distinction between amyloidogenic and non-
amyloidogenic proteins is analogous to the distinction of
proteins that have known function from those that do not have
that function. Increasingly, due to increases in the number of
known structures and improvements in recognition of fold at
low levels of sequence similarity, it is possible to identify a
probable fold. We anticipate that optimized incorporation of
structural information with SVM algorithms could contribute
significantly to the generation of functional hypotheses for
proteins of currently unrecognized function.
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