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ABSTRACT

Summary: The classification of protein sequences obtained
from patients with various immunoglobulin-related conform-
ational diseases may provide insight into structural correl-
ates of pathogenicity. However, clinical data are very sparse
and, in the case of antibody-related proteins, the collected
sequences have large variability with only a small subset
of variations relevant to the protein pathogenicity (function).
On this basis, these sequences represent a model system
for development of strategies to recognize the small sub-
set of function-determining variations among the much larger
number of primary structure diversifications introduced during
evolution. Under such conditions, most protein classification
algorithms have limited accuracy. To address this problem, we
propose a support vector machine (SVM)-based classifier that
combines sequence and 3D structural averaging information.
Each amino acid in the sequence is represented by a set of
six physicochemical properties: hydrophobicity, hydrophilicity,
volume, surface area, bulkiness and refractivity. Each position
in the sequence is described by the properties of the amino
acid at that position and the properties of its neighbors in 3D
space or in the sequence. A structure template is selected to
determine neighbors in 3D space and a window size is used
to determine the neighbors in the sequence. The test data
consist of 209 proteins of human antibody immunoglobulin
light chains, each represented by aligned sequences of 120
amino acids. The methodology is applied to the classification
of protein sequences collected from patients with and without
amyloidosis, and indicates that the proposed modified classifi-
ers are more robust to sequence variability than standard SVM
classifiers, improving classification error between 5 and 25%
and sensitivity between 9 and 17%. The classification results
might also suggest possible mechanisms for the propensity of
immunoglobulin light chains to amyloid formation.
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1 INTRODUCTION

Critical information relating amino acid changes with the
spectrum of functional attributes exhibited by a protein is usu-
ally buried among sequence mutations irrelevant for invest-
igated attributes. Immunoglobulin-type beta-domains, which
are found in approximately 400 functional distinct forms in
humans alone, provide the immense genetic variation within
limited conformational changes. A protein database com-
piled from patients with and without amyloidosis provides
unique features to serve as a model system, not only for
conformational disease studies but also for the development
of computational methods for analysis of structure—function
relationships among evolutionarily related families. We are
developing computational tools based on the support vector
machine (SVM) (Vapnik, 1998) algorithm to classify proteins
into pathogenic and benign classes and to identify amino acid
variations that contribute to the functional attribute of patho-
genic self-assembly in some human antibody light chains
produced by patients with amyloidosis.

SVMs have been used recently in a wide variety of applica-
tions in computational biology (Noble, 2004). Most applica-
tions of the SVM algorithm for protein classification are based
on sequence information alone (Jaakketial., 2000; Hua
and Sun, 2001; Lesliet al., 2002; Caiet al., 2003), as pro-
tein structures are usually unknown. Earlier, we developed
an iterative SVM-based algorithm for immunoglobulin light
chain classification based on protein sequence information
(Zavaljevski et al., 2002), where each amino acid in the
sequence was represented by the same numerical value of
six physicochemical properties, regardless of the amino acid
position. Identification of the most discriminative sequence
positions was accomplished in an iterative procedure by com-
puting a normalized sensitivity index based on the output
of the SVM. This approach was successfully applied to a
study of thex1 subgroup of immunoglobulin light chains
and revealed specific amino acid positions in which muta-
tion clearly indicated amyloid formation. However, no similar
positions could be found for subgroups of théamily. This
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could be explained by the absence of significant single pointable 1. Data similarity scores (mean values)
mutations in this family and/or by a higher degree of sequence
heterogeneity in the available data.

Propensity of some proteins to amyloid formation could

Subgroup A A2 A3 K1

be characterized by specific sequence motifs, as recently,, 28/2¢ 19/20 20/31 36/34

investigated in some experimental studies (Lopez de la Pagy,») 363(173% 427(65) 376(90) 4T4(43)
and Serrano, 2004). In addition, more genetic variability isS(p. p) 419(116) 416(90) 402(90) 467(31)
present among tha light chains than among the light ~ S®.p) 385(154) 416(81) 387(93) 468(37)

chains (Williamset al., 1996). To enable the analysis of mul- -
tiple consecutive mutations and account for the high degree Q{
sequence variability, we perform classification based on pos-
itional neighborhoods where both sequential and structural
neighbors are considered, separately. the « family. Second, for each family and each subgroup,
Practical assumptions are made in considering structurahere are negligible differences between the average intraclass
neighborhoods. Although there are a large number of immunsimilarity scoress$ (b, b) andS(p, p), and the interclass simil-
oglobulin structures in the PDB, the vast majority of themarity scoresS (b, p), which represents a problem for sequence
are for mice—not humans—and the detailed structural neighencoding based on the amino acid alphabet alone. This implies
borhoods are not known for most of the light chains inthat a successful classifier ought to use additional information,
our database. However, since immunoglobulin light chainguch as that contained in 3D and sequence structural neighbor-
share a similar 3D structure, we assume that the structure ¢foods, so that the encoding (i.e. the weight) of each residue
one light chain can be used for the classification of closelyin the sequence is based not only on the amino acid type but
related light chains. We anticipate that classification couldon its position in the sequence.
be improved, in the future, by combining information from ]
molecular dynamics simulations with that of experimentally2-2 SVM encoding strategy
determined structures to infer structural information that isSince experimental studies have indicated significant correl-

he number of sequences in the pathogenic and the benign classes.
he number in parenthesis represents the standard deviation of the score.

optimized for each sequence. ation between protein physicochemical and structural prop-
erties and protein structural stability (Gromiktaal., 1999;

2 APPROACH Raffgnet aJ.,.1999), we implement sequence enc;qding based
on six physicochemical properties: hydrophobicity, hydro-

2.1 Datasets philicity, volume, surface area, bulkiness and refractivity

We use a database of human light chain sequences frofohmanet al., 1994). This type of encoding, therefore,
209 patients with and without amyloidosis. Many of provides additional information for amyloid and benign
these sequences are reported in a previous paper (Stevemstein discrimination.
et al., 1998), and others are available in flatfiles at ftp:// Hence, the encoding of the protein sequence into the SVM
bioinformatics.anl.gov/VL-Database/. The database includealgorithm is represented by a real-value vector of dimen-
bothx andi gene families encoded on separate chromosomesionality equal to the length of the protein sequence (120)
incorporating substantial amino acid variation. khéamily ~ multiplied by the number of physicochemical properties (6)
is represented by four major subgroups, of whichithsub-  used to represent each residue. This method enables the
group is the most common. Thefamily is represented by SVM kernel function to account for the physicochemical
six subgroups, of which three subgroups are analyzed in thishanges in the protein sequences and simplifies the incorpor-
paper. The sequences are manually aligned to 120 positionation of the neighborhood information in the SVM algorithm.
taking into account conserved positions in immunoglobulinit is important to point out, however, that while the selec-
light chain structures. The variability of the sequences in theed set of physicochemical properties used here was proven
analyzed dataset can be quantified by similarity scores based be successful in our previous work (Zavaljevskial.,
on any established scoring matrix. Table 1 presents the simi002), it is, most likely, not the optimum set. Many differ-
arity scores based on the BLOSUMB80 matrix (Henikoff andent physicochemical encoding strategies could be used; and
Henikoff, 1992). In Table 15(b, p) denotes the average sim- the identification of the near-optimum set and its implications
ilarity score between a chain of clasand a chain of clasg, on the classifier are a worthwhile effort to be considered.
with b denoting the benign class apdhe pathogenic class.

Two facts important for the classification accuracy can be2-3 Methods
observed from Table 1. First, the general sequence variability he classification is based on a similarity measure of a protein
described by the standard deviation of the similarity scoresequence with protein sequences of known attributes. Thus,
shown inside the parenthesis, is much larger fontfemily.  the similarity measure, also known as kernel function, plays an
This means that there is more noise in théamily than in  important role in the SVM algorithm. In addition to standard
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SVM kernels, such as the linear kernel (LK), the Gaussiarposition in the amino acid sequence. It is assumed that the
kernel and the polynomial kernel, a variety of string kernels,geometrical neighborhoods are conserved, i.e. the neighbor
such as the mismatch kernels (Lesial., 2002), have been positions and their distances for each sequence in the database
designed specially for protein and gene classification. Thare the same as those of the template. This assumption could
mismatch kernels are based on inexact-matching occurrencees lifted in the future through the use of molecular dynamics
of k-length subsequencesnfers). refinement algorithms for the template structural information.
Here, we extend a standard kernel that takes the inner The second kernel, denoted as SegNB, is the sequential
product of two vectors representing two protein sequencekernel. This kernel is also described by Equations (1) and (2),
to kernels, that first average the properties of a residue anbout the number of neighbors around the residue, designated
its sequential or geometrical neighbors for each residue of thby n, is specifieda priori along the sequence. A fixed average
sequence and then take the inner product of the two vectodistanceA = 1.3 A between any two consecutive residues is
with averaged property entries. This allows for an area-toassumed and used to compute the weightg,. The distance
area comparison instead of a position-to-position comparisohetween two residues separated bgsitions in the sequence
conducted by a standard kernel. The position-to-positions i A. For symmetric neighborhoods witty2 neighbors on
comparison, as the simplest representation, is able to discrineach side, the threshdltfor the weight computation isA /2.
inate amyloidogenic proteins characterized by point muta- Note that Equation (2) explicitly defines the feature space
tion. Taking into account environmental structural changesnd that the kernel in Equation (1) is computed as the inner
in a neighborhood area, the area-to-area comparison shoupdtoduct of these features. As a consequence, the Mercer con-
be more suitable to discriminate amyloidogenic and nondition (Vapnik, 1998) is satisfied and these kernels are valid
amyloidogenic proteins characterized by multiple mutationakernels.
and genetic differences in the amino acid sequence. This classification problem is run on a previously developed
Two kernels are introduced in this paper, sequential andomputer program, ActiveSVM (Yu and Zavaljevski, 2003),
structural (geometric) kernels. The geometric kernel, denoted/hich employs an efficient implementation of the active set

as GeoNB, is defined as method for solving the quadratic optimization, along with two
regularization parameters to provide control for the sensitivity
K(xi,xm) = K(S(xi, T),S(xm, T)) and specificity of the classifier (Veropoulesal., 1999).
= K(sk,Sm), (1)
3 RESULTS

wherex; andx,, are vectors representing two amino acid o
sequences andm respectively. S denotes a mapping from 3-1  Classification performance
the linear sequence to the 3D structure, @nd the threshold The ActiveSVM algorithm with three different kernels was
that limits the size of the 3D neighborhood to be consideredapplied to four subgroups of immunoglobulin light chains.
We use the maximum neighbor distance suggested in proteifhe geometric kernel is denoted by GeoNB(id), where id rep-
structural studies, i.’ = 8.0 A (Gromihaet al., 1999). The resents the PDB identification of the selected template. The
elements of the vectosg ands,, are represented by weighted sequential kernel is denoted by SegNB{vheren represents
averaging of the physicochemical properties in the geometrithe number of sequential neighbors in the sequence segment of
neighborhood. The average value of propgrtgr positionp lengthrn+1, withn /2 neighbors on each side. The third kernel
in sequencen is denoted by, , ; and given by in our implementation is LK. The LK is selected here to rep-
resent a standard kernel, as it was found to be the best kernel in
Z?il Xm,IL,(i),j WI, (i) 5 our previous study (Zavaljevsétial., 2002). Table 2 shows the
Z;il wi () ' @ performance based on the leave-one-out training/testing pro-
cedure. In addition to the overall classification error, Table 2
wherel , is the vector of neighbor positions for positipgh  also presents the classifier sensitivity. For this application,
Xm,1,(),; 1S the value of property for the residue at position sensitivity is considered more important than specificity. The
I,(i) in sequence, i, is the number of neighbors at position standard SVM classification with pure sequence encoding,
p andwy, is the weight for the neighbor with indéxn the i.e. without property averaging, in the LK is compared against
vectorI ,. The weights are defined as the difference betweetthe geometric kernel and the sequential kernel. The sequential
the maximum distanc& and the neighbor distance. The dis- kernel calculations are performed for two sequential neigh-
tances between two residues are computed using the Contdmirhoods of lengths = 2 andn = 4. The geometric kernel
of Structural Units software (Soboleval., 1999). calculations are performed for four different immunoglobulin
Since the exact structures for each sequence in our data dight chain structural templates for each of the four subgroups,
are not known, we use a representative structural template. A1, A2, A3 andx;. One structural template, identified by its
different structural template is used for each immunoglobulirstructural database code (1BJM, 1DCL, 1LIL and 1REI), is
light chain subgroup to determine the 3D neighbors for eaclselected from each immunoglobulin light chain subgroup.

Sm,p,j =
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Table 2. Classification performance

;—‘/i/‘_‘_‘_‘
0.8 +

Subgroup LK SeqNB:) GeoNB(id) -
n=2 n=4 1BJM 1DCL 1LIL 1REI ‘,.0----0-4"

>
(A1) (*2) (*3) (k) g 0.6 +
IR
Mo e(wp 33 22 22 39 29 29 31 S 04 i
s(%) 68 86 82 68 71 75 71 e
A2 e%) 44 35 28 39 39 41 39 {g
s(%) 53 63 74 58 63 53 63 0.2 : Ttk B
A3 e(%) 35 43 37 35 33 26 31 —e—— SeqNB(2), M
s(%) 45 45 55 55 55 75 55 0
k1 e(%) 23 30 26 30 36 30 34 o 0.2 04 0.6 0.8 1
s(%) 72 69 75 69 64 67 64 False Alarm Rate

3e: error; s: sensitivity. 1
K A
A
0.8 A

The results in Table 2 show significant variability in kernel

A
performance for different subgroups. The best results for eachs, /H A """" “
subgroup are highlighted in bold face. S 0.6 __,_A_ﬁ"*

/ .~A"A_““A
0.4 =

While averaging improves performance for the highly vari-
able » family, it has a detrimental effect on the family.

In the previous study, several critical point mutations were z/ B
found in thex family. When the sequences that have low Ty
noise content are averaged, averaging reduces information
content. On the contrary, for sequences with high variabil-
ity, averaging can improve the signal to noise ratio and thus 0'2 0'4 ole 0'8 ]
improves classification. This is the case foritiamily, where ' False Alarm Rate '
averaging consistently provides better performance than the
standard LK. 1

A rather surprising result is the critical dependence of
the performance of the geometric kernel on the selection 0.8 x—k
[

Sensitiv

of the structural templates. A significant improvement is P
obtained for only theiz subgroup. However, it is prob- HAHOC e
able that more specific structural templates could improve /((I,XX
the results for the other groups as well. Without a struc- <X
tural template, the classification error for the subgroup fx'
5.
X

<
o

Sensitivity

©
N

is 35% while the structural template 1LIL reduces the error
to 26% with a significant increase in sensitivity from 45 to
75%. This is the best kernel for theg subgroup. The per- ——>— GeoNB(1LIL), 43
formance results using the structural templates from the other 0 T T T T
immunoglobulin light chains (1BJM, 1DCL and 1REI) are 0 0.2 04 0.6 08 L
also improved for this subgroup, when compared with the False Alarm Rate

results provided by the LK. The best kernels for subgroups _

and . are SeqNB(2) and SeqNB(4), respectively, although™9- 1. ROC curve for the. family.

for A1 the difference in the performance between SeqNB(2)

and SegqNB(4) is insignificant. The number of neighbors ran-

0.2

oo LK, 3

ging from 2 to 4 is similar to the 3-amino acid motifs found Since the datasets are very small, the observed improvement
in some amyloid proteins by Lopez de la Paz and Serrani the sequential kernel is tested for statistical significance
(2004). Small motifs do not appear to be significant forithe using resampling. Subgroups and A3 are resampled by
subgroup. generating 20 random samples from the benign class and 20
Figure 1 shows the receiver operating characteristic (ROCjandom samples from the pathogenic class. The size of the
curves for each of the three subgroups. It shows that the dataset for thé., subgroup being too small for this proced-
results obtained with the best kernel for a given subgroup isire, this subgroup is resampled together withitheubgroup
substantially better than those obtained with the LK. to produce a dataset of 35 benign and 35 pathogenic proteins.
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Table 3. Error, sensitivity and significance results of the SVM classification

Subgroups Error (%) Sensitivity (%)
Mean Significancek-value} Mean Significancef-value)
LK SeqNB LK SeqNB

1 37.9 28.3 6.0« 10711 58.1 67.3 1.0< 1078

A A2 37.3 33.1 1.0¢< 1074 59.8 66.5 9.2< 10°©

A3 43.3 38.0 4.5¢10°3 53.4 62.5 1.5¢ 1075

A+ A2+ A3 40.2 38.2 5.4¢ 102 57.9 63.1 1.5¢ 104

aThe P-value indicates the probability that the differences between two results are due to chance.

Finally, all data are pooled together to produce a dataset of  * CORT COR?Z CORe

45 benign and 45 pathogenic proteins. Averaging is performed 3 o i

usingn = 4 neighbors for the; andi, subgroups and = 6 2 H

neighbors for the.3 subgroup, as Table 2 and additional sim- 1 1

ulations (not shown here) suggest a larger neighborhood for &0 ,“J}l Mol il [I]]ﬂ[l“

A3. The average results over 50 such resamplings are given ’ W | .

in Table 3. The Wilcoxon signed rank test (Myers and Well,

2003) is performed on the error and sensitivity results for each N L TR 867yt

subgroup. The results show statistically significant improve- ; (AL Ca—

ment in performance when sequential averaging isused inthe -4

SVM kernel. Improvement in sensitivity is more significant.

The performance for the pooled data is worse than the per-. _ o, y _ _

formance for the individual subgroups and is driven by theF'g' 2. Difference in, scores for each position without and with
e the 1LIL template.

larger classification error of the; data.

——

ys

Amino Acid Position in the Aligned Sequence

3.2 Possiblebiological interpretations where x3|w denotes the score computed without the struc-

Classification results suggest that the mechanisms of amyloidiral template anct,§|T denotes the score computed with the
generation might be different for thies subgroup, perhaps template 1LIL. This difference for the 120 amino acid posi-
related to a difference in intrinsic propensity towards fibril tions is presented in Figure 2. The three highlighted regions
formation. are highly variable regions outside of the protein hydrophobic
Further insight into possible mechanisms for this sub-core, known as the complementarity-determining regions
group is gained by calculating the scor;eﬁfor position p (CDRs). It has been suggested that amyloidosis is related to

defined as the protein hydrophobic core (Hoshigial., 2002). As a con-
6 B (m;bj _ Ppbjm+)2 (m;;bj Ppbjm*)z sequence, CDRs contrllbu.te less to amylpld_ f_orma_tlon. Whe_n
le = Z Z , the structural template is introduced, a significant increase in
im1b=1 Poojm™* Popjm™ importance (denoted by a negative valuip) of some pos-

(3)  itions outside of the CDRs can be observed. The importance
of the variable regions is either suppressed or insignific-
ant, except for a few positions in CDR3. The overall effect

of the structural template improves amyloid discrimination,

since the importance of regions that are expected to contrib-
samples at positiop with propertyj in bin b, mg; is the  yte to amyloid formation, such as hydrophobic regions, is
corresponding number of benign samples, is the number increased with respect to less informative CDRs. The sig-
of pathogenic samples;~ is the number of benign samples nificance of hydrophobic regions has also been observed
and Py denotes the probability that propertyat positionp by Serrano’s group (Lopez de la Paz and Serrano, 2004;
belongs to bin. A large score at a specific position indic- Fernandez-Escamilig al., 2004).

ates increased importance of that position for discriminating The difference between benign and pathogenic proteins

wherej is the index for the residue propertigsis the number
of bins used to partition the probability distribution for each
property,b is the bin indexm;bj is the number of pathogenic

between the benign and pathogenic classes. around positions 23 and 88, where two cysteines make a
The effect of the structural template can be analyzed bylisulfide bridge to stabilize the proteins 3D structure, might
computing the differenc& ,, in X,% scores, defined as have some biological significance. Although the bridge is

conserved, the residues around the cysteines are different for

X, = X,%)W - X,%‘T ; (4)  benign and pathogenic proteins and might lead to decreased
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stability and amyloidosis. The difference at the position ofto classification. In this manner, we could reduce the dimen-
Tyr86 also has structural importance. This amino acid issionality of the encoding vector input to the SVM, reducing
involved in the classic ‘tyrosine corner’ in which it forms noise and potentially improving classification accuracy.
a buried hydrogen bond to the backbone carbonyl of Asp82. Another future direction for potentially improving pro-
The salt bridge between Asp82 and Arg61 was implicated atein classification is the computation of optimized structural
a 'risk factor’ in x family amyloidogenesis (Stevens, 2000). templates. Strategies to be evaluated could include: cre-
ating models that incorporate all (human and non-human)
sequences in the database and employing molecular dynamics
4 CONCLUSIONS for protein structure refinement. A second strategy addresses
Preliminary results presented in this study indicate that modimissing templates, i.e. germline representatives for which no
fications of the standard SVM kernels improve discrimin-structural representative currently exists in the database. In
ation of benign and pathogenic sequences in the presendeis case, models would be constructed by amino acid replace-
of high sequence variability. Proper neighborhood struciments of the most similar representative in the database,
tures are applied for averaging of physicochemical propertiefollowed by energy minimization/molecular dynamics.
that encode sequence data. Thus, the major contribution of Many functionally diverse proteins share very similar
this work is the provision of an encoding strategy, whichfolds. The distinction between amyloidogenic and non-
together with special kernel functions tailored for this applic-amyloidogenic proteins is analogous to the distinction of
ation provides a mechanism for differential weighting of eachproteins that have known function from those that do not have
residue in the sequence that considers the interactions withat function. Increasingly, due to increases in the number of
neighboring residues. Inthis way, the encoding of each residulenown structures and improvements in recognition of fold at
in the sequence considers not only the amino acid type in thadw levels of sequence similarity, it is possible to identify a
position but also the location of the amino acid in the sequencearobable fold. We anticipate that optimized incorporation of
For the specific case of immunoglobulin light chains, thestructural information with SVM algorithms could contribute
variability of neighborhood structures among light chainsignificantly to the generation of functional hypotheses for
subgroups might suggest various mechanisms of amyloigroteins of currently unrecognized function.
formation for each subgroup. For example, for thesub-
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