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The heat capacity has played a major role in relating microscopic and macroscopic properties of proteins and
their disorder-order phase transition of folding. Its calculation by atomistic simulation methods remains a
significant challenge due to the complex and dynamic nature of protein structures, their solvent environment,
and configurational averaging. To better understand these factors on calculating a protein heat capacity, we
provide a comparative analysis of simulation models that differ in their implicit solvent description and force-
field resolution. Our model protein system is the src Homology 3 (SH3) domain of R-spectrin, and we report
a series of 10 ns replica-exchange molecular dynamics simulations performed at temperatures ranging from
298 to 550 K, starting from the SH3 native structure. We apply the all-atom CHARMM22 force field with
different modified analytical generalized Born solvent models (GBSW and GBMV2) and compare these
simulation models with the distance-dependent dielectric screening of charge-charge interactions. A further
comparison is provided with the united-atom CHARMM19 plus a pairwise GB model. Unfolding-folding
transition temperatures of SH3 were estimated from the temperature-dependent profiles of the heat capacity,
root-mean-square distance from the native structure, and the fraction of native contacts, each calculated from
the density of states by using the weighted histogram analysis method. We observed that, for CHARMM22,
the unfolding transition and energy probability density were quite sensitive to the implicit solvent description,
in particular, the treatment of the protein-solvent dielectric boundary in GB models and their surface-area-
based hydrophobic term. Among the solvent models tested, the calculated melting temperature varied in the
range 353-438 K and was higher than the experimental value near 340 K. A reformulated GBMV2 model
of employing a smoother molecular-volume dielectric interface was the most accurate in reproducing the
native conformation and a two-state folding landscape, although the melting transition temperature did not
show the smallest deviation from experiment. For the lower-resolution CHARMM19/GB model, the simulations
failed to yield a bimodal energy distribution, yet the melting temperature was observed to be a good estimate
of higher-resolution simulation models. We also demonstrate that a careful analysis of a relatively long
simulation is necessary to avoid trapping in local minima and to find a true thermodynamic transition
temperature.

I. Introduction

The prevailing simulation approach for the calculation of
thermodynamic folding of proteins is lattice and off-lattice
models,1-5 while all-atom molecular dynamics (MD) simulations
are notoriously difficult.6-8 The difficulty arises from computing
expectation values of observables from conformational excur-
sions over a large number of degrees of freedom. Many methods
have been devised to accelerate the exploration of phase space
and improve convergence by smoothing the coarseness in the
potential energy landscape while retaining sufficient resolution
to accurately estimate the density of states. One of the more
notable computational strategies of reducing the manifold of
explicit Cartesian coordinates in MD sampling of protein
conformational landscapes is the replacement of the microscopic

representation of explicit water interactions with the macroscopic
representation of treating implicitly the bulk physical properties
of solvation.

Currently, the most popular of implicit electrostatic solvent
models for protein dynamics simulations is the generalized Born
(GB) approximation. Central to GB models is the treatment of
the protein-solvent dielectric boundary. Although there is no
unique definition of the dielectric boundary, the more rigorous
Poisson-based methods generally apply a Lee-Richards mo-
lecular surface.9 This surface is considered the de facto
description for continuum approximations; however, its ap-
plication in GB models for solvent dynamics is computationally
costly. Moreover, because of its abrupt protein-solvent dielec-
tric transition, the molecular surface can yield unstable forces
in MD simulations from rapidly changing solute conformations.
Alternative smooth dielectric-boundary formulations have been
constructed for GB models by applying a superposition of
atomic-centered polynomials or Gaussian functions. An example
is the smoothing-window dielectric-volume definition imple-
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mented in the GBSW solvent model.10 The numerical stability
of the GBSW model is well suited for MD simulations of
proteins, although the dielectric boundary is fundamentally
different from the molecular surface in its treatment of the
interstitial space between atoms. A truer mimic of the molecular
surface is given by the GBMV2 solvent model,11,12 where an
analytical formulation is used to build a molecular volume based
on superposition of spherical functions.

The accuracy of the GBSW and GBMV2 solvent models in
their ability to reproduce Poisson solvation energies for single
solute conformations is well documented,13 yet few studies have
been reported on their validation from MD simulations of
thermodynamic folding of proteins.14-16 A particular issue is
the influence of different protein-solvent dielectric-boundary
definitions and their smoothing functions on populating con-
formational states as a function of temperature. Furthermore,
the general question arises as to whether the exacting adherence
to Poisson theory with a Lee-Richards molecular surface is a
true measure of GB models to accurately reproduce calorimetric
observables. Given the continued interest to improve upon
implicit solvent methods,17-19 experimental and theoretical
benchmarks are needed to gauge the accuracy of simulation
models and their general applicability to a broad range of
problems.

In this paper, we report a comparative analysis of GB models
for calculating a protein heat capacity and the unfolding-folding
phase transition using replica-exchange MD (REMD) simula-
tions.20 Other than the works of Pitera and Swope on modeling
the 20-residue miniprotein Trp-cage,21 and Duan and co-workers
on the 35-residue villin headpiece HP35,22 there is a paucity of
studies on computing a protein heat capacity using REMD
simulations with implicit solvent models. Our model protein
system is the 57-residue src Homology 3 (SH3) domain of
R-spectrin, which has been studied extensively with the two-
state folding model both experimentally23,24 and theoretically.4

We applied several different surface-boundary parametrizations
of GBSW and GBMV2 solvent models based on the all-atom
CHARMM22 force field. For comparison purposes, we also
report a simulation with a simple distance-dependent dielectric
model to determine whether it is necessary to use the GB models
to calculate the heat capacity and melting curve. A further study
is provided with the united-atom CHARMM19 force field
combined with an earlier GB model based on reparameterization
of the original Still formula.25 This later model provides insight
into sampling a less rugged energy landscape derived from
changing the resolution of the protein representation and solvent
description. For each simulation model, we estimated the melting
transition temperature and calculated an energy-density profile
as a function of the structural deviation from the starting native
fold. Our calculations move significantly beyond that of an
assessment of implicit solvent models by way of comparison
with Poisson theory and offer a much more rigorous benchmark
of GB models for continuum solvent dynamics of modeling the
thermodynamic stability of proteins.

II. Theory

We used three types of GB implicit solvent models in this
work: GBSW (generalized Born switching window),10 GBMV2
(generalized Born molecular volume version 2),11,12 and
GBORN.26 The first two GB models were developed for the
CHARMM22 force field, and GBORN is a reparameterization
of an analytical GB formulation25 for CHARMM19. In all of
the GB methods, the total generalized Born energy, EGB, is

where the summation indices, i and j, run over all atoms, qi is
the charge on atom i, rij is the distance between atoms i and j,
k ) -166.0(εsolute

-1 - εsolvent
-1 ), Ks ) 8 for GBMV2, and Ks ) 4

for GBSW and GBORN. The dielectric constants of the solute,
εsolute, and solvent, εsolvent, are set to 1 and 80, respectively.
Details of the GBORN algorithm can be found elsewhere,26 but
we elaborate on the GBSW and GBMV2 methods below. The
Born radii, Ri, in both protocols are

where Ri is the van der Waal’s radius of atom i, and xbi are the
atomic coordinates. In the GBMV2 protocol, a0 ) (1 - (1/
�2)) and a1 ) 1, and V(rb)is described below. In the GBSW
method, a0 and a1 can be varied to fit Poisson results based on
different molecular-surface representations.

In the more rigorous implicit solvent model GBMV2,11,12 the
solvent excluded volume is

where the parameter �S determines the smoothness of the
excluded volume and the raw excluded volume, SMV2, is given
by

where S0 is an adjustable parameter, m indexes another
summation over all atoms, and FMV2 is an atom-centered
function defined in Lee et al.12

In this work, we look at a variation of the parameters, �S

and S0, suggested by Chocholoušová and Feig27 which provide
a smoother excluded volume than the original formulation. The
purpose of their reformulation was to enhance energy conserva-
tion in the application of GBMV2 in MD simulations where
constant energy is required, for example, NVE ensembles. The
parameter �S can be adjusted to make the molecular volume
sharper or smoother at the protein-solvent dielectric boundary.
The S0 variable is then adjusted to match Poisson solvation
energies. The original parameters for GBMV2 are �S ) -20
and S0 ) 0.7, whereas the reformulated parameters are �S )
-10 and S0 ) 0.57. We denote the original parametrized model
as GBMV2-�S20 and the reformulated model as GBMV2-�S10.

The simpler and faster GBSW has an excluded solvent
volume of

EGB ) k ∑
i,j

qiqj

√rij
2 + RiRj exp(-rij

2/KsRiRj)
(1)

(Ri)
-1 ) a0(Ri

-1 - 1
4π ∫∫Ri

∞ V( rb)

| rb - xbi|
4

dr dΩ) +

a1( 1

4Ri
4
- 1

4π ∫∫Ri

∞ V( rb)

| rb - xbi|
7

dr dΩ)1/4
(2)

VGBMV2( rb) ) 1
1 + exp(�S[SMV2( rb) - λ])

(3)

SMV2( rb) ) S0[ ∑m

FMV2(| rb - xbm|)] ×

∑
m

| rb - xbm|
2FMV2

2(| rb - xbm|)

|∑
m

( rb - xbm)FMV2(| rb - xbm|)|
2

(4)
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where the polynomial atomic volume Hi is given by

and 2w is a smoothing length that confines the region where
the smoothing function is applied. In this work, we tested two
different parameter sets of the GBSW model.27 These sets are
denoted as GBSW1, with w ) 0.3 Å, a0 ) -0.1801, and a1 )
1.8174, and GBSW2, with w ) 0.2 Å, a0 ) 1.2045, and a1 )
0.1866. GBSW1 was designed to mimic the corresponding
smoothing-window surface Poisson model, and GBSW2 was
parametrized to fit the Lee-Richards molecular-surface Poisson
results.

III. Methods

We performed REMD simulations by running the program
CHARMM with the MMTSB (Multiscale Modeling Tools for
Structural Biology) Tool Set.28 The CHARMM22 force field
was used to represent the protein in the GBMV2 and GBSW
models, while the CHARMM19 force field was used for the
GBORN model. We also ran a simulation with a distance-
dependent protein dielectric model (ε ) 4r) to calculate the
thermodynamics of protein folding.

The X-ray crystal structure of the SH3 domain of R-spectrin
(PDB ID 1SHG)29 with 57 residues was used as a starting
protein conformation. This starting structure was optimized by
energy minimization with a distance-dependent dielectric con-
stant of ε ) 4r, and included 50 steps of initial steepest descent
minimization followed by minimization with the corresponding
GB or r-dielectric method over 200 steps. During the minimiza-
tion, CR/C� atoms of all residues were restrained to their initial
position with a force constant of 0.5 kcal/mol except for the
last 100 steps. The resulting minimized conformation was used
as a starting structure of the subsequent MD simulations.

For all simulation models, a MD integration time step of 2
fs was used. Distances used for the onset of switching function
for nonbonded interaction, the cutoff for nonbonded interactions,
and the cutoff for nonbonded list generation were 20, 22, and
25 Å, respectively. Covalent bonds between the heavy atoms
and hydrogens were constrained by the SHAKE algorithm.30

For the nonpolar solvation energy incorporated with the
GBMV2 and GBSW models, we applied an energy term
expressed as the linear product of the solvent-exposed surface
area of the solute and a phenomenological surface tension
coefficient (γ) set to 0.03 kcal/(mol ·Å2) for GBSW1 and 0.005
kcal/(mol ·Å2) for GBMV2.10,28,31 For GBSW2 model calcula-
tions, the two values of γ were examined by conducting two
separate simulations. Because of the parametrization of the
GBORN model with the united-atom CHARMM19 force field,
this term was neglected.26

We performed single-temperature MD simulations with both
sets of GBMV2 parameters to decide on the temperature range
for REMD simulations. Given the temperature for protein-chain
unfolding, the REMD simulations for the heat capacity and

melting curves were performed at 32 temperatures exponentially
spaced between 298 and 550 K. The exchange of the conforma-
tions in neighboring temperatures was attempted at every 100
time steps subject to the Metropolis criterion. The coordinates
at each temperature were saved at every 100 time steps for
further analysis. All REMD simulations were carried out to 10
ns simulation time per thermal window.

Weusedtheweightedhistogramanalysismethod(WHAM)32-35

to calculate thermodynamic properties. The density of states
Ω(U, �) for a system, where U and � are the potential energy
and the property of interest, respectively, is given by

where nj is the number of data points in the jth simulation and
�j ) 1/(kBTj), where kB and Tj are Boltzmann’s constant and
the temperature of the jth simulation, respectively, and R is the
number of thermal windows. The function Ni(U, �) is the
histogram of U and � calculated from the ith simulation. fj is
the scaled free energy obtained by solving the following
equations self-consistently

and

where P�(U, �) is the probability density at the inverse tem-
perature �. Thermodynamics properties can be determined from
the probability density, for example, the heat capacity by the
following expression34,36

with n ) 1 or 2. Similarly, 〈�〉(T) is the average of the property
� at the temperature T and can be obtained by the following
equation

VGBSW( rb) ) 1 - ∏
i

Hi(| rb - rbi|) (5)

Hi(r) )

{ 0 r < Ri - w
1
2
+ 3

4w
(r - Ri) -

1

4w3
(r - Ri)

3 Ri - w < r < Ri + w

1 r g Ri + w

(6)

Ω(U, �) )
∑
i)1

R

Ni(U, �)

∑
j)1

R

nj exp(fj - �jU)

(7)

P�(U, �) )
∑
i)1

R

Ni(U, �) exp(-�U)

∑
j)1

R

nj exp(fj - �jU)

(8)

exp(-fj) ) ∑
U,�

Ω(U, �) exp(-�U) (9)

CV(T) )
σU

2

kBT2
) 〈U2〉 - 〈U〉2

kBT2
(10)

〈Un〉 )
∑
U,�

UnP�(U, �)

∑
U,�

P�(U, �)
(11)

〈�〉(T) )
∑
U,�

�P�(U, �)

∑
U,�

P�(U, �)
(12)
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Further discussions on theoretical models of the heat capacity
in proteins is given in the work by Prabhu and Sharp.37

The root-mean-square distance (rmsd) between two structures
is defined as the square-root of the minimum average square
distance between respective backbone atoms of the two struc-
tures with respect to all rigid-body rotations and translations.38

The fraction of the native contacts, F, is calculated by the native
contact defined by the residue pair with the distance between
side chain centers of geometry less than 6.5 Å.

The REMD simulations were executed on a Linux cluster
using an Intel CPU (3.06 GHz Intel IA-32). Application of the
CHARMM22/GBMV2 simulation model requires approximately
100 CPU hours per nanosecond of simulation time, while
CHARMM19/GBORN is roughly 4 times less demanding.

IV. Results

In the work of Chocholoušová and Feig,27 they reported that
modifying the smoothing parameter �S of the GBMV2 model
can enhance energy conservation in MD simulations when using
this implicit solvent model. As a preliminary to applying replica-
exchange simulations with the GBMV2 model, we tested the
effect of modifying �S on simulation trajectories computed at
several different constant temperatures. Figure 1 shows the
calculated rmsd between backbone heavy atoms of the X-ray
crystal structure of the SH3 domain and structures obtained from
single-temperature MD simulations performed at temperatures
of 298, 440, and 500 K with the two sets of GBMV2 parameters
�S ) -10 and -20. The results show that the SH3 domain
remained folded at 298 K and it became unfolded quickly at
500 K with both sets of parameters. On the other hand, rmsd
changes at an intermediate temperature of 440 K indicate that

the unfolding event progressed faster with the GBMV2-�S10
model than the original parametrization implemented in GBMV2-
�S20.

In Figure 2, we compare the temperature-dependent profiles
of the heat capacity and the related average values of rmsd and
F, each calculated with the WHAM analysis of the last 0.5 ns
of the REMD simulations with different solvent models.
Superimposed on the plots is the statistical uncertainty, which
was determined by a Bayesian statistical estimation method
developed by Gallicchio et al.35 Other methods of estimating
errors from parallel tempering simulations are available (see,
e.g., Chodera et al.39). For the computed quantities of Figure 2,
the small error bars indicate that the statistical uncertainties in
the temperature-based WHAM numerical solutions are negli-
gible. The temperature corresponding to the maximum heat
capacityinatemperature-dependentprofileistheunfolding-folding
critical transition temperature (Tc) or alternatively it can be
thought of as an apparent melting temperature. We begin with
the CHARMM22 empirical force field and the application of
the simplest solvent model based on the distance-dependent
scaling of the protein dielectric constant. For this solvent
description, the simulation model failed to produce a well-
defined folding transition in the calculated heat capacity.
Although there is a slight shift in the rmsd and F at a temperature
above 400 K, the simulation favors a distribution of non-native
states.

The next two simulation models illustrated in Figure 2 are
different parametrizations of the GBSW solvent model. The first
is the original implementation given by GBSW1, and the
calculated results show a heat capacity that lacks a single sharp
spike representing an unfolding-folding transition. The plot of
rmsd versus temperature indicates significant density of native-
like states at 300 K; however, at higher temperatures, the protein

Figure 1. Calculated root-mean-square distance (rmsd) of backbone
atoms of the SH3 domain of R-spectrin from MD simulations at
temperatures of (a) 298 K, (b) 440 K, and (c) 500 K with respect to its
X-ray crystal structure as a function of the simulation time. The black
and red lines represent averages of rmsd values obtained from multiple
independent simulation runs (4 at 298 and 500 K and 5 at 440 K)
calculated by the GBMV2 parameters in the original implementation
(GBMV2-�S20 parameter set, �S ) -20 and S0 ) 0.7) and with a
recently reformulated set of parameters (GBMV2-�S10 parameter set,
�S ) -10 and S0 ) 0.57), respectively. Uncertainty is shown as error
bars and was estimated by the standard deviation.

Figure 2. Temperature-dependent profiles of (a) the heat capacity CV
(kcal/mol ·K-1), (b) the average rmsd (Å), and (c) the fraction of native
contacts F of the SH3 domain of R-spectrin calculated from the WHAM
analysis of the last 0.5 ns of 10 ns REMD runs with different solvent
models. Starting from the top figure and moving down, the CHARMM22
force-field solvent models are (i) the distance-dependent dielectric-
screening model, (ii) GBSW1, (iii) GBSW2 (γ ) 0.03 kcal/mol ·Å2),
(iv) GBSW2 (γ ) 0.005 kcal/mol ·Å2), (v) GBMV2-�S20, (vi) GBMV2-
�S10, and the bottom graph (vii) illustrates the CHARMM19 model
with GBORN. The error bars represent the statistical uncertainty in
the calculated profiles.

Calculation of Protein Heat Capacity J. Phys. Chem. B, Vol. 112, No. 47, 2008 15067
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chain fails to undergo unfolding to an rmsd greater than 10 Å.
In contrast, the GBSW2 model simulations with the surface
tension value set at either γ ) 0.03 kcal/mol ·Å2 or γ ) 0.005
kcal/mol ·Å2 produced heat capacities that exhibit values for Tc

of 438 and 353 K, respectively. In addition, both calculations
show unfolding to an rmsd of approximately 25 Å and a
transition in the fraction of native contacts from roughly 0.85
at 300 K to negligible contacts at higher temperatures, indicating
significant loss of structural similarity with the native state.

Comparable to GBSW2, both GBMV2-�S20 and GBMV2-
�S10 models produced sharp unfolding-folding transitions
corresponding to maximum positions in the heat capacity at Tc’s
of 405 and 389 K, respectively. The GBSW2 and GBMV2
simulation models at 300 K show very similar heat capacity
values of approximately 2.0-3.5 kcal ·mol-1 ·K-1, all in excel-
lent agreement with the experimental determination of 2.4-3.6
kcal ·mol-1 ·K-1.23,24 However, as a collective group of models,
the simulations produced profiles much narrower than the
experimental heat capacity, an effect that can be attributed to
starting the simulations from the native conformation rather than
combing simulations starting from the unfolded state. Given
the size of SH3, ab initio folding of this protein from an
extended conformation would be computationally beyond most
available computer resources.

The final simulation model in Figure 2 is the application of
CHARMM19 with the GBORN solvent model. The simulation
yields a broad heat capacity of multiple peaks with a maximum
value at Tc of 401 K. The observed transitions in rmsd and F
clearly demonstrate protein-chain unfolding, although the shifts
are less sharp than those calculated with the two GBMV2
models and GBSW2.

The transition temperatures were observed to change during the
course of REMD simulations. Figure 3 shows the Tc determined
from the temperature corresponding to the maximum in the heat
capacity profiles calculated by the WHAM analysis of 10 ns REMD
runs with different GB models at 0.5 ns time intervals. At the end
of the 10 ns run, we report the final Tc values. The Tc changed
more rapidly from REMD runs with the GBMV2-�S10 model,
which introduces a smoother molecular volume, reaching 389 K
at the end of a 10 ns simulation. With the GBSW2 models, the
transition temperature changed slowly to a much higher value
of 438 K for γ ) 0.03 kcal/mol ·Å2, and for γ ) 0.005 kcal/
mol ·Å2, the final temperature is 353 K. Estimated transition
temperatures from the CHARMM19/GBORN simulation model

were comparable to those obtained with the GBMV2 models,
even though the estimated transition temperatures fluctuated
during the course of the simulation because of the complex peak
shapes in the heat capacity profiles (Figure 2).

Normalized probability-density distributions of potential
energies of SH3 conformations at Tc are illustrated in Figure 4
for simulation models that displayed a sharp transition in their
respective heat capacity. Also shown are two-dimensional
contour maps of potential energy versus rmsd and F at or near
the transition temperature. We define the potential energy as
the protein internal energy plus the GB solvent energy.
Histograms for the CHARMM22 simulation models near their
Tc values are observed to be bimodal distributions. The left peak
of the histogram corresponds to the folded state, and the right
peak corresponds to the unfolded state. At the transition
temperature, SH3 exists in both states with equal probability.
The difference in the maxima of the two peaks indicates the
existence of a free-energy barrier that separates the transition
between the SH3 folded and unfolded states. For the united-
atom CHARMM19/GBORN model, the potential energies
demonstrate a broad probability distribution which lacks a
bimodal shape.

The contour map from the GBSW2 model with γ ) 0.03
kcal/mol ·Å2 shows that, near Tc, the folded state is distributed
between two major clusters of SH3 conformations. A near-native
cluster is observed at F ∼ 0.8; however, it is less densely
populated than the second cluster positioned at F ∼ 0.5. The
more populated cluster is higher in energy and is presumably
favored by entropic contributions. For the GBSW2 model with
γ ) 0.005 kcal/mol ·Å2, there is less bifurcation of the folded
state, yet the ensemble of unfolded states now exhibits two
disconnected clusters, one displaying significant population with
native contacts at F ∼ 0.15.

Of the two GBMV2 simulation models, application of
GBMV2-�S10 produced the most compacted near-native cluster
with the lowest average energy. Similar observations are made
for the rmsd contour. In contrast with the results with the
CHARMM22 force field, the CHARMM19/GBORN simulation
model yields contour maps near Tc that show considerable
reduction in the separation among the conformational states that
contribute to the energy-density profile. The native or near-native
state is missing in the contour, while the most probable cluster
is F ∼ 0.2, containing partially folded structures. Similarly, there
are multiple clusters that span the rmsd range, indicating a
significant reduction in the energy barrier to unfolding.

We constructed a histogram of SH3 conformations based on
an rmsd measure from the native and selected a conformation
representative of the most populated rmsd value for each cluster
at Tc. Figure 5 illustrates the selected structures. For comparison
purposes, the X-ray structure for SH3 (panel f) is an all-� protein
with a �-barrel topology, consisting of two hydrophobic sheets.
The first sheet is dominated by a three-stranded � arrangement,
and the second is a short two-stranded sheet near the two
terminal ends. The GBSW2 model with γ ) 0.03 kcal/mol ·Å2

shows the most populated state at a rmsd of 5.84 Å with a
conformation that breaks the short �-sheet near the terminus
region. Reducing γ to 0.005 kcal/mol ·Å2, the GBSW2 model
yields a rmsd of 1.75 Å for the most populate native state and
shows a structure exhibiting minor disruptions of the major
�-sheet arrangement.

The GBMV2-�S20 model at Tc populates conformations with a
distorted �-sheet arrangement, and the representative structure
shows a coordinate rmsd of 1.87 Å and an energy value of -1271
kcal/mol. For GBMV2-�S10, a similar rmsd is populated at a lower

Figure 3. Melting transition temperatures estimated from the temper-
ature corresponding to the maximum in the heat capacity profiles
calculated by the WHAM analysis of 10 ns REMD runs with different
GB solvent models at 0.5 ns intervals. Filled circles and squares
represent REMD runs with CHARMM22 simulation models GBMV2-
�S20 and GBMV2-�S10, respectively. Open diamonds and crosses
represent REMD runs with CHARMM22/GBSW2 models with γ )
0.03 and 0.005 kcal/mol ·Å2, respectively. The triangles represent the
CHARMM19/GBORN simulation model.
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energy of -1293 kcal/mol. More importantly, the GBMV2-�S10
simulation model produces a SH3 domain topology that maintained
the highest fraction of native contacts of the X-ray structure. The
least favorable structure compared to the starting X-ray structure
is obtained from the CHARMM19/GBORN simulation and shows
a partially folded conformation containing only a �-hairpin ar-

rangement with an rmsd of 11.02 Å. This particular structure from
the united-atom force field was not observed in any of the other
contours using CHARMM22 simulation models.

Figure 6 illustrates the Metropolis acceptance ratio as a
function of the replica-exchange pair for the solvent models
tested. The data used for each calculation was taken from the

Figure 4. Two-dimensional probability-density distributions with respect to the potential energy and rmsd (left) and also with respect to the
potential energy and the fraction of native contacts F (right) at the unfolding-folding transition temperatures calculated by the WHAM analysis of
REMD runs with (a) the GBSW2 (γ ) 0.03 kcal/mol ·Å2) model, (b) the GBSW2 (γ ) 0.005 kcal/mol ·Å2) model, (c) the GBMV2-�S20 model,
(d) the GBMV2-�S10 model, and (e) the GBORN model. The leftmost graphs show the projections of two-dimensional probability-density distributions
to the probability distributions with respect to the potential energy alone.
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last 0.5 ns of the simulation and averaged over the data set.
The ith exchange denotes the exchange between ith and (i+1)th
conditions. In general, the acceptance is near 0.6, except for
windows containing an unfolding-folding transition. In the
latter, the low acceptances indicate the lack of thermodynamic
coexistence between the unfolded and folded states, although
it should be noted that potential energies are typically applied
in the exchanges rather than free energies that include entropic
contributions, thus making coexistence difficult to achieve.

V. Discussion and Conclusions

Computational studies aimed at understanding the protein-
folding process involve investigation beyond whether the
simulations can sample the native and unfolded conformations
correctly but must address issues of folding thermodynamics,
for example, changes in the heat capacity on protein folding or
unfolding and the corresponding melting curve of the protein.
There are few reported studies on computing a protein heat
capacity using all-atom MD simulations with implicit solvent
models. Without sufficient benchmarks to gauge the accuracy
of different simulation models, questions remain as to the
influence of GB models on the simulation results and whether

the most simplistic solvent models are adequate in capturing
the correct thermodynamics of protein folding.

While there are a number of different GB model implementa-
tions in MD simulations of proteins, the primary difference
among the models is the definition and calculation of the Born
radii. To evaluate the Born radii, two approximations are
invoked. The first is the Coulomb field approximation (CFA)
of estimating the atomic self-energy. The CFA in its most
rigorous form is expressed as a surface/volume integration of a
monopole-induced dipole energy term, and depending on the
particular GB formulation, higher-order non-Coulomb correction
terms may be added to the Born radii to account for the reaction
field. The second approximation is the description of the
molecular volume or surface. It is particularly this latter
approximation that our comparative study of GB models has
significant implicationsonhowtoproperly treat thesolute-solvent
dielectric boundary.

For the CHARMM22 force field, we investigated the GBSW
and GBMV2 solvent models and their parametrizations. The
two surface-boundary parametrizations of GBSW were found
to yield strikingly different results. Even though there is a small
difference in the smoothing length between the two GBSW
models (w ) 0.3 Å for GBSW1 and w ) 0.2 Å for GBSW2),
the main difference is scaling of the CFA and its higher-order
correction term.10,13,27 The GBSW1 model was parametrized
from fitting Born radii to a van der Waals-based surface with a
smooth dielectric boundary and gives less weight to the CFA
and more to the correction term than the GBSW2 parametriza-
tion, which attempts to mimic a sharp molecular-surface
boundary. The results for the GBSW2 model simulations

Figure 5. Representative structures of SH3 conformations selected
from the most populated rmsd clusters depicted in Figure 4 at the
unfolding-folding transition temperature: (a) Structure obtained from
the GBSW2 model (γ ) 0.03 kcal/mol ·Å2) at an rmsd of 5.84 Å from
the X-ray structure; (b) GBSW2 (γ ) 0.005 kcal/mol ·Å2) modeled
structure at an rmsd of 1.75 Å; (c) GBMV2-�S20 modeled structure at
an rmsd of 1.87 Å; (d) GBMV2-�S10 modeled structure at an rmsd of
1.87 Å; (e) CHARMM19/GBORN modeled structure at an rmsd of
11.02 Å; (f) X-ray crystal structure.

Figure 6. Replica-exchange acceptance ratios as a function of the
nearest-neighbor exchange clients for each solvent model. Exchanges
were computed using 32 replicas. Starting from the top plot and moving
downward, the solvent models are (i) the distance-dependent dielectric
screening, (ii) GBSW1, (iii) GBSW2 with γ ) 0.03 kcal/mol ·Å2, (iv)
GBSW2 with γ ) 0.005 kcal/mol ·Å2, (v) GBMV2-�S20, (vi) GBMV2-
�S10, and (vii) the CHARMM19/GBORN model. Each plot was
calculated from averaging data culled from the last 0.5 ns simulation.
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produced an SH3 unfolding-folding transition that exhibited a
sharp spike in the heat capacity at Tc, while the application of
GBSW1 failed to undergo a complete unfolding-folding
transition. Although GBSW1 has been successfully applied to
many different applications,40-45 our results reveal shortcomings
of this solvent model and its applicability for modeling the
thermodynamic folding of polypeptides.

Our study of the GBSW2 model and the effect of modifying
the surface tension of the hydrophobic effect showed several
anomalies in the probability-density contour maps computed
from the 10 ns simulations. Two values were used, γ ) 0.03
kcal/mol ·Å2, which is the frequently applied value for GBSW
models, and γ ) 0.005 kcal/mol ·Å2, which is the default value
for GBMV2. Application of both values of γ produced bifurca-
tion of the native state, creating multiple conformational clusters,
although less pronounced for the lower surface tension. On the
other hand, reducing γ led to a much less greasy protein that
created a cluster of unfolded states that retained residual native
contacts. This latter GBSW2 simulation model yielded the
lowest Tc among the solvent models; nevertheless, because of
an imperfect balance between the hydrophobic term and
electrostatic interactions, artifacts were produced in the
unfolding-folding landscape.

Unlike GBSW2, the GBMV2 models generated trajectories
that were more consistent with a two-state folding model used
in fitting the experimental data of the protein heat capacity of
SH3.23,24 The GBMV2 approximation models a molecular-
volume dielectric interface and applies a switching function
through the parameter �S that diminishes the steep surface
boundary. The original parametrization determined for the
GBMV2-�S20 model maximizes the agreement with Poisson
theory.11,12 Of the two GBMV2 models tested, GBMV2-�S10
exhibited the lowest Tc of 389 K. Nevertheless, the predicted
Tc is higher than experimental observations. Depending on the
sequence variant of the SH3 domain and experimental pH
conditions, the reported melting temperature is roughly 340 K.24

Although the deviation between the experimental temperature
and our calculation is less drastic than that observed in the work
of Pitera and Swope on modeling the Trp-cage,21 where they
predicted a Tc value nearly 85 K higher than the experimental
determination, both studies indicate that REMD simulations with
GB models tend to overstabilize native structures. The work of
Duan and co-workers on modeling HP35, however, shows a Tc

value that is in close agreement with the experimentally derived
value.22

The accuracy obtained by any simulation study is strongly
influenced by simulation protocols, for example, force-field
description, short versus long cutoffs for nonbonded interactions,
unfolding REMD versus folding REMD, conformational sam-
pling, and the simulation temperature range. Of the latter, the
range of 298-550 K used in the simulations was determined
from the GBMV2 model to unfold the protein chain and suggests
an approximate upper bound temperature for the other solvent
models. For models that exhibit greater resistance to protein
unfolding, the application of higher temperatures is needed to
overcome the activation enthalpy. Because of computational
efficiency issues, the maximum temperature should be only
slightly above the transition temperature where the enthalpy
vanishes46 and our temperature range is suitable for most of
the tested GB models. It is also important to note that different
sampling protocols may influence the simulation results and
alternative methods might include, for example, adaptive REMD
schemes that incorporate feedback iterations to identify an
optimal set of temperatures for exchanges near conformational

transitions,47 Hamiltonian REMD using soft-core interactions,48

and REMD with global energy reassignment.49

A significant source of error in GB simulations is oversta-
bilization of solvent-exposed salt bridges.50-54 Recent calcula-
tions of potentials of mean force for ion-pair formation in native
protein structures have consistently demonstrated that GB
models overpredict thermodynamic stability in comparison with
explicit solvent simulations.50,51 More generally, Poisson-based
implicit solvent models have difficulty in accurately reproducing
explicit solvent simulations of electrostatic charging free ener-
gies of charged residues computed for protein structures.55

Our comparative analysis of GB solvent models extends
beyond that of simply scoring static structures and their ability
to reproduce Poisson theory. While the Lee-Richards molec-
ular-surface representation is considered the de facto surface
for Poisson-based implicit solvent models, there is limited direct
evidence from MD simulations over a wide range of temper-
atures that this surface is indeed the best dielectric-boundary
definition. Although many GB models can be parametrized to
stabilize the native state at 298 K, it is the generation of
conformational ensembles and their density of states over
unfolding-folding temperatures that clearly reveal the distinc-
tion among solvent models.52,53,56-59 The REMD simulations
presented here demonstrated that a smooth molecular-surface
representation (GBSW2 or GBMV2) is far superior to a surface
based on a smooth van der Waals representation (GBSW1) for
modeling the folded state. Moreover, a molecular-volume
dielectric surface built from a superposition of spherical
functions with a Gaussian-type smoothing function as in
GBMV2 performed better than a smoothing-window dielectric-
volume definition built from atomic functions used by GBSW2.
The magnitude of the difference between the original param-
etrization of the GBMV2-�S20 model and GBSW2 with the
default value of γ is surprisingly large, as the simulations show
dissimilarity in the basins containing the folded state and the
computed Tc at the end of 10 ns REMD runs.

The molecular-volume representation of the GBMV2-�S20
model has, nevertheless, computational problems due to the
sharp discontinuous dielectric boundary. One outstanding dif-
ficulty is obtaining forces directly from Poisson theory, and
several GB models, including GBSW1 and GBSW2, were
developed to circumvent these problems in the application of
MD simulations. Recent work by Chocholoušová and Feig has
shown that GBMV2-�S20 results in energy drift and numerical
artifacts in MD simulations of biological macromolecules.27

They proposed the GBMV2-�S10 model parametrization, which
smooths the surface boundary by readjusting the value of �S,
and showed that this model is capable of maintaining very good
agreement with Poisson theory while providing energy conser-
vation and stable MD simulations. We did not observe any
numerical instability in the MD simulations of SH3 with either
of the GBMV2 solvent models. However, in general, the
numerical instability of MD simulations with any GB solvent
model can be sensitive to the size of the protein and its structural
properties of hydration.

Although the GBMV2-�S10 model did not produce a Tc value
that exhibited the smallest deviation from the experimental
value, our REMD simulation with this model produced the most
favorable overall outcome. In addition to yielding a two-state
energy landscape without significant distortion, GBMV2-�S10
showed a densely populated native basin that maintained SH3
conformations with the lowest energy and rmsd clustering from
the starting X-ray crystal structure. This result is notable given
that secondary-structure elements of �-sheets are characteristi-
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cally problematic for GB solvent models due to their specific
hydrogen-bonding pattern.52,53 Furthermore, modifying the �S

smoothing parameter produced faster convergence of GBMV2
in obtaining Tc. The latter suggests that a less-abrupt molecular
surface can constructively yield a less-rugged potential energy
landscape without diminishing the resolution of conformational
states and their disorder-order transition. The end result is much
more efficient sampling, yet we observed that, even for a
relatively small protein like SH3, long simulation times were
still required. Note that, unlike the standard protocol of
computing ensemble averages of structural properties and their
naturally occurring fluctuations over the entire equilibrated
simulation trajectory, the unfolding-folding transition temper-
atures were slowly decaying over time and configurational
averaging of the density of states was restricted to the last 2500
conformations (0.5 ns) per temperature replica of the 10 ns
simulation. This correctly avoided overweighing the trapping
of excursions into local energy minima found sampling the
energy landscape and yielded a better measure of a true
thermodynamic temperature. As illustrated by other workers,35

the application of WHAM significantly reduces the statistical
uncertainty in temperature-biased simulation data, and we were
able to obtain very smooth heat capacities with sharp
unfolding-folding transitions.

Although Chocholoušová and Feig report that the GBMV2-
�S10 solvent model produces greater deviation from Poisson
theory than the original �S20 parametrization,27 our calculations
strongly indicate that matching a discontinuous molecular-
surface dielectric boundary should not be the gold standard of
evaluating the accuracy of implicit solvent models. An alterna-
tive and complementary choice is matching dynamics with
extensive thermodynamic quantities, rather than scoring single
protein chains. A more stringent benchmark is a comparison
with explicit solvent calculations of sampling energy landscapes,
as well as the determination of electrostatic charging free
energies. It is conceivable that the GBMV2-�S10 model would
do much better than other parametrizations with both compari-
sons and perhaps minimize problems of distorting conforma-
tional ensembles that plague many current GB solvent
models.51-54 For the work presented here, a rigorous measure
of accuracy would be an explicit solvent calculation of the heat
capacity using REMD, although the computational cost using
standard protocols is likely prohibitive for modeling proteins
of the size of SH3. To improve efficiency of explicit solvent
REMD simulations, Simmerling and co-workers developed a
novel approach of using a hybrid explicit/implicit solvation
model.51 Their method involves simulations performed with fully
explicit solvent, while the replica-exchange probability is
computed with a hybrid model of keeping a small solvation
shell around the protein and applying GB to treat the bulk
dielectric boundary. Preliminary studies indicate a reduction in
the system size and a dramatic decrease in computational cost
of REMD simulations. For applications of their approach using
the CHARMM22 force field, we propose that GBMV2-�S10
be the default choice for modeling implicit solvent.

Because of the large computational cost of applying
CHARMM22 with GB models in MD calculations, we inves-
tigated two cost-effective alternatives. The simulation results
for the distance-dependent dielectric-screening model showed
that, for modeling thermodynamic folding and unfolding of
proteins, this computational strategy of treating solvent effects
was incapable of producing the correct density of states. Despite
reports that dielectric-screening models in MD simulations can
cause significant protein structural distortions,60,61 they are still

popular among many applications in the literature. Other than
for structural refinement of near-native conformations using very
short REMD simulations, our results strongly support the notion
that the application of these models should be abandoned in
large-scale sampling of energy landscapes.

The second alternative to ease the computational demand is
to reduce the resolution of the force field and its parametrized
implicit solvent model. The question is, can these models
provide sufficient resolution to detect the unfolding-folding
transition? The simulation results showed that the united-atom
CHARMM19/GBORN model produces a heat capacity and
melting curve that exhibit thermodynamic transitions, although
the energy distribution profile indicated the loss of a bimodal
energy distribution that was observed with the all-atom models.
Unexpectedly, the Tc computed with a reduced protein repre-
sentation was found to be in good agreement with the higher-
resolution models. This encouraging outcome achieved by the
CHARMM19/GBORN model was obtained using nearly 4 times
less CPU hours than simulations with CHARMM22/GBMV2.
Despite the computational burden of the GBMV2 model, the
overall accuracy is significantly enhanced over the faster method.
Notably, inspection of the computed density of states and the
SH3 conformations taken at the transition temperature clearly
indicated that smoothing the coarseness in the potential energy
landscape by the CHARMM19/GBORN model predicts folded
structures that poorly resemble the native state. These results
are, nevertheless, still more realistic than most coarse-grained
models in producing tertiary chain conformations that contain
protein-like characteristics. It is plausible that some improvement
in accuracy of the generated conformations may be gained by
replacing the pairwise GB solvent model with GBMV2-�S10
in a united-atom representation, albeit this hybrid approach has
never been tested for numerical stability and may require
reparameterization of the molecular-volume smoothing function.
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