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Viral infections involve a complex interplay of the immune
response and escape mutation of the virus quasispecies inside a
single host. Although fundamental aspects of such a balance of
mutation and selection pressure have been established by the qua-
sispecies theory decades ago, its implications have largely re-
mained qualitative. Here, we present a quantitative approach to
model the virus evolution under cytotoxic T-lymphocyte immune
response. The virus quasispecies dynamics are explicitly repre-
sented by mutations in the combined sequence space of a set of
epitopes within the viral genome. We stochastically simulated the
growth of a viral population originating from a single wild-type
founder virus and its recognition and clearance by the immune re-
sponse, as well as the expansion of its genetic diversity. Applied to
the immune escape of a simian immunodeficiency virus epitope,
model predictions were quantitatively comparable to the experi-
mental data. Within the model parameter space, we found two
qualitatively different regimes of infectious disease pathogenesis,
each representing alternative fates of the immune response: It can
clear the infection in finite time or eventually be overwhelmed by
viral growth and escape mutation. The latter regime exhibits the
characteristic disease progression pattern of human immunodefi-
ciency virus, while the former is bounded by maximum mutation
rates that can be suppressed by the immune response. Our results
demonstrate that, by explicitly representing epitope mutations
and thus providing a genotype–phenotype map, the quasispecies
theory can form the basis of a detailed sequence-specific model of
real-world viral pathogens evolving under immune selection.
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Viruses with RNA genomes, such as human immunodeficiency
virus type 1 (HIV-1), have high rates of mutation and evolve

rapidly in response to host immune selection pressure. One of the
consequences of such rapid mutations is the error catastrophe
(1), where a virus population is driven to extinction when its mu-
tation rate exceeds a threshold. The existence of such a threshold
is a central prediction of the quasispecies theory pioneered by
Eigen (1) and Swetina and Schuster (2). The recent experimental
demonstration of lethal mutagenesis (3–5), in which an error cat-
astrophe transition is caused by mutagens, demonstrates that key
features of the balance of mutation and selection in viruses are
elegantly captured by the quasispecies theory.

Although insights provided by the quasispecies theory have
greatly expanded our understanding of virus behavior, applica-
tions so far have been limited to a conceptual level, partially due
to the lack of experimental information on the evolutionary dy-
namics in sequence space. Next-generation sequencing techni-
ques (6) have the potential to change this situation. To build
quantitative models implementing the quasispecies dynamics
and describe such experimental data, it is important to realisti-
cally specify the nature of selection pressure. Viruses in animal
hosts evolve under immune pressure, and their capacity for rapid
escape mutation underlies many of the difficulties in combating
pathogens, including HIV-1. In a typical disease pathogenesis of
HIV-1, the acute viremia after an initial infection is curbed by

CD8þ cytotoxic T-lymphocyte (CTL) responses as well as subse-
quent antibody actions, leading to an asymptomatic chronic infec-
tion stage that can last up to 10 y (7). However, this apparent
control of viremia is never complete, and without antiviral ther-
apy, the chronic infection eventually leads to the onset of disease.
This chronic infection stage involves continuous escape mutation-
CTL response cycles, whose detailed characteristics are being un-
covered by ultradeep sequencing (8–12). CTLs recognize specific
viral epitopes (approximately 10 amino acids long) presented on
the surface of infected cells by class I human leukocyte antigen
(HLA). The epitope recognition depends sensitively on HLA al-
leles, leading to differential patterns of immune response among
patients (13–15), while characteristics of immune response during
early infection often shape and influence the overall disease pro-
gression (16, 17). Quantitative sequence-based models of virus-
CTL dynamics will greatly facilitate the interpretation of experi-
mental data.

In a series of pioneering works (18–20), Nowak and coworkers
introduced population dynamics concepts that capture a diverse
range of immune response and escape mutation. Similar ap-
proaches focused more on escape dynamics have also been pro-
posed (21, 22). These models, however, do not describe mutations
in sequence space explicitly. Other mathematical models of
sequence evolution focus on sequence divergence during the very
early stages of infection, while ignoring or only implicitly including
the effect of selection pressure (23, 24). In this paper, we describe
a quantitative quasispecies-based model of virus dynamics under
T cell-based immune pressure, explicitly mapping genotype–phe-
notype relationships. Our approach combines the description of
virus evolutionary dynamics provided by the quasispecies theory
and the population dynamics models of Nowak and coworkers.
We show that the model not only captures the salient features
observed in sequencing data of simian immunodeficiency virus
(SIV) (9) but also reveals general qualitative features of viral
infection disease pathogenesis: The immune system can clear
the infection within time scales ranging from days to those much
longer than patient lifetimes, or be overwhelmed by immune es-
cape. The viral load progression in the latter regime closely
matches the observed HIV-1 disease pathogenesis pattern.

Results and Discussion
Stochastic Quasispecies Dynamics.During acute infection, the foun-
der virus (often a single virion) (7, 11, 17, 25) undergoes replica-
tions to produce an exponentially growing population, which may
be described by the quasispecies dynamics without degradation,
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_nj ¼ ∑
i

Qjirini; [1]

where ni is the number of virions with genotype i, ri is the repli-
cation rate of i, andQji ¼ ð1 − μÞL−dðj;iÞðμ∕3Þdðj;iÞ is the mutation
probability from i to genotype j, with mean mutation rate μ,
genome length L (in bp), and Hamming distance (the number
of nucleotides that are different) dðj; iÞ between j and i. A more
complete description for early stages of infection, where ni is of
the order of 1 and restricted to integer values, is given by the che-
mical reaction representation

Ri →
Qjiri

Ri þRj; [2]

where Ri is a virion with genotype i. Eq. 2 can be simulated
stochastically with the Gillespie algorithm (26). A major advan-
tage of such a stochastic formulation is that it allows us to avoid
exhaustive enumerations of all possible genotypes. This is signif-
icant even for a single epitope of viral proteins: An amino acid
sequence with La ¼ 10, whose genome length is L ¼ 3La ¼
30 bp, still has 4L ∼ 1018 genotypes. Nowak and Schuster (27)
performed Gillespie algorithm simulations of the standard qua-
sispecies model under the single-peak fitness landscape (ri ¼ 1∕τ
for the wild-type (WT) sequence and ri ¼ 1∕Aτ for all other mu-
tants, whereA > 1 is the relative fitness of theWTand τ is a char-
acteristic time scale). In this case, distributions of individuals
among only two groups (WT and mutants) need to be tracked.

In our numerical simulations, the initial genotype (referred to
here as the WT) replicates with mutation rate μ, and the gener-
ated mutants are compared with the existing list of sequences,
which is updated dynamically when new sequences arise. We ver-
ified that this numerical scheme sampled the relevant sequence
space sufficiently (SI Text, Figs. S1–S3). The initial condition we
used (single WT) and the discreteness of ni imply that ni should
be interpreted as the total number of virions within a finite sys-
tem. The HIV-1 viral load during the acute infection phase can
reach up to 104 ∼ 106 RNA copies/mL (7). Accounting for the
volume of blood in the body of an average adult (approximately
5 L), the total population size Nv ¼ Σi ni would be up to about
109. We found simulations to slow down significantly as Nv be-
came larger than about 106. For computational efficiency, we
therefore regarded the system as a small representative volume
(1 mL) of blood, and the viral loads and CTL levels reported refer
to RNA copy numbers and cell counts within this volume.

CTL Response. Within an infected host, the action of the cellular
immune response provides the major force countering the acute
viremia. In this work, we combine the population dynamics ap-
proach of virus-immune system dynamics by Nowak and cowor-
kers (18, 19) with the classic quasispecies theory. Accordingly,
Eq. 2 is modified as follows:

Ri →
Qjiri

Ri þRj; ðreplication with mutationÞ [3A]

Ri→
b
Ri þ∑

l

k¼1

CðαikÞ; ðstimulationÞ [3B]

Ri þ CðαikÞ→
p
CðαikÞ; ðclearanceÞ [3C]

CðαÞ→
g
0; ðdecayÞ [3D]

where the genotype i is now a member of the combined sequence
space of l epitopes. The amino acid sequence (“phenotype”) of
epitope k in genotype i is denoted as αik, and CðαÞ represents a

CTL specific to phenotype α. Eq. 3B represents a reaction in
which, with a rate b, virions of sequence i stimulate the produc-
tion of a set of CTLs CðαikÞ corresponding to the phenotypes of
its epitopes. Eq. 3C denotes the reaction where cells infected with
viruses with genotype i are cleared by CTLs with phenotypes that
match one of its epitopes with a rate p, and Eq. 3D represents the
natural decay of T cells with a rate g. Under the alternative de-
terministic continuum approximation, one may write:

_nj ¼ ∑
i

Qjirini − p∑
l

k¼1

cðαjkÞnj; [4A]

_cðαÞ ¼ bnα − gcðαÞ; [4B]

where cðαÞ is the number of Tcells CðαÞ and nα is the total num-
ber of virions containing epitopes with phenotype α.

The qualitative features of the infection-clearance dynamics
can be illustrated by setting the mutation rate μ to zero. Numer-
ical integrations of Eq. 4 yield the continuum approximation re-
sult (Fig. S4 for μ ¼ 0 and l ¼ 1), which showed reasonable
agreement with the stochastic simulation results. For nonvanish-
ing mutation rates, numerical integration rapidly becomes prohi-
bitive with increasing L because of the high dimensionality of the
sequence space. The inverse of b is a measure of the time delay of
the growth of T cells compared to that of viruses. Here, we
adopted b values of approximately 0.01 d−1. The efficiency of
CTLs in recognizing cells presenting the epitope and killing them
is represented by parameter p, the clearance rate. We found
p values of 10−4 ∼ 10−3 d−1 to give good fits to experiments
(see below).

Immune Escape Dynamics. To make comparisons with experiments,
it is necessary to consider that fitness is determined by amino acid
sequences, and many mutations are synonymous. Therefore, the
full immune escape dynamics represented by Eq. 3 distinguishes
the amino acid sequence αik corresponding to the nucleotide
sequence of epitope k in genotype i. We refer to the set of nu-
cleotide and amino acid sequences as “genotypes” and “pheno-
types,” respectively. The fitness ri is a function of phenotypes
only. During simulations, each genotype is translated into a phe-
notype, and a new mutant is checked against the existing pheno-
type/genotype list, which is updated and expanded. The nature of
this genotype–phenotype map plays important roles in evolution-
ary dynamics, leading to key signatures of selective pressure, such
as the ratio of synonymous to nonsynonymous mutations (28).
Quantitative insights to the effects of this mapping on molecular
evolution have been provided by Manrubia and coworkers (29),
who studied short RNA sequences for which fitness can be esti-
mated by secondary structure predictions. In our case, a simpli-
fied overview of the genotype–phenotype map can be gleaned
from a network representation of the genetic code (Fig. S5): If
all mutations were neutral and amino acids within an epitope in-
dependent, this map would be sufficient to determine the statis-
tics of evolutionary drifts. The accessibility of certain mutations
from a phenotype, in particular, has been shown to affect the
evolvability of viruses (30).

Another major ingredient for a realistic model of immune es-
cape is the fitness landscape beyond the level of the single-peak
model. Much progress has been made recently in understanding
the nature of fitness landscapes (31–34). Explicit fitness measure-
ments of viral clones (35, 36) and biochemical assays of proteins
(37) both indicate that single-nucleotide substitutions lead to a
broad distribution of fitness changes, most of which are deleter-
ious. Therefore, one may assume that the fitness of a mutant is a
random variable centered around a mean fitness value f . We ex-
pect this mean fitness to be a decreasing function of distance d to
the WT (the number of amino acids that are different), which we
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assume to be exponential: f ðdÞ ¼ expð−d∕ξÞ, where ξ denotes a
characteristic distance (Methods).

An empirical evidence for this choice can be found from a re-
cent experimental study by Fernández et al. (37), who measured
the fitness landscapes of HIV-1 protease quasispecies for three
patients. We plotted the distribution of their reported fitness
values as a function of distance to the dominant phenotype
and found near-exponential dependence for two quasispecies
(Fig. S6). Our fitness function therefore models both the de-
crease of the mean fitness away from WT and the distribution
of neutral, deleterious, and beneficial mutants for a given dis-
tance. In simulations, these fitness values were assigned dynami-
cally to newly encountered phenotypes. It is important to note,
however, that this landscape chosen is still an approximation that
ignores many potentially important effects, such as the heteroge-
neity of the mutational neighborhoods within the phenotype
space.

We tested this quasispecies model with the ultradeep sequen-
cing data (9, 22) of the SIVepitope Tat28–35SL8 (38). Fig. 1 shows
the time dependence of the viral load and WT frequency from
simulations of the single-epitope version of Eq. 3 compared with
the experimental data (22). The initial rapid growth of the viral
load, its subsequent decrease as CTLs are activated, and the more
gradual increase as mutants appear are all captured quantita-
tively. The WT frequency decrease agrees with experimental
trends (Fig. 1B) with signatures of two distinct time scales (22).
The mutation rate we used (μ ¼ 2 × 10−7 bp−1) was chosen to
obtain the best overall agreement for WT frequency with the sin-
gle-epitope version of the model. For multiepitope applications,
larger mutation rate values close to the experimental estimate
for HIV-1 (μ ¼ 3.4 × 10−5 bp−1) (39) gave realistic dynamics
(Fig. 2).

Fig. 1B also shows the frequency of the most dominant escape
mutant (EM) at each time point. As mutations occur, a new strain
proliferates temporarily before being curbed down, and the total
number of phenotypes continues to increase. The increase in via-
bility of populations with multiple but lower fitness peaks has
been described first by Schuster and Swetina (40) and has later
been known as the “survival of the flattest” effect (41). Further
insights into the role this expansion in sequence space plays in the
growth of viral loads can be gained from the deterministic con-
tinuum approximation, Eq. 4, without mutation: The immune re-
sponse to WT leads to damped oscillations of viral load and CTL

level (Fig. S4), reaching a steady state n� and c�. This process is
repeated for each new mutant, leading to continued increases
in n� and c� roughly proportional to the number of phenotypes
(18). However, the timing, distribution, and the probability of
the appearance of mutants are highly nontrivial functions of
the characteristics of the system, including genome length, gen-
otype–phenotype map, and fitness landscape. Our quantitative
quasispecies-based model, Eq. 3, provides a realistic description
of this complex diversification process via the single parameter μ.
We note that, for a single epitope, this interpretation ignores the
effects of competition among viral strains because each CTL
is specific to only one phenotype. In reality, in addition to com-
peting directly for host cells, different viral strains share their vul-
nerability to CTLs specific to common epitopes within their
genomes. By considering multiple epitopes within a strain, our
model takes into account this interdependence of viral strains
and their indirect competition arising from shared epitope phe-
notypes (see below).

As a quantitative measure of the relative degree of WT
persistence during immune escape, we also examined the time
(half-life) required for WT frequency to reach one-half (Fig. 1B)
(22) with varying stimulation rate b and clearance rate p (Fig. S7).
The SIV epitopes studied by Bimber et al. (9) were estimated to
have a WT half-life of about 20 d (22). We found that, within our
model, the WT half-life increases with increasing p and b in this
range: An increase in the magnitude of selection pressure, rather
than accelerating immune escape, suppresses viral population
growth more effectively and reduces the chances of escape muta-
tion (Fig. 2). The immune escape thus becomes more pronounced
when viral loads in the chronic phase are larger with more fre-
quent mutations.

Disease Progression Under Immune Response.We examined general
trends of viral infection-immune response dynamics within our
quasispecies model on multiple-epitope levels (l ¼ 3) with varia-
tions of key model parameters. The evolutionary dynamics, in
particular, is critically affected by p, the clearance rate represent-
ing the effectiveness of immune response, and the mutation
rate μ. We identified two qualitatively different behaviors based
on the eventual fate of viral load/CTL level: in one regime
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(“runaway,” Fig. 2), the chronic phase after the resolution of the
acute infection is eventually followed by a runaway growth in viral
loads (Fig. 2A). The level of CTLs also rises consistently during
the chronic phase (Fig. 2B). This disease progression is accom-
panied by an increase in the diversity of quasispecies, or the
“spreading of clouds” (Fig. 2C). The time scale for the duration
of the chronic phase, in particular, varied sensitively with p and μ
(from a few months to years) (Fig. 2A). We found that the total
number of phenotypes per epitope (Fig. 2C) generally goes down
as the number of epitopes increases: A new escape mutant has
much lower probability for survival with multiple epitopes be-
cause it shares WT phenotypes on other parts of its genome with
existing strains, and therefore is susceptible to CTLs that are al-
ready present.

The disease progression pattern in the runaway regime corre-
sponds to situations where the immune system is overwhelmed by
viral growth, either shortly after infection (there is no discernible
chronic phase for sufficiently small p) or after a long chronic
phase and accumulation of escape mutants. The latter case clo-
sely matches the characteristic HIV-1 disease pathogenesis (7),
revealing the major role played by the uncontrolled diversifica-
tion of the quasispecies that overwhelms the CTL response. This
feature was first suggested by Nowak and May (19), who coined
the term “diversity threshold” based on a model assuming ran-
dom appearances of mutants. Our results show that the basic qua-
sispecies dynamics under selection pressure provide a realistic
description of this phenomenon.

If p is sufficiently large and μ sufficiently small, one enters a
different regime (“extinction,” Fig. 3), where the acute and
chronic phases lead to viral loads that decrease either rapidly
or asymptotically with time. As populations shrink in size, their
dynamics become increasingly stochastic, and extinction (a com-
plete clearance of infection) occurs when the viral load reaches
zero. This behavior is inherently stochastic and cannot be cap-
tured by the deterministic approximation in Eq. 4. The time re-
quired for clearing the infection (“extinction time”) typically has
a broad distribution, increasing with decreasing p while becoming
infinite above a threshold μ (Fig. 4A). The rapid clearance of in-
fection within approximately 10 d corresponds to the normal state
of affairs in a healthy immune system against viruses such as in-
fluenza. As shown in Fig. 3A (p ¼ 0.01 d−1), however, the extinc-
tion time can also reach time scales approaching a patient’s

lifetime. This feature may be relevant in understanding the basis
for some chronic viral infections with long and stable setpoints
(e.g., hepatitis C), although the high variability of extinction times
we observed (Fig. 4A) likely may not correspond to actual pos-
sible clearances of such chronic infections.

The threshold separating the runaway (Fig. 2) and extinction
(Fig. 3) regimes can be identified by the maximum mutation
rate for which the extinction time remains finite (Fig. 4A). This
error threshold for the immune control of infection is analo-
gous to Eigen’s threshold for genomic stability: The latter is
the error rate above which replicators cannot maintain a stable
master sequence. The former is a maximum mutation rate the
given immune system can suppress. Fig. 4B shows this threshold
as a function of p and μ. A given virus would have roughly the
same mutation rate, while p would vary with individual patients.
The sensitivity of disease progression with p is consistent with
the observation that even when the fatality rate of a certain
infection is known, the course of infection in a patient is often
unpredictable.

The case for HIV-1 is unique in the sense that without treat-
ment, most patients eventually progress to the disease stage. One
of the special characteristics of HIV-1 is that it targets CD4þ
(helper) Tcells, which play critical roles in eliciting and mediating
CTL responses. Within the context of our model, the destruction
of CD4þ Tcells would lead to a gradual decrease in both the sti-
mulation rate b and the clearance rate p. One therefore expects a
continual deterioration of any initial effective control of infec-
tion, represented by p values that decrease over the course of dis-
ease progression. In Fig. 4B, therefore, even though patients with
stronger immune systems may have p values initially in the extinc-
tion regime, the continued depletion of CD4þ cells would lower p
and cause them to cross the threshold.

Conclusions
In this paper, we demonstrated that the classic quasispecies the-
ory can form the basis of a quantitative model of virus evolution
under immune selection. One of the apparent challenges in de-
veloping such a model is that viral genomes, while relatively small
(approximately 104 bp), still constitute a huge sequence space.
Here, we showed that a set of epitopes (La ∼ 10 amino acids)
can be considered as minimal units of genomic segments on which
selection acts. In standard quasispecies theory, competition be-
tween different strains arises indirectly from the constraint of
fixed total population size. In our model, the degradation and
removal of virions occur via immune response, which can be re-
garded as a concrete specification of the selection forces. In this
case, indirect competition occurs because most viral strains share
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and extinction regimes in the p − μ parameter space (defined as the maxi-
mum μ for which the extinction time converges for a given p). The arrow
illustrates the dynamic deterioration of immune response during HIV-1 infec-
tion. Other parameter values were the same as in Fig. 2.
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identical phenotypes in a large fraction of their epitopes and are
constrained by common groups of CTLs. However, the model
does not account for the effects of direct competitions for re-
sources (limited number of host cells available for infection).
We have additionally explored an extended model that includes
host-cell dynamics (SI Text), whose analysis suggests that the main
qualitative results remain valid (Fig. S8).

Our finding that the relative importance of immune escape is
mainly determined by the viral load in chronic infection may have
implications to vaccine design (42): Strategies aimed at prevent-
ing immune escape, such as targeting epitopes with higher fitness
costs to mutations, may not confer more benefits than those at-
tempting to boost the overall immune response. We also note,
however, that more realistic representations of T-cell stimulation
and clearance will have to take their dependence on phenotypes
into account (p and b should depend on amino acid sequences),
because mutations affect HLA-epitope-CTL binding affinities.
Our model also ignores complex epistatic effects coupling muta-
tions on the same and different epitopes (43). The approach pre-
sented here likely can provide a foundation for a more compre-
hensive modeling framework to tackle such global genome-wide
effects. In addition, although we interpreted Eqs. 3B–3D strictly
as the CTL-mediated immune response, we expect similar ap-
proaches to be applicable for antibody-based responses.

Methods
Stochastic Evolutionary Dynamics. Simulations are carried out by applying the
Gillespie algorithm (26) to Eq. 3. At a given time, a dynamic list of genotypes
and phenotypes (N and M in total, respectively), starting with a single WT at
the initial condition, is kept and updated, instead of enumerating all possible
sequences. A genotype consists of the nucleotide sequence of a set of epi-
topes (l in total), each with the same length L, such that the total length be-
comes l × L. We define the following quantities

aðrÞ
i ¼ ∑

i

j¼1

rjnj; aðsÞ
i ¼ ∑

i

j¼1

ðrj þ bÞnj;

aðcÞ
i ¼ ∑

i

j¼1

ðrj þ bþ pcjÞnj; aðdÞ
α ¼ aðcÞ

N þ g∑
α

β¼1

cðβÞ;

each corresponding to the replication, stimulation, clearance, and decay re-
actions (Eq. 3), respectively, where cj ¼ ΣkcðαjkÞ is the total number of CTLs
corresponding to any of the epitope phenotypes belonging to the genotype
j. A random number 0 < r < 1 is drawn to determine the time interval Δt ¼
ð1∕aÞ lnð1∕rÞ before the next reaction event, where a ¼ a ðdÞ

M . A second ran-
dom number r is drawn, and if aðxÞ

i−1 < ar < aðxÞ
i for x ¼ r, s, c, the replication,

stimulation, or clearance reaction is chosen for the genotype i, respectively. If
a ðdÞ
α−1 < ar < aðdÞ

α instead, the decay reaction is carried out for the CTL with phe-
notype α. In this algorithm, therefore, a given CTL contributes equally to the
clearance probabilities of all viral strains containing its phenotype. This pre-
scription generates unbiased trajectories of two classes of objects, the viruses
with genotype i and phenotype αik and CTLs with phenotype α. For replica-
tion reactions, the chosen genotype i is mutated with probability μ per bp.
Further details on implementing the genotype-phenotype lists can be found
in SI Text.

Simulation Conditions. The standard genetic code was used to translate
mutant genotypes into phenotypes. The reduced fitness sα ¼ rατ of a pheno-
type αwas taken as follows: sα ¼ 1 for theWT, and for all other phenotypes sα
is a random variable with the following Gaussian distribution: PðsαÞ ¼
expf−½sα − fðdαÞ�2�∕2σ2g∕ð2πÞ1∕2σ, where the position of the maximum
fðdαÞ ¼ expð−dα∕ξÞ is an exponentially decreasing function of the distance
dα ≥ 1 (summed over all epitopes; in units of amino acids) of the phenotype
α to the WT. The parameters ξ and σ are the measures of the fitness costs of
mutations and of randomness in fitness distributions, respectively. During si-
mulations, a newly encountered phenotype is dynamically assigned a fitness
value based on this distributionwith negative rα values replaced by zero. Phe-
notypes containing stop codons were assigned zero fitness. In Fig. 1, the SIV
epitope Tat28–35SL8 with the WT sequence of 5′-TCC ACT CCA GAA TCG GCC
AAC CTG-3′ (STPESANL) (38) was used (La ¼ 8 and l ¼ 1). In Figs. 2–4, random
sequences were used for the WT and simulations were performed with La ¼
10 and l ¼ 3. Typically, quantities were averaged over 102 ∼ 103 trajectories
unless otherwise specified.
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