
1

SLEEPJ, 2021, 1–14

doi: 10.1093/sleep/zsab144
Advance Access Publication Date: 9 June 2021
Original Article

Submitted: 4 March, 2021; Revised: 26 May, 2021

Published by Oxford University Press on behalf of Sleep Research Society (SRS) 2021. This work is written by (a) 
US Government employee(s) and is in the public domain in the US.

Original Article

Optimal sleep and work schedules to maximize alertness

Francisco G. Vital-Lopez1,2, , Tracy J. Doty3,  and Jaques Reifman1,*,

1Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine 
and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, 
MD, USA, 2The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA and 
3Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA

*Corresponding author. Jaques Reifman, Department of Defense Biotechnology High Performance Computing Software Applications Institute, 
Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, 
Fort Detrick, MD 21702–5012, USA. Email: jaques.reifman.civ@mail.mil.

Abstract
Study Objectives:  Working outside the conventional “9-to-5” shift may lead to reduced sleep and alertness impairment. Here, we developed 
an optimization algorithm to identify sleep and work schedules that minimize alertness impairment during work hours, while reducing 
impairment during non-work hours.

Methods:  The optimization algorithm searches among a large number of possible sleep and work schedules and estimates their effectiveness 
in mitigating alertness impairment using the Unified Model of Performance (UMP). To this end, the UMP, and its extensions to estimate 
sleep latency and sleep duration, predicts the time course of alertness of each potential schedule and their physiological feasibility. We 
assessed the algorithm by simulating four experimental studies, where we compared alertness levels during work periods for sleep schedules 
proposed by the algorithm against those used in the studies. In addition, in one of the studies we assessed the algorithm’s ability to 
simultaneously optimize sleep and work schedules.

Results:  Using the same amount of sleep as in the studies but distributing it optimally, the sleep schedules proposed by the optimization 
algorithm reduced alertness impairment during work periods by an average of 29%. Similarly, simultaneously optimized sleep and work 
schedules, for a recovery period following a chronic sleep restriction challenge, accelerated the return to baseline levels by two days when 
compared to the conventional 9-to-5 work schedule.

Conclusions:  Our work provides the first quantitative tool to optimize sleep and work schedules and extends the capabilities of existing 
fatigue-management tools.
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Statement of Significance

Demands of a 24/7 society force millions of salary and wage earners to work outside of the conventional 9-to-5 shift, often leading to re-
duced sleep and alertness and compromising worker safety and productivity. These effects can be exacerbated or mitigated depending on 
the choice of when to sleep during rest opportunities or when to work, if afforded flexible work hours. Here, we describe an optimization 
algorithm that automatically identifies efficacious sleep and work schedules that result in minimum alertness impairment during work 
hours, while reducing impairment to the greatest extent possible during the rest of the day. This algorithm provides a new capability that 
complements existing resources for managing fatigue.
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Introduction

Approximately 30% of the U.S. labor force has work schedules 
outside of the conventional “9-to-5” day shift [1], precluding 
habitual night sleep on a regular basis. Such disruptions to 
the normal sleep-wake cycle are associated with negative 
health consequences as well as excessive fatigue and cog-
nitive impairment [2–5]. In particular, cognitive impairment 
can be exacerbated or mitigated depending on the decision 
of when to sleep during available rest periods. However, 
this decision is not always obvious because the best time to 
sleep to enhance mental acuity may not be evident [6], or be-
cause social pressures and family obligations may dictate the 
sleep period. In addition, such a decision may also involve 
determining the best time to work, as nearly 60% of salary 
and wage earners in the United States have some flexibility 
in their work schedule [7].

A number of U.S. government agencies provide guidelines 
to help shift workers deal with extended and irregular shifts 
to better plan their rest-work schedules [8–10]. However, such 
guidelines are often too general. For example, for night-shift 
work, the U.S. Occupational Safety and Health Administration 
recommends between 7 and 9 h of daily sleep, with rest periods 
scheduled within 8 h of the start of the shift [8]. However, this 
guidance does not specify sleep start time or what to do if 
sleeping for at least 7 h is not possible. For nurses on shift work 
and long work hours, the National Institute for Occupational 
Safety and Health (NIOSH) recommends sleeping as long as 
possible before 1400, with preference to early morning time 
[10]. However, in some cases, it may not be physiologically 
possible to sleep for the needed duration. For instance, after a 
24-h wakefulness period, an individual falling asleep around 
0700, as recommended by the NIOSH guideline, may not be 
able to stay asleep for more than 4.5 h [11]. Hence, instead of 
using a “one-size-fits-all” approach, shift workers with fixed 
or varying work hours on regular or irregular work schedules 
would benefit from a publicly available evidence-based com-
puter tool to help devise the most suitable rest-work schedule 
for each specific situation, while also considering social and 
family constraints.

A few commercial tools as well as a couple of publicly 
available ones are being marketed for predicting sleep epi-
sodes representative of a group of individuals. They are based 
on different mathematical models and are implemented in 
different computing platforms [12, 13], including Web servers 
[14–17], personal computers [14–16, 18–20], and smartphones 
[21, 22]. Given future work periods, these tools predict sleep 
episodes as well as subjective or objective alertness levels 
(or fatigue levels) associated with the provided schedules. 
While the detailed inner workings of such tools are often 
deemed to be proprietary information and, as such, are un-
available for peer review, in general, the predictions are based 
on one of three mathematical modeling approaches: the two-
process model [23], the three-process model [24], or a statis-
tical model [20], coupled with empirical constraints, such as 
historical activity patterns and commuting time before and 
after work. Surprisingly, with only one exception [21, 22], none 
of these tools attempts to identify the optimal time to sleep 
to maximize alertness during work periods. Rather, the pre-
dicted sleep episodes are simply an estimate of when sleep 
is most likely to occur, regardless of whether the predicted 

sleep episodes lead to peak alertness during the work periods. 
And, the one tool that maximizes alertness does so for a 
single point in time, for example, 0200 or 1000, rather than for 
the entire time duration of a work period [21, 22]. In addition, 
none of these tools attempts to simultaneously identify both 
the optimal time to sleep and the optimal time to work so 
that alertness is maximized during work periods. Rather, work 
periods are always fixed and provided as an input to the tool. 
Furthermore, none of these tools attempts to identify the op-
timal time to work that maximizes alertness for a fixed sleep 
schedule.

Planning effective sleep-work schedules requires three 
elements. First, we must have the ability to accurately pre-
dict the time course of alertness for any arbitrary sleep-wake 
schedule. This allows us to properly quantify alertness levels for 
any number of schedules, while accounting for potential con-
straints in sleep and work periods. Second, we must determine 
the extent to which an individual will be physiologically able 
to initiate and maintain sleep, depending on sleep history and 
time of day. Considering such physiological constraints is crit-
ical in determining the practicality and efficacy of a proposed 
sleep period. For example, as discussed above, planning for an 
8-h sleep period starting at 0700 after 24 h of continuous wake-
fulness would be ineffective, given the inability to maintain 
sleep for more than ~4.5 h [11]. Third, we must have the ability 
to identify many feasible sleep-work schedules that meet sleep, 
work, and physiological constraints; compare and contrast them 
using a quantitative metric; and select the most effective one. 
To be most useful, this should be accomplished automatically, 
in real time, and instantiated in multiple computing platforms, 
including smartphones and publicly available Web servers [25].

Previously, we developed and extensively validated mathem-
atical models that address the first and second elements men-
tioned above. Specifically, the Unified Model of Performance 
(UMP) predicts the effect of sleep history and time of day on 
alertness, as determined by the psychomotor vigilance test (PVT) 
[26, 27]. Recently, we extended the UMP to predict sleep latency 
(i.e. the timespan to fall asleep) and sleep duration, for an arbi-
trary sleep period [28]. To address the third element, here we de-
scribe an efficient optimization algorithm that searches the large 
number of possible sleep-work schedules and automatically pro-
vides in real time physiologically feasible schedules that maxi-
mize alertness during work periods, while satisfying sleep and 
work constraints. To this end, the algorithm identifies (1) optimal 
times to sleep for fixed work periods, (2) optimal times to work 
for fixed sleep periods, or (3) optimal combinations of sleep and 
work times, in each case leading to peak alertness during work 
periods. To assess the optimization algorithm, we first revisited 
three experimental sleep-deprivation studies [29–31] previously 
used to validate the UMP [26, 27, 32] and one additional study 
[33]. In these simulations, using the same total sleep time as in 
each of the original studies, we computed optimal sleep times 
that maximize alertness levels during fixed work periods. We 
then used the UMP to predict alertness impairment during the 
work periods using the original sleep schedules and compared 
these results against those obtained with the optimization algo-
rithm. Finally, using the recovery phase of one of the studies, we 
simultaneously optimized sleep and work times and compared 
alertness impairment levels during work periods obtained with 
these optimal times against those of the original study.
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Methods

Experimental studies

We used our algorithm to retrospectively optimize the sleep 
schedules of four diverse studies (Studies 1–4) involving chronic 
sleep restriction (CSR), total sleep deprivation (TSD) followed 
by CSR with daytime sleep, CSR with night-shift work, and CSR 
with day-night split sleep. For each study, the algorithm pre-
dicted sleep times that resulted in peak alertness during fixed 
(i.e. predefined) work periods. In addition, we simultaneously 
optimized sleep and work schedules during the recovery phase 
of Study 1, following 7 days of CSR. Below, we provide a brief de-
scription of each study.

Study 1 [31]. Twelve subjects [four men, mean age: 26 years, 
standard deviation (SD): 7.1  years] participated in a CSR and 
recovery study. Subjects were instructed to maintain their ha-
bitual sleep schedule at home for 14 days prior to start of the 
study. Their sleep patterns were monitored using actigraphy 
and sleep diaries. Then, subjects spent 8 nights in the laboratory, 
where they maintained their habitual sleep (mean duration: 
7.1 h, SD: 0.7 h), waking up at 0700, and leaving the laboratory 
during the day to perform daily activities. Following this phase, 
subjects started the full-time, in-laboratory phase of the study, 
consisting of one baseline night of habitual sleep (waking up at 
0700), seven nights of sleep restriction [time in bed (TIB) from 
0400 to 0700], and five recovery nights (TIB from 2300 to 0700). 
Subjects performed a 5-min PVT every hour between 0800 and 
1800 during the sleep restriction and recovery days. During PVT 
assessment and sleep periods, subjects stayed in individual 
sound-attenuated rooms, where the ambient temperature was 
maintained at 23°C and the lighting was kept at 500 lux during 
wake periods, while keeping background white noise at 65 dB 
at all times.

Study 2 [30]. Ten male Special Forces personnel (mean age: 
28.6  years, range: 19 to 32  years) participated in a field study 
of sustained operations. After an overnight 8-h sleep period, 
starting at 0700 on day 1, the subjects underwent 31 h of TSD 
followed by 2 days of restricted daytime sleep (TIB from 1330 to 
1730 on days 2 and 3). The study ended at 0930 on day 4. Subjects 
completed 31 sessions of a 5-min PVT.

Study 3 [33]. Twelve male subjects (mean age: 26.8  years, 
range: 18–32 years) participated in a study of simulated night-
shift work. Subjects reported habitual sleep onset times be-
tween 2200 and 0200 and a total sleep time ranging from 6 to 
9 h, prior to the in-laboratory simulated night-shift work. The 
simulated period started at 0700 on day 1 and ended at 2300 
on day 5. Subjects had sleep opportunities with TIB from 0800 
to 1200 on days 2 to 5 and performed 5-min PVTs every 1.5 h 
throughout most of the time awake. During PVT assessment and 
sleep periods, subjects stayed in individual sound-attenuated 
rooms, where the ambient temperature was maintained at 23°C 
and the lighting was kept at 500 lux during wake periods, while 
keeping background white noise at 65 dB at all times.

Study 4 [29]. Twelve male subjects (mean age: 28 years, range: 
21–47 years) participated in a CSR study with split sleep. During 
the week prior to the study, subjects slept from 2330 to 0730, as 
verified by actigraphy and sleep diaries. Then, subjects started 
the full-time, in-laboratory phase of the study. After three base-
line nights with TIB from 2330 to 0730, subjects started a period 
of 88 h (starting at 0700 on day 1 and ending at 2300 on day 4) in 
which they were allowed to sleep for 2 h every 12 h starting at 

1500 on day 1 (seven TIB sleep opportunities in total). Subjects 
performed a 10-min PVT every 2 h throughout most of the time 
awake. Throughout the in-laboratory phase, subjects were iso-
lated from time cues and ambient light was kept to less than 
50 lux.

Metrics of alertness impairment

The PVT is a well-validated and widely used reaction-time test 
for assessing changes in alertness impairment levels caused by 
sleep loss [34, 35]. To perform a PVT, subjects are instructed to 
press a button (or tap on a touch screen) as quickly as possible 
immediately after they see a visual stimulus, which repeat-
edly appears on the screen at random time intervals between 
1 and 10 s, over a typical 5- or 10-min PVT session. In essence, 
the PVT measures the response time (RT) from the presentation 
of a stimulus to a subject’s response to it, from which we can 
compute a handful of statistics. Here, we use two PVT statis-
tics: mean RT over the number of responses collected during a 
PVT session and PVT lapses, which indicate the number of RTs 
greater than 500  ms. Note that the larger the values of mean 
RT and PVT lapses are, the greater is the alertness impairment.

Multiple studies have demonstrated the equivalence be-
tween increases in alertness impairment level caused by sleep 
loss and increases in blood alcohol concentration (BAC) [36, 
37]. Therefore, to provide a reference for undesirable values of 
mean RT and PVT lapses, we linked them to well-understood 
BAC limits of 0.06% and 0.08% (the federal limit to legally drive 
in the United States [38]). The alertness impairment caused by a 
BAC of 0.06% is equivalent to that caused by 19 h of wakefulness 
[25, 36, 37], which corresponds to a UMP-predicted alertness im-
pairment level of 340 ms for mean RT (or seven lapses for PVT 
lapses). Similarly, the alertness impairment caused by a BAC of 
0.08% is equivalent to that caused by 24 h of wakefulness, which 
corresponds to a UMP-predicted alertness impairment level of 
460 ms for mean RT (or 12 lapses for PVT lapses). To assess the 
performance of the sleep/work optimization algorithm against 
the results obtained with the nominal sleep and work schedules 
used in the original studies, we computed the time duration for 
which the predicted alertness impairment was above the two 
BAC limits.

The UMP

Based on the seminal two-process model postulated by Borbély 
[23], we previously developed the UMP to quantitatively predict 
the effect of sleep history and time of day on alertness [26, 27]. 
The input to the UMP is a sleep-wake schedule, and the output is 
the corresponding prediction of the time course of the expected 
alertness impairment P representative of a group of individuals:

	
P(t) = S(t) + κC(t),� (1)

where the homeostatic process S represents the need for sleep, 
process C represents the sleep-independent effect of the cir-
cadian rhythm on alertness, κ denotes the circadian ampli-
tude, t represents time (in hours), and P is an estimate of the 
mean RT statistics or lapses of the PVT. We refer the reader to 
the Supplemental Material for the equations and parameters of 
the model.
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We have extensively validated the UMP by comparing its 
predictions against data collected under various sleep condi-
tions, including CSR (3–5 h of sleep per night for up to 7 days), 
TSD (28–88 h), combinations of TSD and CSR, daytime sleep, and 
sleep extension. Overall, we used data from 27 studies involving 
nearly 900 subjects (mostly healthy young adults). In particular, 
Ramakrishnan et al. [27] showed that 87% of the time, the UMP 
predictions were indistinguishable from experimental results.

Sleep-latency model

We recently extended the UMP to predict sleep latency SL(t) at 
time t as function of P [28]:

	
SL(t) = ASLe−kSLP(t)

� (2)

where ASL [272.4 min, standard error (SE): 58.5 min] represents a 
scaling factor and kSL (0.012 ms-1, SE: 8.1×10–4 ms-1) denotes the 
rate at which SL(t) decreases with P, which is computed using 
the UMP, for a given sleep-wake schedule.

Sleep-duration model

We also extended the UMP to predict sleep duration, assuming 
that sleep spontaneously ends when the homeostatic process S 
decreases to a circadian-regulated, sleep-termination threshold 
T representing the propensity of an individual to wake up [28]. 
The threshold T(t) at time t is defined as:

	
T(t) = ASD−κSDC(t+ϕSD)� (3)

where κSD (41.2 ms, SE: 3.8 ms) represents the amplitude of the 
threshold T, ϕSD (2.0 h, SE: 0.2 h) indicates a phase shift of the 
threshold T with respect to process C, and ASD (211.6 ms) denotes 
a constant whose value is set so that process S reaches T at 0700 
after sleep onset at 2300 under rested conditions.

We have validated these extensions to the UMP by comparing 
their predictions against data collected under various sleep con-
ditions spanning the entire circadian cycle and different levels of 
sleep debt. Overall, we used data from 23 studies (309 subjects, 
mostly healthy adults), achieving average prediction errors of 
4.0 min for sleep latency and 0.8 h for sleep duration [28].

Optimization algorithm

Previously, we developed an algorithm to identify optimal 
caffeine-dosing strategies to mitigate alertness impairment 
caused by sleep deprivation [39]. Following a similar approach, 
here we developed an algorithm to identify optimal sleep and 
work times that minimize alertness impairment (i.e. that maxi-
mize alertness) during work periods, while reducing impair-
ment during non-work periods (i.e. the time an individual is 
awake but not working) to the greatest extent possible. Note that 
the algorithm can be applied to reduce alertness impairment in 
terms of PVT mean RT or PVT lapses. However, for simplicity, we 
provided a description of the algorithm using only the mean RT.

The algorithm’s solutions also satisfy user-specified sleep and 
work constraints. In this formulation, a sleep schedule is com-
prised of a total of N sleep periods, where each sleep period n (with 

n = 1, 2, …, N) is defined by its start time Sn and duration Dn, as 
shown in Figure 1, A. Similarly, a work schedule is comprised of a 
total of M work periods, where each work period m (with m = 1, 2, 
…, M) is defined by its start time Sm and a fixed, user-defined dur-
ation Dm. By construction, the algorithm infers the total number 
of non-work periods Q based on the allocated sleep and work 
periods, where a non-work period q (with q = 1, 2, …, Q) is defined 
by its start time Sq and duration Dq. Accordingly, given fixed work 
duration Dm, the algorithm iteratively identifies optimal values for 
Sn, Dn, and Sm (and by extension for Sq and Dq) through three se-
quential steps, as described below and illustrated in Figure 2.

Algorithm inputs
The algorithm requires six inputs: (1) sleep window, that is, 
the time frame within which the algorithm can define sleep 
periods (Figure 1, A); (2) maximum sleep duration during each 
sleep window; (3) work window, that is, the time frame within 
which the algorithm can define work periods (Figure 1, A); (4) 
duration of the work period in each work window; (5) work 
alertness threshold, that is, the desired maximum impairment 
level during work periods (Figure 1, B); and (6) non-work alert-
ness threshold, that is, the desired maximum impairment level 
during non-work periods (Figure 1, C). Note that sleep and work 
windows may overlap. Moreover, each sleep window may con-
tain one or more sleep periods, as long as the combined sleep 
duration of all periods within a window does not exceed the 
maximum sleep duration for the sleep window. In contrast, we 
assumed that each work window contains only one continuous 
work period of fixed duration. Thus, N is variable and is deter-
mined by the algorithm, whereas M is fixed, as defined by the 
user-provided schedule. The alertness thresholds during work 
and non-work periods can be tuned to achieve the desired 
balance of alertness levels during wakefulness.

For a given set of inputs, the algorithm initially sets Sm of 
each work period m so that it coincides with the start of the 
work window and defines no sleep periods (i.e. it sets N = 0). We 
used these initial guesses for simplicity, as the algorithm is es-
sentially insensitive to such selections. Iteratively, through se-
quential optimizations performed in each of three steps (Figure 
2), the algorithm identifies a feasible solution that leads to peak 
alertness levels during work and non-work periods.

Optimization steps
 In Step 1, for a given work period start time Sm, with m = 1, 2, …, 
M, the goal is to identify Sn and Dn for each sleep period n, with 
n = 1, 2, …, N, that minimize alertness impairment during the 
M work periods, as scored by the objective function Z1 [Table 
1, Equation (4)]. Figure 1, B graphically illustrates the variables 
used to compute Z1. Z1 has two terms to penalize sub-optimal 
solutions that result in alertness levels above the work alert-
ness threshold for each work period m: the area under the 
UMP-predicted mean RT curve Am and the maximum alertness 
impairment Im. Then, we compute AW as the sum of Am (m = 1, 2, 
…, M) and IW as the largest Im (m = 1, 2, …, M) across all M work 
periods [Table 1, Equations (7) and (8)]. We normalized AW and IW 
by their corresponding values AW,0 and IW,0 for the no-sleep case 
(i.e. Dn = 0.0 for all n). Accordingly, the values for the objective 
function Z1 range from zero (when the predicted alertness im-
pairment is below the work alertness threshold for each of the 
M work periods) to 1.0 (when the predicted alertness impair-
ment is equal to the one achieved with no sleep).
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Figure 1.  Definition of nomenclature and parameters used in the optimization 

algorithm. (A) A sleep schedule is comprised of sleep periods, where each sleep 

period n (dark blue rectangle) is defined by its start time Sn and duration Dn. 

A sleep window (light blue rectangle) defines the timespan for allocating sleep 

periods. Wakefulness is composed of work schedules and non-work schedules. 

A work schedule is comprised of work periods, where each work period m (dark 

green rectangle) is defined by its start time Sm and a fixed duration Dm specified 

by the user. A work window (light green rectangle) defines the timespan for al-

locating work periods. A non-work schedule is comprised of non-work periods 

when the individual is awake but not working, where each non-work period q 

is defined by its start time Sq and duration Dq, both indirectly inferred by the al-

gorithm. (B) Quantities used to define the objective functions Z1 and Z3 in Table 

1. The graph shows the Unified Model of Performance (UMP) predictions for the 

no-sleep condition (dashed pink line) and the current solution (blue line), indi-

cated by the dark blue rectangle representing sleep at the top of the panel. For 

the work period m denoted by the dark green rectangle at the top of the panel, 

Am,0 and Am denote the corresponding areas, respectively, under the UMP predic-

tions above the user-specified work alertness threshold (horizontal dash line). 

Im,0 and Im denote the difference between the peak of the UMP predictions for the 

no-sleep and sleep conditions, respectively, and the work alertness threshold for 

work period m. (C) Quantities used to define the objective function Z2 in Table 1. 

The graph shows the two UMP predictions as in panel B. For the non-work period 

q immediately before work period m, Aq,0 and Aq denote the areas under the UMP 

predictions above the user-specified non-work alertness threshold (horizontal 

dash line). Likewise, Iq,0 and Iq denote the differences between the peak of the 

UMP predictions for the no-sleep and sleep conditions, respectively, and the 

non-work alertness threshold for non-work period q. RT: reaction time.

Figure 2.  The three steps of the optimization algorithm to identify sleep and 

work schedules that minimize alertness impairment during work periods, while 

reducing impairment to the greatest extent possible during non-work periods. 

Throughout the algorithm, we used the Unified Model of Performance (UMP) and 

its extensions [26–28] to predict the time course of alertness and the physio-

logical feasibility of each potential sleep schedule. Sn and Dn denote the start 

time and duration, respectively, of each sleep period n, and Sm denotes the start 

time of each work period m. Given the six user-provided inputs, the algorithm 

generates initial guesses for these three parameters. In Step 1, the algorithm 

identifies Sn and Dn that minimize alertness impairment during work periods, 

so as to meet a user-specified work alertness threshold. In Step 2, it updates Sn 

and Dn that minimize alertness impairment during non-work periods, so as to 

meet user-specified alertness thresholds for non-work periods while satisfying 

a near-optimality constraint for work periods [Table 1, Equation (19)]. Starting 

with these values of Sn and Dn, in Step 3, the algorithm identifies the optimal 

start times Sm for each work period m, so as to minimize alertness during work 

periods while meeting the user-defined threshold.
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To obtain the solution for Step 1, the algorithm first 
identifies the wake period (i.e. the timespan between two 
consecutive sleep periods) with the worst alertness impair-
ment across the work periods within each wake period (see 
Supplemental Material). Then, it assesses the benefit of eight 
potential changes to the current sleep schedule that are likely 
to reduce alertness impairment during the identified wake 
period, consequently reducing Z1 (see Supplemental Material 
for details about the potential changes). The changes in sleep 

schedule must satisfy the following practical constraints de-
fined in Table 1: (1) Dn must be a multiple of 0.5 h [Equation 
(11)]; 2) Sn and Sm should start on the hour or at the half-hour 
mark, for example, 2300 or 2330 [Equations (12) and (13)]; (3) 
the time lapse between sleep periods should be at least 6.0 h 
[Equation (14)]; and (4) the time between a sleep period and a 
work period should be at least 2.0 h [Equations (15) and (16)]. 
In addition, for each sleep period n, the potential solutions 
must satisfy two physiological constraints as defined in Table 

Table 1.  Optimization algorithm objective functions and constraints used to identify the best sleep and work schedules that minimize alert-
ness impairment during work periods, while reducing impairment to the greatest extent possible during non-work periods

Objective functions

Step 1: min
Sn,Dn

Z1 = 0.5
Ä

AW
AW,0

+ IW
IW,0

ä (4)

Step 2: min
Sn,Dn

Z2 = 0.5
Ä

AR
AR,0

+ IR
IR,0

ä (5)

Step 3: min
Sm

Z3 = 0.5
Ä

AW
AW,0

+ IW
IW,0

ä (6)

where Z1, Z2, and Z3 denote the objective functions we wish to minimize in each of the three steps of the algorithm. Sn and Dn 
represent, respectively, the start time and duration (in hours) of sleep period n, with n = 1, 2, …, N (the total number of sleep 
periods), and Sm represents the start time (in hours) of work period m, with m = 1, 2, …, M (the total number of work periods). 
AW, IW, AR, and IR are defined as follows:

 

AW =
M∑

m=1
Am

(7)

IW = max (Im, m = 1, . . . , M) (8)

AR =
Q∑

q=1
Aq

(9)

IR = max
(
Iq, q = 1, . . . , Q

)
(10)

where Am and Aq denote the area under the predicted psychomotor vigilance test mean response time (RT) curve above the 
alertness threshold for work period m and non-work period q, respectively, with q = 1, 2, …, Q (the total number of non-sleep 
periods). Im and Iq denote the difference between the peak of the predicted mean RT curve and the threshold for work period 
m and non-work period q, respectively. AW,0 and AR,0 denote the total area under the mean RT curve (predicted assuming a 
no-sleep condition, that is, assuming Dn = 0 for n = 1, 2, …, N), above the alertness threshold for the M work periods and the 
Q non-work periods, respectively. IW,0 and IR,0 denote the largest difference between the peak of the mean RT curve (predicted 
assuming no-sleep condition) and the alertness threshold across all M work periods and across all Q non-work periods, re-
spectively.

 

Constraints  
Allowed sleep durations  
Dn ∈ {0.5, 1.0, 1.5, 2.0, . . . , 24.0 h} (11)

Sn ∈ {Sn,min, Sn,min + 0.5 h, Sn,min + 1.0 h, Sn,min + 1.5 h, . . . , Sn,max − Dn} (12)

where Sn,min and Sn,max denote the start and end times, respectively, of the sleep window containing sleep period n.  
Allowed start time of each work period m  
Sm ∈ {Sm,min, Sm,min + 0.5 h, Sm,min + 1.0 h, Sm,min + 1.5 h, . . . , Sm,max − Dm} (13)

where Sm,min and Sm,max denote the start and end times, respectively, of the work window containing work period m and Dm de-
notes the duration of work period m.

 

Time between sleep periods  
Sn+1 − (Sn + Dn) ≥ 6 h, forn ∈ {1, 2, . . . ,N− 1} (14)
Sleep periods should end at least 2 h before the following work period  
Sm − (Sn + Dn) ≥ 2 h, form ∈ {1, 2, . . . ,M} when Sn ≤ Sm (15)
Sleep periods should start at least 2 h after the preceding work period  
Sn − (Sm + Dm) ≥ 2 h, form ∈ {1, 2, . . . ,M} when Sn ≥ Sm (16)
Sleep duration should not exceed the predicted maximum sleep duration (Dn,max)  
Dn ≤ Dn,max, forn ∈ {1, 2, . . . ,N} (17)
Sleep duration should be at least 1 h if the predicted sleep latency (SLn) is longer than 0.25 h  
Dn ≥ 1 h, for each n that SLn ≥ 0.25 h (18)
Maximum alertness impairment during work periods (Step 2 only)  
Am ≤ Am,1 + δ × Dm, form ∈ {1, 2, . . . ,M} (19)
where Am,1 denotes the area under the mean RT curve for work period m predicted with the current solution Sn and Dn obtained 

in Step 1, δ represents a tolerance threshold (δ = 30 ms), and Dm denotes the duration of work period m.
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1: (1) Dn cannot exceed the maximum sleep duration predicted 
by the sleep-duration model [Equation (17)] and (2) Dn should 
be at least 1.0  h if the sleep latency predicted by the sleep-
latency model is greater than 15 min [Equation (18)]. The latter 
constraint is used to avoid scheduling a 30-min nap at a time 
when an individual would spend most of the sleep period 
trying to fall asleep. Note that when we predict alertness im-
pairment corresponding to a given sleep schedule, the pre-
dicted sleep latency is not subtracted from the duration of the 
sleep period because the UMP was developed using time in 
bed as an input rather than total sleep time.

Starting with the solution obtained in Step 1, the goal of Step 
2 is to modify Sn and Dn for each sleep period n such that alert-
ness impairment across all Q non-work periods is minimized, as 
scored by the objective function Z2 [Table 1, Equation (5)], while 
maintaining the impairment level across all M work periods 
near the optimal value achieved in Step 1.  Figure 1, C graph-
ically illustrates the variables used to compute the objective 
function Z2. Similar to Z1, Z2 also has two terms to penalize sub-
optimal solutions for non-work periods that result in alertness 
levels above their threshold for each non-work period q: the area 
under the UMP-predicted mean RT curve Aq and the maximum 
alertness impairment Iq. Then, we compute AR as the sum of Aq 
(q = 1, 2, …, Q) and IR as the largest Iq (q = 1, 2, …, Q) across all M 
work periods [Table 1, Equations (9) and (10)]. We normalized AR 
and IR by their corresponding values AR,0 and IR,0 for the no-sleep 
case (i.e. Dn = 0.0 for all n). Accordingly, the values for the ob-
jective function Z2 range from zero (when the predicted alert-
ness is below the non-work alertness threshold for each of the Q 
non-work periods) to 1.0 (when the predicted alertness is equal 
to the one achieved with no sleep).

The procedure to minimize Z2 is almost identical to the one 
used to minimize Z1 in Step 1 (see Supplemental Material for de-
tails), except that here the potential solutions must also satisfy 
an additional constraint [Equation (19) in Table 1] to yield alert-
ness impairment levels across all M work periods close to the 
one obtained in Step 1. This constraint ensures that the average 
impairment level during each work period m (with m = 1, 2, …, M) 
does not increase by more than a tolerance threshold δ. Here, we 
set δ = 30 ms, which is the estimated within-subject variability 
based on a 10-min PVT during well-rested conditions [40]. Thus, 
the outputs of Step 2 are the updated values of Sn and Dn that 
minimize alertness impairment during the non-work periods 
while maintaining near-optimal alertness impairment levels 
during work periods.

With the values obtained for Sn and Dn in Step 2, the goal of 
Step 3 is to determine the start times Sm for each work period m 
that minimize alertness impairment across all M work periods, 
as scored by the objective function Z3 [Table 1, Equation (6)]. Z3 
is defined similarly as Z1 (Table 1 and Figure 1, B). To obtain Sm, 
the algorithm generates two potential solutions for each work 
period m by adding or subtracting 0.5 h to Sm and selecting the 
solution that yields the largest reduction in Z3. Note that the al-
gorithm updates Sn to satisfy Equations (15) and (16) in Table 1. 
Then, the outputs of this step, that is, the updated Sm along with 
the current values for Sn and Dn, are used as inputs to Step 1 for 
the next iteration. We repeat this three-step procedure until a 
maximum number of iterations is reached or Z3 cannot be fur-
ther reduced. The final outputs are the optimal sleep schedules 
(Sn and Dn) and the optimal work schedules (Sm) that minimize 
alertness impairment during work periods, while reducing to 

the greatest possible extent the impairment during non-work 
periods.

Alertness impairment improvement metric
To quantify the benefit achieved by the optimization algorithm, 
we computed the difference between the areas under the UMP-
predicted mean RT curve [AW; Equation (7) in Table 1] for the ori-
ginal schedule used in the study and the corresponding optimal 
schedule, and expressed this difference as a percentage of the 
area for the original schedule.

Results

Optimizing sleep schedules

To assess the performance of the optimization algorithm for 
estimating the best times to sleep so as to minimize alertness 
impairment during wakefulness, we compared the algorithm’s 
alertness predictions against those obtained with the original 
sleep schedules for each of the four experimental studies. 
However, because the optimal solutions are highly dependent 
on the accuracy of the UMP predictions, we first evaluated 
the model by comparing its alertness-impairment predictions 
against the experimental data of the original sleep schedules. 
Figures 3, A, 4, A, 5, A, and 6, A show the original sleep periods 
(orange rectangles above the graph), the measured group-
average experimental data (black dots, representing either the 
mean RT in ms or the number of PVT lapses) and their associ-
ated two standard errors of the mean, and the group-average 
UMP predictions (dashed-dot orange line). Over the four studies, 
78% of the UMP predictions (range: 73%–84%) fell within the two 
standard errors of the mean, indicating that the group-average 
predictions were generally indistinguishable from the experi-
mentally measured mean values. Then, for each study, we used 
the optimization algorithm to identify the best sleep schedules 
that minimize alertness impairment during predetermined 
work periods and the ensuing non-work periods, while con-
straining the maximum sleep duration to the values used in 
each experimental study. Note that in these assessments, we 
only optimized the start time Sn and duration Dn of each sleep 
period n, while choosing to fix the start time of each work period 
Sm and their duration to a predetermined value. Thus, in these 
simulations, we did not involve Step 3 of the optimization 
algorithm.

For all studies, we set the work alertness threshold to 274 ms 
or four lapses, for mean RT and PVT lapses, respectively, which 
correspond to the highest predicted alertness impairment levels 
during wakefulness for recurring 8-h sleep periods between 2300 
and 0700. Similarly, we set the non-work threshold to 340 ms for 
mean RT or seven lapses for PVT lapses, equivalent to the im-
pairment caused by a BAC of 0.06% [36, 37]. Note that for Study 4, 
once we had obtained the optimal sleep schedule, we used the 
UMP to predict the alertness performance in terms of PVT lapses 
(see Supplemental Material for the UMP parameter values for 
PVT lapses), as this was the statistic reported in this study.

For Study 1, we simulated the first 5  days of evening shift 
work, where we assumed an 8-h work period from 1600 to 0000 
(Figure 3, B, solid horizontal green line). We also assumed sleep 
windows of 12-h lengths, providing opportunities to sleep be-
tween shifts from 0200 to 1400 (Figure 3, A, light blue rectangles 
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above the graph), with a maximum sleep duration for each sleep 
window set to 3.0 h, as in the original study. Figure 3, B shows 
the predicted mean RT for the original 0400 to 0700 nightly 
sleep schedule (dashed-dot orange line) and for the optimal 
sleep schedule (solid blue line). Interestingly, the optimal sleep 
schedule split the 3.0-h sleep into two bouts, one in the early 
morning hours, starting between 0330 and 0500 on different 
days, and one terminating at the end of the sleep window, that is, 
2.0 h before the beginning of the evening shift (Figure 3, A, dark 
blue rectangles above the graph). Neither the original nor the 
optimal sleep schedule reduced alertness impairment during 
work periods below the desired threshold because the sleep dur-
ation was insufficient to achieve this goal. However, when com-
pared to the original sleep schedule, by placing a sleep period 
immediately before the start of each shift, the optimal schedule 
reduced the average alertness impairment by 37% (Table 2; com-
puted as the difference between the orange-shaded areas and 
the blue-hatched areas relative to the orange-shaded areas in 
Figure 3, B). Moreover, in the original schedule, the predicted 
alertness impairment across the 40.0-h work period was higher 
than the equivalent 0.06% BAC threshold for 16% of the time (i.e. 
for 6.5 h), while for the optimal schedule, it exceeded this level 
for only 0.5 h (Table 2). In addition, in the original schedule, the 
alertness impairment during non-work periods was higher than 
the equivalent 0.08% BAC threshold for 0.5 h, whereas in the op-
timal schedule, the impairment remained below this level the 
entire time.

In Study 2, we simulated three night shifts, where we as-
sumed an 8-h work period from 0000 to 0800 (Figure 4, B, solid 
horizontal green line) and 12-h sleep windows from 1000 to 
2200 preceding each shift (Figure 4, A, light blue rectangles 
above the graph), with a maximum sleep duration of 8.0 h, as 
in the original study. Figure 4, B shows the predicted mean RT 
for the original nightly sleep schedule (dashed-dot orange line) 
and for the optimal sleep schedule (solid blue line). The original 
schedule had two sleep periods from 1330 to 1730 (Figure 4, A, or-
ange rectangles above the graph), whereas the optimal schedule 
identified three sleep periods (Figure 4, A, dark blue rectangles 
above the graph), one before the start of each work period, al-
locating a longer sleep time before the third work period (3.5 h) 
and a shorter sleep time before the first one (1.5 h). Compared to 
the original schedule, the optimal schedule reduced the average 
alertness impairment by 19% (Table 2; computed as the differ-
ence between the orange-shaded areas and the blue-hatched 
areas relative to the orange-shaded areas in Figure 4, B). Such 
a reduction is attributed primarily to the improvement in alert-
ness impairment during the first night shift resulting from the 
preceding sleep period. The optimal schedule also kept impair-
ment below the equivalent 0.08% BAC threshold for the entire 
work and non-work periods, while in the original schedule, 
alertness impairment exceeded this level for 1.3 h during work 
periods and 0.8 h during non-work periods.

In Study 3, we simulated a different version of a night shift, 
with five 8-h work periods from 2200 to 0600 (Figure 5, B, solid 

Figure 3.  Optimal sleep schedule to minimize alertness impairment during work periods for Study 1. (A) Group-average values (12 subjects) of the experimentally 

measured mean reaction time (RT; black dots) for the psychomotor vigilance test, associated two standard errors of the mean, and Unified Model of Performance (UMP) 

predictions (dashed-dotted orange lines) for the original sleep schedule in the study (dark orange rectangles at the top of the panel). The top of the panel also shows 

the sleep windows (light blue rectangles) and the optimal sleep periods (dark blue rectangles). (B) UMP predictions for the original sleep schedule (dashed-dotted or-

ange line) and the optimal sleep schedule (solid blue line). The orange-shaded and the blue-hatched areas under the mean RT curves indicate the alertness impairment 

above the work alertness threshold (274 ms, lower horizontal dashed line) during work periods (horizontal green line) for the original and optimal schedules, respect-

ively. The upper (460 ms) and middle (340 ms) horizontal dashed lines indicate the alertness impairment equivalent to those of a blood alcohol concentration (BAC) of 

0.08% and 0.06%, respectively. The graph also shows the UMP prediction for the “trivial” solution (solid thin gray line), where the 3-h sleep is scheduled from 1100 and 

1400, immediately before each work period.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsab144/6295504 by guest on 30 June 2021



Vital-Lopez et al.  |  9

green line) and 12-h sleep windows from 0800 to 2000 preceding 
each shift (Figure 5, A, light blue rectangles above the graph), 
with a total sleep duration of 16 h, as in the original study. Figure 
5, B shows the predicted mean RT for the original sleep schedule 
(dashed-dot orange line) and the optimal sleep schedule (solid 
blue line). The original schedule had sleep periods from 0800 to 
1200 (Figure 5, A, orange rectangles above the graph) after each 
shift. In contrast, the optimal schedule (Figure 5, A, dark blue 
rectangles above the graph) identified a 1.0-h sleep period be-
fore the first night shift, two sleep periods (one after a shift and 
the other before the next shift) during days 2 and 3, and one 
sleep period before the shifts on days 4 and 5 (the simulation 
period ended at 0800 on day 6). The optimal schedule reduced 
the average alertness impairment by 27% (Table 2; computed as 
the difference between the orange-shaded areas and the blue-
hatched areas relative to the orange-shaded areas in Figure 5, 
B), mainly by scheduling a sleep period immediately before each 
shift, in contrast with the original schedule that included a 4-h 
sleep period after each shift. The optimal schedule sustained 
alertness impairment below the level equivalent to a BAC of 
0.08% for the entire time, whereas in the original schedule alert-
ness impairment was above this level for 4.0 h and 9.2 h during 
work and non-work periods, respectively. Importantly, most of 
the time, the impairment level of the original schedule exceeded 
the 0.08% BAC threshold right after the end of the shift, when 
the workers would be driving home.

In Study 4, we used the optimization algorithm to solve a 
variant of the previous problems, where the objective here 

was to identify the best way to distribute 14.0 h of sleep over 
an 88.0-h span so that alertness was optimal across the re-
maining 74.0 h of wakefulness (Figure 6, A). In this variation, 
we only used Step 1 of the algorithm because there were 
no non-work periods and the work periods equaled the en-
tire wake time. In addition, we relaxed the constraints in 
Equations (15) and (16) in Table 1, allowing sleep periods to 
end immediately before work periods and to start immedi-
ately after work periods, respectively. Figure 6, B shows the 
predicted PVT lapses for the original sleep schedule (dashed-
dot orange line) and for the optimal sleep schedule (solid blue 
line). While the original sleep schedule consisted of seven 2-h 
sleep periods, starting at 1500 or 0300 (Figure 6, A, orange 
rectangles above the graph), the optimal schedule had three 
consolidated sleep periods of either 4.5 or 5.0 h each, starting 
between 0100 and 0200 (Figure 6, A, dark blue rectangles above 
the graph). Compared to the original schedule, the optimal 
sleep schedule reduced the average alertness impairment by 
31% (Figure 6, B and Table 2). This was achieved by the longer 
sleep periods during the night that more effectively reduced 
alertness impairment in the early morning hours during 
the most unfavorable circadian times. In contrast, the sleep 
periods starting at 1500 in the original schedule unneces-
sarily reduced impairment way below the desired threshold 
level during the late afternoon and early evening. Moreover, 
alertness impairment was above the equivalent 0.06% BAC 
threshold for 10.4 h in the optimal schedule vs. 27.5 h in the 
original schedule.

Figure 4.  Optimal sleep schedule to minimize alertness impairment during work periods for Study 2. (A) Group-average values (10 subjects) of the experimentally 

measured mean reaction time (RT; black dots) for the psychomotor vigilance test, associated two standard errors of the mean, and Unified Model of Performance (UMP) 

predictions (dashed-dotted orange lines) for the original sleep schedule in the study (dark orange rectangles at the top of the panel). The top of the panel also shows 

the sleep windows (light blue rectangles) and the optimal sleep periods (dark blue rectangles). (B) UMP predictions for the original sleep schedule (dashed-dotted 

orange line) and the optimal sleep schedule (solid blue line). The orange-shaded and the blue-hatched areas under the mean RT curves indicate the alertness impair-

ment above the work alertness threshold (274 ms, lower horizontal dashed line) during work periods (horizontal green line) for the original and optimal schedules, 

respectively. The upper (460 ms) and middle (340 ms) horizontal dashed lines indicate the alertness impairment equivalent to those of a blood alcohol concentration 

(BAC) of 0.08% and 0.06%, respectively.
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Optimizing sleep and work schedules

To assess the performance of the optimization algorithm for 
simultaneously estimating the best times to sleep and the best 
times to work so as to minimize alertness impairment during 
wakefulness, we performed simulations for the 5 recovery days 
in Study 1 that followed the 7 days of sleep restriction. Figure 7, A 
shows the original 2300 to 0700 sleep periods (orange rectangles 
above the graph), the measured group-average experimental 
data (black dots) and their associated two standard errors of the 
mean, and the group-average UMP predictions (dashed-dot or-
ange line), which were indistinguishable from the experimental 
data. For the original study, we assumed a typical “9-to-5” work 
shift each day. For the optimization, we assumed daily 12-h 
sleep windows from 2100 to 0900, with a maximum sleep dur-
ation of 8 h per night, as in the original study, and a 12-h work 
window from 0700 to 1900, with an 8-h work duration. Using 
these inputs and the same alertness thresholds for work and 
non-work periods as described above, the algorithm identified 
optimal values for Sn, Dn, and Sm.

When compared to the original schedules, the optimal sched-
ules were delayed by 2 h each day, that is, sleep periods from 
0100 to 0900 (Figure 7, A) and work periods from 1100 to 1900 
(Figure 7, B). This 2-h delay placed the work periods at a more 
favorable time in the circadian rhythm, resulting in a 26% reduc-
tion of the average alertness impairment during work (Figure 7, 
B) and a 75% reduction in the length of impairment above the 
0.06% BAC (from 15.5 h in the original schedule to only 3.9 h). 

In addition, the optimal schedule resulted in a faster recovery, 
accelerating the return to baseline alertness levels by more than 
2 days (Figure 7, C).

Discussion
Alertness impairment resulting from irregular shift work and the 
following reduction in sleep could be mitigated if sleep and work 
schedules were properly planned. Identification of the most suit-
able times to sleep and work requires the ability to screen a large 
number of schedules and assess their time course of alertness. 
Here, we developed an optimization algorithm to efficiently and 
effectively create and evaluate a very large number of physiolo-
gically feasible schedules and identify the ones that minimize 
alertness impairment during wakefulness. To this end, the al-
gorithm relies on the well-validated UMP [26, 27] to predict the 
effect of each schedule on alertness impairment as well as on 
its recently developed model extensions to predict sleep latency 
and sleep duration [28] of each potential sleep period. The opti-
mization algorithm solves three types of problems, each leading 
to peak alertness during work periods while reducing to the 
greatest possible extent alertness impairment during non-work 
periods. It identifies (1) optimal times to sleep for fixed (i.e. given) 
work periods, (2) optimal times to work for fixed sleep periods, or 
(3) optimal combinations of sleep and work times.

After demonstrating that the UMP properly predicted alert-
ness impairment in four experimental studies that included 

Figure 5.  Optimal sleep schedule to minimize alertness impairment during work periods for Study 3. (A) Group-average values (12 subjects) of the experimentally 

measured mean reaction time (RT; black dots) for the psychomotor vigilance test, associated two standard errors of the mean, and Unified Model of Performance (UMP) 

predictions (dashed-dotted orange lines) for the original sleep schedule in the study (dark orange rectangles at the top of the panel). The top of the panel also shows 

the sleep windows (light blue rectangles) and the optimal sleep periods (dark blue rectangles). (B) UMP predictions for the original sleep schedule (dashed-dotted 

orange line) and the optimal sleep schedule (solid blue line). The orange-shaded and the blue-hatched areas under the mean RT curves indicate the alertness impair-

ment above the work alertness threshold (274 ms, lower horizontal dashed line) during work periods (horizontal green line) for the original and optimal schedules, 

respectively. The upper (460 ms) and middle (340 ms) horizontal dashed lines indicate the alertness impairment equivalent to those of a blood alcohol concentration 

(BAC) of 0.08% and 0.06%, respectively.
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evening and night shifts as well as extended work periods, 
we assessed the optimization algorithm by comparing UMP-
predicted alertness levels during wakefulness for sleep sched-
ules proposed by the algorithm against those used in the original 
studies. Compared to the original sleep schedules, the optimal 
schedules reduced alertness impairment during work periods 
by 19%–37%—reductions that have practical implications. For 
example, the limited sleep opportunities in Study 4 yielded 
alertness impairments during wakefulness above the equiva-
lent 0.06% BAC threshold for both sleep schedules (Figure 6, B). 
However, while the optimal schedule violated this threshold for 
14% of the time (10.4 h out of the 74.0 h of wakefulness), the ori-
ginal sleep schedule surpassed the threshold for 27.5 h or 37% of 
the time. Similarly, while the optimal sleep schedules in Studies 2 
and 3 never yielded alertness impairments above the equivalent 

0.08% BAC level during work periods (Figures 4, B and 5, B), the 
original sleep schedules resulted in violations that lasted for 1.3 
and 4.0 h, respectively. These results suggest that proper choices 
of suitable sleep schedules can have a considerable impact on 
alertness and, therefore, on worker’s safety and productivity.

Scheduling available sleep opportunities immediately before 
work periods would invariably reduce alertness impairment 
during work. However, this simple strategy may sometimes re-
sult in undesirable impairment levels during non-work periods. 
For example, scheduling the 3-h sleep periods in Study 1 from 
1100 to 1400, that is, immediately before each daily work period, 
would have resulted in impairment levels during non-work 
periods in days 2 to 5 that increasingly exceeded the equivalent 
impairment of a 0.08% BAC during the morning hours in each 
day (Figure 3, B, thin gray line). In fact, by day 5, the impairment 

Figure 6.  Optimal sleep schedule to minimize alertness impairment during work periods for Study 4. (A) Group-average values (12 subjects) of the experimentally 

measured lapses (black dots) for the psychomotor vigilance test (PVT lapses; black dots), associated two standard errors of the mean, and Unified Model of Performance 

(UMP) predictions (dashed-dotted orange lines) for the original sleep schedule in the study (dark orange rectangles at the top of the panel). The top of the panel also 

shows the sleep windows (light blue rectangles) and the optimal sleep periods (dark blue rectangles). (B) UMP predictions for the original sleep schedule (dashed-dotted 

orange line) and the optimal sleep schedule (solid blue line). The orange-shaded and the blue-hatched areas under the PVT lapses curves indicate the alertness im-

pairment above the work alertness threshold (4 lapses, lower horizontal dashed line) during work periods (horizontal green line) for the original and optimal sched-

ules, respectively. The upper horizontal dashed line at 7 lapses indicates the alertness impairment equivalent to that of a blood alcohol concentration (BAC) of 0.06%.

Table 2.  Predicted average alertness impairment, percent improvement, and amount of time that the predicted alertness impairment for the 
original and optimal sleep schedules were above blood alcohol concentration (BAC) equivalents of 0.06% and 0.08% during the work periods

Study

Average alertness 
impairment (ms)

Improvement (%)

Time above 0.06% BAC 
equivalent (h)

Time above 0.08% BAC 
equivalent (h)

Original Optimal Original Optimal Original Optimal

1 42.8 26.9 37 6.5 0.5 0.0 0.0
2 112.9 90.9 19 17.5 15.5 1.3 0.0
3 89.7 65.2 27 22.4 18.5 4.0 0.0
4* 1.6 1.1 31 27.5 10.4 0.0 0.0

*Average alertness impairment measured in lapses in the psychomotor vigilance test.
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would have exceeded this limit during more than 6.5 h. In con-
trast, by allocating about half of the total sleep time just before 
the work periods and the other half during the early morning 
hours when impairment was highest, the optimal schedule 
yielded impairment levels for non-work periods that remained 
below this level each day (Figure 3, B, solid blue line), while 
hardly increasing impairment during the work periods (i.e. 
<10 ms on average). This result illustrates that devising efficient 
sleep schedules is not necessarily a trivial task.

The simulation results also showed that small variations of 
very similar types of work schedules may require different op-
timal sleep times. For example, the night shifts in Studies 2 and 
3 differed only by the number of shifts (3 vs. 5) and their starting 
times (0000 vs. 2200), with the latter allowing for a small increase 
in the average daily sleep (0.5 h). In both studies, the optimiza-
tion algorithm scheduled one sleep period just before each night 
shift (Figures 4 and 5); however, in Study 3, it also scheduled a 
sleep period after the shifts on days 2 and 3, indicating that a 
“one-size-fits-all” rule may result in suboptimal alertness levels.

For workers who have flexible work hours, optimizing sleep 
and work schedules simultaneously could provide further bene-
fits. For example, the results in Figure 7, B showed that during 
the recovery period immediately after 7 days of CSR, delaying 
both sleep and work starting times by only 2 h with respect to 
the typical sleep (2300–0700) and work (0900–1700) schedules 
yielded a 26% reduction in alertness impairment during work 
hours (solid blue line vs. dashed-dotted orange line). The figure 
also suggests that a further delay in the work schedule would 
have resulted in even larger reductions in impairment. In this 
simple example, an experienced sleep scientist would have 
arrived at the same conclusion. However, the algorithm can 

provide optimal sleep and work schedules for scenarios where 
the proper solution may not be as apparent and for which quan-
titative predictions of the time course of alertness may be re-
quired to identify optimal schedules.

The proposed work has limitations. First, we developed the 
underlying models to predict the effect of sleep schedule on alert-
ness, sleep latency, and sleep duration using study data from 
young, healthy adults. It is unknown the extent to which such pre-
dictions can be applied to older populations or populations with 
sleep disorders. Second, the models provided group-average pre-
dictions and did not account for individual variability, such as the 
level of resilience or vulnerability to sleep deprivation. However, 
this limitation can be mostly overcome by customizing the UMP 
predictions for each individual [41, 42]. Third, the UMP predicted 
the time course of alertness as determined by the PVT, a reaction 
time test. Therefore, the resulting optimal schedules may not ne-
cessarily optimize other aspects of cognitive performance. Fourth, 
only Study 1 included female subjects (8 vs. 4 male subjects). 
Hence, the conclusions resulting from Studies 2–4 are limited to 
male subjects. However, because these results are based on the 
UMP and its extensions [28], which we developed and validated 
using more than 31 distinct studies, of which 20 included a total 
of 270 female subjects (vs. a total of 553 male subjects), we believe 
that the results presented here are likely to be valid for women, 
as well. This is supported by the fact that the results in Studies 2–4 
are consistent with those in Study 1 (Table 2). Finally, because the 
amount of sleep is finite, attempting to achieve peak alertness 
levels during work periods may increase alertness impairment 
during non-work periods (Figure 5, B). However, our algorithm al-
lows the user to modulate this tradeoff by adjusting the alertness 
threshold levels for work and non-work periods.

Figure 7.  Optimal sleep and work schedules to minimize alertness impairment during work hours for the recovery period in Study 1, following 7 days of chronic sleep 

restriction (3 h of sleep per night). (A) Group-average values (12 subjects) of the experimentally measured mean reaction time (RT; black dots) for the psychomotor 

vigilance test, associated two standard errors of the mean, and Unified Model of Performance (UMP) predictions (dashed-dotted orange lines) for the original sleep 

schedule of the 5 recovery days (dark orange rectangles at the top of the panel). The top of the panel also shows the sleep windows (light blue rectangles) and the op-

timal sleep periods (dark blue rectangles). (B) UMP predictions for the original sleep schedule (dashed-dotted orange line) and the optimal sleep schedule (solid blue 

line). The horizontal orange and green solid lines represent the original (0900–1700) and optimal (1100–1900) work schedules, respectively, and the orange-shaded and 

blue-hatched areas represent the alertness impairment during the corresponding work period. The upper horizontal dashed line at 340 ms indicates the alertness 

impairment equivalent to that of a blood alcohol concentration (BAC) of 0.06%. (C) Daily mean RT (averaged during the work period) as a function of recovery days.
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In summary, here we present the first computational algo-
rithm to optimize sleep and work schedules so as to maximize 
alertness during work and non-work hours. This unique cap-
ability complements other fatigue-management tools based on 
the UMP, such as the publicly available 2B-Alert Web [25], and 
can be combined with our caffeine-consumption optimization 
algorithm [39] to provide a more comprehensive set of coun-
termeasure strategies to mitigate alertness impairment due to 
limited sleep.
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