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Abstract

Background: Despite the close association between gene expression and metabolism, experimental evidence shows
that gene expression levels alone cannot predict metabolic phenotypes, indicating a knowledge gap in our
understanding of how these processes are connected. Here, we present a method that integrates transcriptome, fluxome,
and metabolome data using kinetic models to create a mechanistic link between gene expression and metabolism.

Results: We developed a modeling framework to construct kinetic models that connect the transcriptional and
metabolic responses of a cell to exogenous perturbations. The framework allowed us to avoid extensive experimental
characterization, literature mining, and optimization problems by estimating most model parameters directly from
fluxome and transcriptome data. We applied the framework to investigate how gene expression changes led to observed
phenotypic alterations of Saccharomyces cerevisiae treated with weak organic acids (i.e., acetate, benzoate, propionate, or
sorbate) and the histidine synthesis inhibitor 3-aminotriazole under steady-state conditions. We found that the
transcriptional response led to alterations in yeast metabolism that mimicked measured metabolic fluxes and
concentration changes. Further analyses generated mechanistic insights of how S. cerevisiae responds to these stresses. In
particular, these results suggest that S. cerevisiae uses different regulation strategies for responding to these insults:
regulation of two reactions accounted for most of the tolerance to the four weak organic acids, whereas the response to
3-aminotriazole was distributed among multiple reactions. Moreover, we observed that the magnitude of the gene
expression changes was not directly correlated with their effect on the ability of S. cerevisiae to grow under these
treatments. In addition, we identified another potential mechanism of action of 3-aminotriazole associated with the
depletion of tetrahydrofolate.

Conclusions: Our simulation results show that the modeling framework provided an accurate mechanistic link between
gene expression and cellular metabolism. The proposed method allowed us to integrate transcriptome, fluxome, and
metabolome data to determine and interpret important features of the physiological response of yeast to stresses.
Importantly, given its flexibility and robustness, our approach can be applied to investigate the transcriptional-metabolic
response in other cellular systems of medical and industrial relevance.
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Background
It is well known that cells regulate gene expression to
carry out different functions depending on their physio-
logical state and environment. However, it is less well
understood how this regulation is orchestrated and how
gene expression changes drive cells to adapt particular
phenotypes. Developments in high-throughput technologies
have contributed to answer these questions by generating a
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wealth of data on different cellular components and
processes (e.g., transcriptome, proteome, metabolome,
fluxome, and protein-protein interaction data). Hence,
one of the challenges in systems biology is how to inte-
grate and analyze such data to elucidate the underlying
cellular physiology. In particular, the development of
genome-scale computational models and analysis tools
can help expand our understanding of how gene tran-
scription alters cellular metabolism.
Different approaches have already made considerable

headway in integrating gene expression and metabolism
[1-6]. Perhaps the most developed efforts are based on
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combining stoichiometric models of metabolic networks
and gene expression data. In these approaches, gene
expression levels are used to parameterize the flux cap-
acity of metabolic reactions to create context-specific
models [7-9]. For example, we followed this approach
to characterize the metabolic adaptations of Mycobac-
terium tuberculosis to hypoxia and identify metabolic
alterations required for adaptation to a lifestyle of low
metabolic activity [10]. Alternatively, computational ap-
proaches have been developed to infer regulatory net-
works from gene expression data [11], which in turn
have been integrated with metabolic network models to
describe the adaptation of an organism to different
conditions [12-15].
Combining stoichiometric models of metabolic net-

works and gene expression data has proven useful in
analyzing transcriptome, proteome, and fluxome data
but presents limitations in analyzing metabolome data.
These limitations can be overcome using kinetic models,
in which metabolite concentrations are the primary vari-
ables as opposed to fluxes in constraint-based methods.
However, the use of large-scale kinetic models (i.e., with
hundreds of reactions) has been daunted by the general
belief that the chances of obtaining a useful model, given
the lack of accurate reaction rate expressions and kinetic
parameters, are low. This paradigm has begun to change
due, in part, to the high-throughput techniques that have
increased the abundance, quality, and scope of the data
needed for model construction.
In addition to data availability, there are two other

factors, arising from the biology of the systems, that
ease the construction of large-scale kinetic models [16].
The first one is the observation that the structure of a
biological network (i.e., what the network components
are and how they are connected) largely determines its
function, as observed in constraint-based analyses [17].
Thus, the available reconstructions of metabolic networks
provide us with more than a solid scaffold to construct
kinetic models: the performance of the network is con-
fined within well-characterized limits. The second factor
is the “sloppiness” of parameter sensitivities, which seems
to be a widespread property of models of biological sys-
tems [18]. This sloppiness property implies that most of
the model parameters cannot be collectively estimated
with certainty, even by fitting large amounts of “ideal”
data. Paradoxically, it also implies that knowledge of the
precise value of most parameters is not critical for de-
scribing a system’s behavior. Motivated by these factors,
methods to construct large-scale kinetic models of me-
tabolism have started to emerge [19-22].
In this work, our objective was to investigate how the

response of a cell to a perturbation (in terms of tran-
scriptome or proteome data) induces changes in its
phenotype (in terms of fluxome and metabolome data).
For this purpose, we developed a computational approach
based on kinetic models that provides a mechanistic link
between transcriptional regulation and metabolism. Our
proposed modeling framework overcomes the major ob-
stacles in the construction of large-scale kinetic models
of metabolism, namely, the detailed definition of appro-
priate reaction rate expressions and the determination
of model parameters. As in previous approaches [19-22],
we automatically translated a metabolic network model
into a kinetic model using generic expressions, a par-
ticular case of generalized mass action (GMA) kinetics,
for the reaction rates [23]. However, in contrast to these
approaches, our method does not require extensive param-
eter estimation, mining the literature, or using random-
sampling schemes to obtain parameter values. Most of the
model parameters are obtained directly from experimental
data that are routinely available (i.e., protein or gene expres-
sion data and flux distributions or uptake/production rates).
Although the models could be used to investigate dynamic
behavior, this would require additional input parameters in
terms of an extensive set of metabolite concentrations.
However, as these data are typically not available, and simi-
lar to other approaches such as ensemble modeling [20],
we have used the proposed models to describe and analyze
steady-state behavior.
Here, we constructed kinetic models to analyze the

steady-state metabolism of S. cerevisiae based on two in-
dependent studies in which the transcriptional and meta-
bolic responses to treatment were measured in chemostat
cultures with weak organic acids (WOAs) [24] and under
histidine starvation conditions [25]. The simulation results
demonstrated that integration of gene expression with
metabolic network models enabled us to capture aspects
of the response of S. cerevisiae that would not have been
possible by the independent analyses of the gene expres-
sion data or the metabolic network alone.

Methods
Model construction
Figure 1 shows the workflow of the proposed method
for constructing large-scale kinetic models of metabolism.
In this section, we present the basic details of the method;
their rationale and derivation are provided in Additional
file 1. The method requires three inputs: a metabolic
network reconstruction, metabolic flux distribution at a
reference condition, and gene expression profiles for the
reference condition and other condition of interest. In
Step 1, the metabolic network reconstruction was trans-
lated into a kinetic model using a particular case of
GMA kinetics that allowed us to lump several parame-
ters into a single parameter that can be estimated from
metabolic flux measurements (see Additional file 1).
These rate expressions also allowed us to parameterize the
model to simulate other conditions using gene expression
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Figure 1 Construction of large-scale kinetic models using commonly available information and data. The method starts with the
automatic translation of a metabolic network reconstruction into a generic kinetic model, which is parameterized using the metabolic profile for
a reference condition (ref). The kinetic model is parameterized to simulate other conditions using gene expression profiles and tuned using the
metabolic profiles for the conditions of interest (cnd). The tuned model can be used to perform different model-based analyses. C denotes a
diagonal matrix with elements equal to the absolute metabolite concentrations, c represents the vector of normalized metabolite concentrations
and ċ denotes its time derivative, S denotes the stoichiometric matrix of the metabolic network reconstruction, r represents the vector of
reaction rates, v denotes the flux distribution, g represents the vector of gene expression ratios, and p represents a vector of other condition-
specific model parameters.
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data. We used different expression forms for irreversible
and reversible reactions. For irreversible reactions (given
the general lack of knowledge of allosteric regulations), we
assumed that products inhibit the reaction rate to allow
reactions downstream of an irreversible reaction to have
an effect on the flux through a pathway. Thus, for a gen-
eral irreversible reaction:

∑iaiAi→∑jbjBj; ð1Þ

we used the expression form:

r ¼ vg
∏i Ai½ �mi

∏j Bj
� �mj

 !1=Y

; ð2Þ

where ai and bj denote the stoichiometric coefficients of
species Ai and Bj in the reaction, respectively, r represents
the reaction rate, the parameter v denotes the value of the
reaction rate or flux through the reaction at a reference
condition, g represents the overall gene expression ratio
(between a condition of interest and a reference condi-
tion) of the genes associated with the reaction, and the
square brackets denote normalized metabolite concentra-
tions. The constants mi (mj) are set to 2.0 if ai (bj) is 2.0,
or to 1.0 otherwise. This choice of the constants mi (mj) is
arbitrary, however, as shown in the Results Section, it has
a minor effect on the simulation results. For lumped reac-
tions (the combination of multiple sequential reactions
into a single overall reaction), γ denotes the number of
irreversible steps and γ=1 for individual reactions. A
lumped reaction is irreversible if at least one of its steps
is irreversible. Note that the actual reaction rates de-
pend linearly on the protein levels. However, in this
work, we have substituted protein levels with the more
readily available gene expression data. This approxima-
tion is supported by experimental evidence that shows a
moderate correlation between protein and mRNA ex-
pression ratios for S. cerevisiae [26,27]. As shown in the
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Results Section, the quality of our simulation results
suggests that this approximation is acceptable for the
experiments analyzed here.
Similarly, for a general reversible reaction, we used the

expression form:

r ¼ g vf∏i Ai½ �mi−vb∏j Bj
� �mj

� �
; ð3Þ

where vf and vb were determined as follows:

vf ¼ βv and vb ¼ β−1ð Þv; if v > 0; ð4Þ

vf ¼ β−1ð Þv and vb ¼ βv; if v < 0; ð5Þ
where β is a parameter that relates the rate of the for-
ward and backward reactions to the overall flux at the
reference condition. The value of β depends on the equi-
librium constant and on the reactants concentration at
the reference condition. If these data are not available,
as in the experiments analyzed here, β could be esti-
mated by a fitting procedure using other available data.
However, to avoid over fitting and assuming that the
model behavior has low sensitivity to individual βs we
started by approximating all βs with the same value (except
for reactions in parallel routes that must satisfy additional
thermodynamic constraints as detailed in Additional file 1)
and checked whether it was necessary to estimate indi-
vidual βs. As shown in the Results Section, there was no
need for estimating individual βs as a single-value ap-
proximation proved satisfactory.
All reactions are described using these rate expres-

sion forms, except for the modeling of the biomass
growth rate. A mechanistic representation that takes
into account most of the factors influencing the
growth rate is currently unfeasible. Therefore, we
followed a heuristic approach to define a kinetic ex-
pression for the growth rate that is compatible with the
observations from the analyzed experiments in this
work [25]. Instead of defining a single reaction
representing the formation of biomass, we included
drain fluxes for each of the biomass precursors as in the
model of Moxley et al. [25] and defined the biomass
growth rate as follows:

μ ¼ λXMW∑iϕiri; ð6Þ
where μ denotes the growth rate, λ denotes a correc-
tion factor, XMW denotes the biomass molecular
weight, ϕi denotes the moles of carbon per mole of bio-
mass precursor, and the summation included only the
drain fluxes to biomass. Note that this definition of the
biomass growth rate can predict a non-zero rate even if
some of the drain fluxes are zero. However, such extreme
cases were not observed in the simulations carried out
in this paper.
The drain fluxes to biomass included overall reactions
for one-carbon metabolism, synthesis of lipids, carbohy-
drates, and RNA, as well as individual reactions for each
amino acid. The reaction rate for the drain fluxes of each
amino acid was defined as follows:

r ¼ vg ∏i Ai½ �ð Þ α minj Aj
� �� �α

; ð7Þ

where the value of α was chosen such that the drain
fluxes have low sensitivity to changes in precursor concen-
trations, based on the measurements from Moxley et al.
[25]. The subscript i comprises the metabolites consumed
in the drain flux (i.e., one amino acid and ATP) and the
subscript j comprises all the amino acids. The second fac-
tor, representing the lowest concentration of any amino
acid, was included based on the assumption that a low
concentration of any amino acid would slow down protein
synthesis and therefore the drain fluxes of the other amino
acids. The reaction rate for the other drain fluxes was
defined as follows:

r ¼ vg ∏i Ai½ �ð Þ α; ð8Þ

where the subscript i comprises the metabolites con-
sumed in each drain flux.
The end product of Step 1 is a kinetic model describing

the mass balances of the metabolites in the metabolic net-
work and it is derived directly from the network reconstruc-
tion, which provides the stoichiometry of each reaction, and
the rate expressions obtained from Eqs. 2, 3, 6, 7, and 8. The
kinetic model can be represented as:

C⋅ _c ¼ S⋅r v; g; c; pð Þ; ð9Þ

where C is a diagonal matrix with elements equal to the
absolute metabolite concentrations used for normalization,
c represents the vector of normalized metabolite concentra-
tions and ċ denotes its time derivative, S denotes the stoi-
chiometric matrix of the metabolic network reconstruction,
r represents the vector of reaction rates, v denotes the flux
distribution, g represents the vector of gene expression
ratios, and p denotes a vector of the other model para-
meters (i.e., α, β, λ, and other condition-specific param-
eters). Under steady-state conditions, C is not required
and, thus, for steady-state analysis, the only parameters
to be estimated are v, g, and p.
In Step 2, we parameterized the model for the reference

condition. Using the reference condition for normalizing
the metabolite concentrations and gene expression levels,
both c and g become equal to 1.0, and r=vref, where vref is
the flux distribution at the reference condition. Therefore,
for steady-state analysis, the model for the reference con-
dition was parameterized with vref. A flux distribution de-
termined using 13C-labeling experiments provides a good
estimate of vref. If such flux distribution is not available, a
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reasonable estimate can be obtained using exchange fluxes,
as described in Additional file 1.
Another notable feature of the method is that the model

can be parameterized to simulate other conditions using
the gene expression ratio between the condition of inter-
est and the reference condition (Step 3). We assumed that
relative changes in gene expression led to similar relative
changes in protein abundance and we neglected post-
translational and other regulatory mechanisms of enzym-
atic activity. Note that, if available, proteome data can be
used instead of gene expression data. For reactions associ-
ated with multiple genes, we computed an overall gene
expression change as described in Additional file 1.
In Step 4, we tuned the constructed models by compa-

ring model predictions (i.e., metabolic fluxes and metabolite
concentration changes) with experimental measurements.
We resolved detected inconsistencies until the model gave
satisfactory performance. Finally, once its performance is
satisfactory, the model can be used to carry out different
model-based analyses, such as predicting non-measured
variables, determining the effect of a particular expression
level on a given metabolic function, or to identify important
reactions in the network (Step 5).
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Figure 2 Metabolic network of the central carbon metabolism
Experimental data
The experimental data for the analysis of the response of
S. cerevisiae to treatment with a WOA (acetic acid, ben-
zoic acid, propionic acid, or sorbic acid) were obtained
from Abbott et al. [24]. To compute the gene expression
ratios from the raw intensity values, the microarray data
were scaled such that the average intensity for each
microarray was 150.0. For each condition, the median
intensity (of three replicates) was used as the expression
level of every gene in each condition. Every treatment-
reference condition pair was smoothed using the Lowess
smoothing method [28] and the gene expression ratios
were computed from the smoothed data. The uptake rate
of glucose and production rates of ethanol, glycerol, lactic
acid, acetic acid, and CO2 were reported, as well as the
biomass yield and concentration, and the extracellular glu-
cose concentration for each treatment condition.
For the analysis of the metabolic response induced by

the Gcn4 regulator, the experimental data were taken from
Moxley et al. [25]. They report the gene expression data,
flux distribution estimated from 13C-labeling experiments,
and the concentration changes of 17 free amino acids for
chemostat culture of wild-type and gcn4-knockout mutant
strains of S. cerevisiae.
and amino acids synthesis pathways of S. cerevisiae. The
network includes glycolysis, the pentose phosphate pathway (PPP),
the citric acid cycle, and pathways for the synthesis of biomass
precursors (i.e., amino acids, carbohydrates, lipids, and RNA). The
figure shows a simplified diagram of the network. The actual
network has 75 metabolites and 125 reactions.
Implementation and availability
Model construction, data processing, and simulations were
carried out in MATLAB (2011b, The MathWorks Inc.,
Natick, MA). The kinetic model (MATLAB scripts and
in SBML format) and parameter sets for simulating both
experiments are provided in Additional file 2.
Results
Construction of large-scale kinetic models
We applied the method to construct condition-specific
kinetic models of the metabolic network of S. cerevisiae.
We constructed the metabolic network based on the net-
work presented by Moxley et al. [25]. Figure 2 depicts the
metabolic network, which includes the glycolysis pathway,
the pentose phosphate pathway, the citric acid cycle, and
pathways for the synthesis of biomass precursors (i.e.,
amino acids, carbohydrates, lipids, and RNA) and it has
75 metabolites and 125 reactions associated with 309
genes. We obtained the parameters v and g directly from
experimental data [24,25] and the parameters in p were
estimated as described in Additional file 1 and given in
Table 1. Metabolite concentration changes c were com-
puted by solving the model (Eq. 9) assuming steady state
conditions in all simulations. We used the constructed
models to analyze the transcriptional and metabolic re-
sponses of S. cerevisiae under histidine starvation condi-
tions and to treatment with WOAs. The details of the
metabolic network are given in Additional file 3.



Table 1 Fitting parameters for the kinetic model of S. cerevisiae metabolic network

Parameter Comment Valuea

3-ATb WOAc

α Kinetic order for biomass drain fluxes 1.00×10-1 1.00×10-1

βd Ratio of the forward (or backward if reference flux is negative) reaction rate 3.00×101 3.00×101

to the overall rate of the reversible reactions

γ Correction factor for biomass growth rate 9.80×10-1 1.00×100

kser→gly Inhibition factor of the synthesis of glycine from serine by 3-AT 2.27×10-2 -

khis Inhibition factor of the synthesis of histidine 3-AT 4.87×10-1 -

rWOA WOA uptake rate - 3.00×101

a All parameters are dimensionless.
b Parameter values for simulating the response of S. cerevisiae to 3-aminotriazole (3-AT).
c Parameter values for simulating the response of S. cerevisiae to weak organic acids (WOA).
d Reversibility of the reactions was based on the designations in the model by Moxley et al. [25] and the KEGG database (http://www.genome.jp/kegg/).
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Response of S. cerevisiae to histidine starvation
The activator protein Gcn4 of S. cerevisiae regulates the
expression of nearly all genes encoding enzymes involved
in amino acid synthesis under starvation conditions [29].
Moxley et al. [25] studied the regulatory and metabolic
changes induced by Gcn4 under histidine-deficient condi-
tions. Specifically, they cultivated wild-type and gcn4-
knockout mutant (Δgcn4) strains of S. cerevisiae in aerobic
chemostats treated with 3-aminotriazole (3-AT), an in-
hibitor of imidazoleglycerol-phosphate dehydratase, the
sixth step of the histidine synthesis pathway. The concen-
tration of 3-AT was adjusted such that the Δgcn4 and
wild-type cultures produced similar biomass levels and
uptake and production rates of extracellular metabolites.
They measured gene expression levels (See Additional
file 1 for details about gene expression data processing),
metabolic fluxes (using 13C-labeling experiments), and
the intracellular concentration of free amino acids for
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The model quantitatively links gene expression regulation
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to the similarity between the experimental flux distributions
of the reference (i.e., Δgcn4) and the wild-type conditions
(see Additional file 1). What we did not expect was the high
accuracy of the predicted concentration changes. The ρ
between the logarithmic ratios of the predicted and ex-
perimental concentration of free amino acids was 0.96,
whereas the slope of the best linear fit was 0.86. This is
noteworthy because the kinetic model (75 metabolites,
125 reactions) has only five fitting parameters (Table 1).
Moreover, these simulation results were relatively in-
sensitive to the particular choice of the constants mi

and mj we used (Additional file 1).
Note that although we used the experimental concentra-

tion changes to estimate the value of the fitting parame-
ters, the high ρ of 0.96 could not be achieved without
parameterizing the model with the gene expression data.
Nonetheless, the ρ without using the gene expression data
was relatively high (ρ = 0.80; see Additional file 1). Based
on these results, we can derive two general observations.
First, the structure of the metabolic network, which we
exploited to constrain the kinetic parameters v in our
modeling framework, considerably contributed to the ex-
planation of the experimental observations as we initially
assumed. Second, gene expression changes were required
to further improve the simulation results. Thus, both the
metabolic network and the gene expression changes were
required by the framework to establish the mechanistic
link between gene expression regulation and metabolism.

Model-based identification of mechanisms of action of 3-AT
The proposed modeling framework can be used to in-
vestigate how a chemical agent acts on metabolism. The
basic idea is that inconsistencies between model simula-
tions and the experimental data could point out modeling
errors or omissions that may be related to the mecha-
nisms of action of the chemical agent. We proved this idea
by showing that we were able to identify the known target
Table 2 Predicted targets of 3-aminotriazole in the S. cerevisi

Reaction indexa Reaction

46 SER ↔ GLY + METTHF (forward)

46 SER ↔ GLY + METTHF (backward

79 R5P + METTHF + 2 ATP → IAP

91 HIS + ATP → HISBIO

80 IAP + GLU → HIS + AKG + 2 NA

6 G3P ↔ PEP + NADH + ATP (forw

6 G3P ↔ PEP + NADH + ATP (back

41 NADH → ATP

53 HSER + METTHF + ACCOA + 2 A

95 MET + ATP → METBIO
a See Additional file 3 for details about the reactions and abbreviations.
b The sum of squared errors (SSE) was normalized with the SSE of a simulation with
of 3-AT. For this, we ranked the reactions according to
how much their perturbations were able to reduce
inconsistencies, i.e., the sum of squared errors (SSE)
for the amino acid concentration changes. Briefly, we
simulated the perturbation of each intracellular reaction
(one reaction at a time and considering forward and back-
ward rates individually) by multiplying its rate by a con-
stant between 0.1 and 10.0 that minimized the SSE.
Table 2 shows the top ten reactions whose perturbations
resulted in the largest reductions of inconsistencies (the
complete list is provided in Additional file 3). The known
target of 3-AT was ranked third and other reactions of
histidine synthesis and histidine flux toward biomass
were ranked fourth and fifth, respectively. The first and
second reactions were the forward and backward reac-
tions of the glycine synthesis from serine. To further
investigate these results, we independently predicted
other enzymes besides the primary target that could be
inhibited by 3-AT using in-house drug target identifica-
tion approach [30]. We identified six plausible add-
itional targets, five of which are associated with three
different steps (including the limiting step) of the guano-
sine triphosphate synthesis pathway, which is a precursor
for tetrahydrofolate synthesis. The other off-target candi-
date was dihydrofolatereductase, which catalyzes the last
step of tetrahydrofolate synthesis (see Additional file 1).
Tetrahydrofolate (which was not included in the model)
is a coenzyme required for the synthesis of glycine from
serine. This result reinforces the hypothesis that 3-AT may
also be inhibiting the synthesis of glycine from serine at the
high 3-AT concentration of the wild-type cultures. For sim-
plicity, we assumed that the level of tetrahydrofolate is
lower in the wild-type culture and modeled this hypothesis
with a single parameter (kser→gly, Table 1). These results
highlight the potential of our method to predict mechan-
ism of action of chemical agents by contrasting model
simulations with experimental data.
ae central carbon metabolic network
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Figure 4 Contribution of gene expression changes of individual
reactions to 3-aminotriazole (3-AT) treatment tolerance.
(A) Definition of the metric used to compare the effects of gene
expression changes of individual reactions. The normalized tolerance
change (NTC) for reaction i was defined as the average of the changes
(Δtol+i and Δtol-i) in the maximum 3-AT inhibition level (khis) tolerated
by S. cerevisiae in simulations where only the gene expression data
(GED) of reaction i (gi) are considered (No GED+gi) or excluded (GED-gi).
The average was normalized by the difference in the maximum khis
(Δtol) in simulations with (GED) and without (No GED) gene expression
changes for all reactions. In these simulations, kser→gly was varied
linearly with khis such that when khis=1.0 then kser→gly=1.0 and when
khis=4.87×10

-1 then kser→gly=2.27×10
-2. The values khis=1.0 and khis=0.0

represent no inhibition and complete inhibition, respectively. (B) Top
ten reactions with the larger NTC magnitude. EC denotes the Enzyme
Commission number. For lumped reactions (L), only the EC number for
the first step is shown. (C) Overall gene expression changes for the ten
reactions shown in B.
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Effect of gene expression regulation on the tolerance to
3-AT treatment
We used the model to determine the effect of gene ex-
pression changes of individual reactions on the ability of
S. cerevisiae to grow at the dilution rate of the chemostat
in the presence of 3-AT. Briefly, for each reaction, we
predicted the maximum inhibition level tolerated by the
Δgcn4 and the wild-type cultures by adding or removing
the gene expression changes of every reaction (one reac-
tion at a time) and computed a normalized tolerance
change (NTC) as illustrated in Figure 4A. Figure 4B shows
the top ten reactions whose regulation at the gene expres-
sion level has the largest effect on the NTC (the complete
list is provided in Additional file 3). The largest individual
effect caused a NTC of -0.11. This result indicates that
no individual reaction can be assigned a major role in
the contribution to tolerance of the wild-type strain but,
instead, the contribution to the tolerance was distrib-
uted among multiple reactions. Unexpectedly, neither
of the two lumped reactions of the histidine synthesis
pathway appeared in the top ten. The reason was that
the up regulation of either of the two reactions (overall
gene expression ratio of 2.1 and 2.5 for the first and
second reaction, respectively) was sufficient to compen-
sate for the inhibition of the target step (included in the
first lumped reaction). However, when the gene expression
changes of two reactions were removed simultaneously,
the two reactions of the histidine synthesis pathway
appeared in the pair with the largest NTC of 0.22. Fur-
thermore, when the gene expression changes of three
reactions were removed simultaneously, the two reac-
tions of the histidine synthesis pathway and the lumped
reaction for the synthesis of chorismate from erythrose-
4-phospate appeared in the triplet with the largest NTC
of 0.52. Among the 96 reactions with gene association,
expression changes for 42 reactions had a positive NTC,
whereas 24 reactions had a negative NTC, and the
remaining had no significant effect. The sum of all indi-
vidual effects was equivalent to 11% of the tolerance in-
crease induced by all gene expression changes, whereas
the sum of only the positive effects was equivalent to a
97% of the tolerance increase. This result shows that the
simulated overall response required coordinated gene
expression to achieve the tolerance induced by Gcn4.
Another interesting result was that the magnitude of the

individual effects was not correlated with the magnitude
of the gene expression changes (ρ = 0.06). Moreover, nine
of the top ten reactions in Figure 4 had associated gene
expression changes of less than two-fold. This suggests
that the magnitude of gene expression changes may be a
poor predictor of their importance, supporting the no-
tion that analyses biased towards large gene expression
changes may miss important insights. Note, however,
that in general, small gene expression changes have more
uncertainty and are more sensitive to normalization errors
than large expression changes.

Modeling the response of S. cerevisiae to treatment
with WOAs
The antimicrobial effects of WOAs, as well as the resistant
mechanisms of S. cerevisiae to these acids, are relatively
well understood [31]. Figure 5 shows the main processes
involved when S. cerevisiae is exposed to WOAs. Briefly,
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Figure 5 Antimicrobial effect of weak organic acids (WOAs) and
resistance mechanisms of S. cerevisiae. At low extracellular pH,
WOAs are mainly in their undissociated form, which can diffuse
through the cellular membrane. The WOAs dissociate in the cytosol
and the cell responds by upregulating transporter proteins, such as
Pma1 and Pdr12, to secrete protons and carboxylate anions (XCOO-),
respectively, to avoid toxicity.
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at low extracellular pH, WOAs are mainly in their undis-
sociated form, which can diffuse through the cell mem-
brane. At a higher intracellular pH, the WOAs dissociate.
S. cerevisiae responds by up regulating transporter pro-
teins, such as Pma1 and Pdr12, which secrete protons and
carboxylate anions, respectively, to avoid toxic accumula-
tions. Their efflux is ATP dependent, thus reducing the
available energy for biomass growth. Abbott et al. [24] in-
vestigated the transcriptional response of S. cerevisiae
under treatment with different WOAs (acetic acid, ben-
zoic acid, propionic acid, and sorbic acid) in anaerobic
Table 3 Predicted metabolic responses to weak organic acid

Fluxa Reference

Acetate Be

Exp.b Exp. Sim. Exp.

Glucose 6.09 12.23 12.31 12.26

CO2 10.45 22.54 22.58 21.80

Ethanol 9.60 21.23 21.39 20.61

Glycerol 0.79 0.54 1.56 0.96

Lactate 0.05 0.09 0.06 0.10

Acetate 0.02 −0.57 −0.58 0.08

C-recov. 99.41 95.14 98.71 95.68

Yield 0.09 0.05 0.04 0.05
aFluxes from Glucose to Acetate correspond to exchange fluxes in mmol·g-1·h-1; C-re
fluxes and biomass (we attributed the lost carbon to pyruvate secretion); Yield den
b Experimental (Exp.) data taken from Abbott et al. [24]. Simulated data are denoted
chemostat cultures. For comparison purposes, cultures
were treated with one WOA at a concentration that
reduced the biomass yield to 50% of the biomass yield
of untreated cultures. Metabolic and gene expression
profiles were obtained for these cultures and for an un-
treated culture, which was used as the reference condi-
tion (See Additional file 1 for details on gene expression
data processing). We applied our method to construct
condition-specific kinetic models to analyze the meta-
bolic response of S. cerevisiae in these experiments.

Constructed models captured S. cerevisiae response to
WOA treatment
For constructing condition-specific models, we parame-
terized the model using a reference flux distribution vref

computed using the uptake and production rates of
extracellular metabolites of the untreated culture (See
Additional file 1). Subsequently, we used the gene ex-
pression ratios between the each treated culture and the
reference condition g to parameterize the model for
each treatment condition. The parameters in p were
estimated as described in Additional File 1 and given in
Table 1. We validated the constructed models by compar-
ing the predicted metabolic responses with experimental
data. Table 3 shows the predicted exchange fluxes for each
WOA treatment. The agreement of the predicted fluxes
with the experimental data shows that the models were
able to capture the metabolic response for each WOA.
Given their satisfactory performance, we used the models

to investigate the effect of the transcriptional response on
the predicted metabolic response. Thus, we compared the
predicted metabolic responses to WOA treatment of
cultures with and without considering the transcriptional
response captured by the gene expression data (i.e., simu-
lations with gene expression data vs. simulations without
gene expression data). The results showed that gene
treatments

Treatment

nzoate Propionate Sorbate

Sim. Exp. Sim. Exp. Sim.

12.11 12.92 12.67 12.12 11.95

21.67 24.09 22.89 20.76 21.55

20.72 21.60 21.79 20.18 20.63

1.43 1.00 1.56 0.83 1.28

0.06 0.11 0.07 0.09 0.06

0.11 0.03 0.12 0.02 0.11

98.60 96.48 99.24 93.47 98.91

0.05 0.04 0.04 0.05 0.05

cov. denotes the percentage of carbon recovered in the measured exchange
otes the production of biomass per unit of consumed substrate (g·g-1).
by Sim.
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Figure 6 Predicted metabolic response of S. cerevisiae to
different weak organic acids. Both panels show the sum of
squared errors (SSE) of the predicted exchange fluxes and biomass
yield normalized using the SSE between the experimental values for
the reference and the corresponding treated culture. (A) Response
of the treated cultures predicted using the corresponding gene
expression data (GED) or assuming no gene expression changes
(No GED). The predictions of the treated cultures using gene
expression data correspond to the data in Table 3. (B) Predicted
response of cultures under the reference condition with the
expression level of the untreated culture (No GED) or with the gene
expression levels of the treated cultures (GED). For simulations in
(B), we set the extracellular glucose and biomass concentrations to
the experimental reference values.
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expression changes affected metabolite concentrations
and metabolic fluxes differently. Gene expression changes
had a marked effect on the predicted biomass and extra-
cellular glucose concentrations (Table 4). For all treatment
conditions, the predicted concentrations using gene ex-
pression data were considerably closer to the experimental
values than the predictions without using the data. Note
that without considering gene expression changes, all
simulations yielded identical results (except for acetic
acid, which can be metabolized by S. cerevisiae) because
all model parameters were fixed at the same values. The
effect on the metabolic fluxes was less noticeable.
Figure 6A shows the normalized SSE of the predicted
exchange fluxes and biomass yield with respect to the
experimental data. Interestingly, the accuracy of the pre-
dictions was similar with and without the gene expression
data. This result is in line with the assumption that, in
terms of fluxes, the structure of the metabolic network
largely determines its performance [17,25].
We further investigated the effect of the transcriptional

response by comparing the predicted metabolic response of
untreated cultures while considering the gene expression
levels of the untreated or the treated cultures (i.e., simula-
tions without gene expression data vs. simulations with
gene expression data). Under the reference condition, the
WOA uptake rate is the corresponding diffusive uptake flux
of the acetic acid produced by S. cerevisiae. Figure 6B shows
the normalized SSE of the predicted exchange fluxes and
biomass yield with respect to the experimental values for
the treatment conditions. In contrast to simulations with-
out gene expression data, which by construction simulated
the reference condition and had a normalized SSE of
1.0, predictions using gene expression were closer to
the experimental values of the treatment conditions.
This shows that the gene expression data captured, to a
certain degree, the metabolic response of S. cerevisiae to
Table 4 Effect of gene expression data (GED) on the
predicted concentrations under weak organic
acid treatments

Simulation Treatment

Acetate Benzoate Propionate Sorbate

Glucosea

Exp.b 2.1 (0.1) 1.7 (0.8) 3.4 (0.3) 0.7 (0.3)

GED 0.85 3.94 0.29 10.34

No GED 36.81 41.36 41.36 41.36

Biomassa

Exp.b 1.13 (0.02) 1.17 (0.03) 1.06 (0.03) 1.22 (0.02)

GED 1.12 1.11 1.09 1.08

No GED 0.87 0.82 0.82 0.82
a Units: extracellular glucose in mmol·L-1; biomass in g·L-1.
b Standard deviation in parenthesis; experimental (Exp.) data taken from
Abbott et al. [24].
the WOA treatments. Taken together, these results sug-
gest that while the network structure had a predominant
role on the metabolic flux distribution, gene expression
changes contributed to flux regulation and had a major
effect on metabolite concentration changes.
Effect of gene expression changes on WOA tolerance
We also used the constructed models to investigate the
role of the transcriptional response on the tolerance of
S. cerevisiae to WOA treatment (i.e., its ability to grow
at the dilution rate of the chemostat under WOA exposure).
In principle, S. cerevisiae should adjust its gene expression
levels to better cope with these stress conditions. To probe
if model predictions were in line with this premise, we
predicted the biomass level as a function of the WOA
uptake rate in treated cultures with and without gene
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expression changes. In addition, hypothesizing that the
transcriptional response was graded depending on the
stress intensity, we tested if, at higher WOA uptake rates,
amplified gene expression changes would result in higher
biomass growth than the measured gene expression
changes. Thus, we also predicted the biomass levels as-
suming gene expression changes extrapolated from the
experimental data (i.e., experimental gene expression ra-
tios on a logarithmic scale multiplied by 2.0). Figure 7
shows the simulation results for each WOA. The models
predicted that cultures with no gene expression changes
produced the highest biomass level at the reference condi-
tion (i.e., normalized WOA uptake rate equal to 1.0). In
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Figure 7 Biomass concentration as a function of the weak
organic acid (WOA) uptake rate. The curves were constructed by
using the model to simulate increasing WOA uptake rates using the
experimental gene expression data (GED), assuming no gene
expression changes (No GED), and by extrapolating the gene
expression changes (i.e., gene expression ratios on a logarithmic
scale were multiplied by 2.0). The uptake rate and biomass
concentration were normalized using the uptake rate of acetic acid
and biomass concentration under the reference condition,
respectively. Vertical dashed lines indicate the WOA uptake rate
under the treatment conditions.
contrast, simulations with the expression data had the
highest biomass level (except for sorbic acid treatment) at
the estimated uptake rate at which the expression data for
the treated cultures were obtained (vertical dashed lines in
Figure 7). Furthermore, the model predicted that cultures
with extrapolated gene expression could tolerate higher
WOA uptake rates, in agreement with the graded re-
sponse assumption. Alternatively, this result suggests that
we could predict the transcriptional response of S.
cerevisiae to different WOA uptake rates by interpolat-
ing or extrapolating measured gene expression data. In
agreement with the above premise, these simulation re-
sults suggest that the measured gene expression changes
allowed S. cerevisiae to tolerate higher WOA uptake
rates.
Identification of key gene expression changes for tolerance
to WOA
As in the simulations under histidine starvation, we used
the models to determine the effect of gene expression
changes associated with individual reactions on the ability
of S. cerevisiae to grow at the dilution rate under WOA
treatment. Here, we used the predicted WOA uptake rate
that decreases the biomass concentration to 5.0% of the
biomass of the untreated culture as a measure of tolerance
as illustrated in Figure 8A. Figure 8B shows the changes in
the tolerated WOA uptake rate resulting from gene ex-
pression changes associated with individual reactions. For
all treatment conditions, the two most influential gene
expression changes were those associated with uptake
and phosphorylation of glucose (Enzyme Commission
(EC) 2.7.1.1) and the decarboxylation of pyruvate to
acetaldehyde (EC 4.1.1.1). Moreover, most of the increase
in tolerance to the WOAs could be attributed to these
two reactions, in contrast to the results under histidine
starvation where the response was distributed among
multiple reactions. Notably, the overall gene expression
changes of these reactions were of relatively small magni-
tude in half of the cases (Table 5). To put this in perspec-
tive, when the reactions with gene associations (96 out
of 125 reactions in the model) were sorted by descend-
ing order of magnitude of their overall gene expression
changes, reaction EC 4.1.1.1 ranked below 10 in three
out of the four cases. Note that we did not include in
the analysis the gene expression changes associated with
the efflux processes of protons and carboxylic anions
[31]. Besides the two most influential reactions, only a
few others had a significant individual contribution to
the predicted tolerance. This result is in agreement with
the “sloppiness” property, in the sense that a network’s
function (growth under WOA treatment in this case) is
determined by a reduced number of parameters (in this
case, gene expression changes of a few reactions).
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Figure 8 Contribution of gene expression changes of individual
reactions to weak organic acid (WOA) treatment tolerance.
(A) Definition of the metric used to compare the effects of gene
expression changes of individual reactions. The normalized uptake
change (NUC) for reaction i is defined as the average of the changes in
the WOA uptake rate (Δwur+i and Δwur-i) that reduced biomass to 5.0%
of the reference value in simulations where only the gene expression
data (GED) of reaction i (gi) are considered (No GED+gi) or excluded
(GED-gi). The average was normalized by the difference in the WOA
uptake rate that reduced the biomass to 5.0% of the reference value in
simulations with (GED) and without (No GED) gene expression changes
for all reactions. (B) Normalized uptake changes for each WOA. We only
show the reactions with 10 higher contributions. EC denotes the Enzyme
Commission number. The y-axis shows only the EC number for the first
step of lumped reactions (L). Note that the two most influential
reactions, in bold font, were EC 2.7.1.1 and EC 4.1.1.1, for all cases.
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Sensitivity and robustness of model predictions
An advantage of our method is that it has a small number
of general fitting parameters: α, β, and γ. We investigated
the effect of these fitting parameters on model predictions
by simulating the model for different values of these param-
eters. For the WOA treatment experiments, we determined
the normalized SSE between the predicted and experimen-
tal values of the exchange fluxes and biomass yield as a
function of each parameter. The analysis showed that the
predicted fluxes were robust with respect to changes in
these parameters (see Additional File 1). The simulations of
the histidine starvation experiments were relatively robust
to variations in these parameters around the values
reported in Table 1, as shown in Additional File 1.
We also investigated if the method was sensitive to

the input gene expression data or if the results could be
obtained with arbitrary data. Briefly, we simulated the
models with data generated by randomly shuffling the
original expression data. The simulation results showed
that it is unlikely that similar results could be obtained
using random gene expression data (see Additional File 1).
Moreover, uncertainty propagation analysis showed that
the method is robust with respect to experimental noise
in the gene expression data and flux distributions
(Additional File 1).

Discussion
Long-standing barriers impeding the construction of
large-scale kinetic models of metabolism are being over-
come with the help of developments in high-throughput
technologies and computational analyses. Modelers are
now faced with the challenge of integrating the increas-
ingly available building blocks to create coherent mathem-
atical representations of biological systems. Here, we
presented our efforts to develop a modeling framework
for constructing large-scale kinetic models that mechanis-
tically link transcriptional regulation and metabolism. This
allowed us to gain understanding of complex physiological
relations from fluxome, metabolome, and gene expression
data. We demonstrated the ability of our method to cap-
ture these relations, its flexibility to simulate different ex-
periments, and its robustness with respect to modeling
approximations and data uncertainty by analyzing the re-
sponse of S. cerevisiae under different stress conditions.
Importantly, our approach can be applied to other orga-
nisms of medical and industrial relevance (or cell types in
multi-cellular organisms) for which a metabolic network
reconstruction, metabolic flux measurements, and gene
expression data are available for the conditions of interest.

The method provides efficient solutions to large-scale
modeling challenges
One of the major challenges in constructing large-scale
kinetic models is the definition of appropriate reaction



Table 5 Contribution to tolerance to weak organic acid (WOA) treatment and gene expression changes of the two
most important reactions

Reaction Treatment NUCa gb (rankingc)

EC 2.7.1.1 (Glucose → Glucose-6P) Acetate 0.91 7.4 (3)

Benzoate 0.56 2.4 (3)

Propionate 0.64 5.9 (2)

Sorbate 0.31 1.4 (35)

EC 4.1.1.1 (Pyruvate → Acetaldehyde) Acetate 0.16 1.4 (28)

Benzoate 0.22 1.4 (21)

Propionate 0.48 4.1 (6)

Sorbate 0.41 1.6 (15)
a NUC: normalized uptake change. See Figure 8A for the definition of NUC.
b Overall gene expression changes associated with the reaction computed from the gene expression data taken from Abbott et al. [24].
c Ranking among the 96 reactions associated with at least one gene, sorted by decreasing level of gene expression changes (absolute value of the log2
expression ratio).
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rate expressions. Instead of defining mechanistic reaction
rate expressions on a case-by-case basis, some approaches
streamline this process by relying on generic expressions
to translate a metabolic network into a kinetic model in
an automated or semi-automated fashion. Different gen-
eral forms have been proposed, such as log-linear kinetics
[32], Michaelis-Menten-type kinetics [33], “convenience”
kinetics [19], or GMA kinetics [23]. GMA kinetics are
used, for example, in ensemble modeling [20] and mass
action stoichiometric simulation (MASS) models [21]. In
ensemble modeling and MASS models, the enzymatic
reactions are decomposed into their elementary steps,
and each step is then modeled using mass action kinetics.
The decomposition increases the resolution of the model,
preserves enzyme saturation behavior, and simplifies the
parameter estimation problem, but at the price of consid-
erably increasing the size of the model (i.e., the number of
dynamic variables and model parameters) and the amount
of data required to estimate parameter values. In contrast,
we used a special case of GMA kinetics that requires a
minimal number of parameters, which can be obtained
directly from available experimental data (see Methods
and Additional File 1). Moreover, enzymatic reactions
were not decomposed into elementary steps to avoid in-
creasing the size of the model.
Another challenge is the determination of model par-

ameter values. The difficulty in solving this problem is
linked to the form of the kinetic expressions and to the
availability of experimental data. If experimental data are
not available, approaches such as log-linear kinetics and
“convenience” kinetics require mining the literature for
parameter values, which (aside from the skepticism
about the validity of combining parameter values from
different conditions to simulate a specific experiment)
could be impractical for large-scale models. Approaches
using GMA kinetics partially avoid literature mining.
In these approaches, such as MASS modeling [21],
thermodynamic information collected from the litera-
ture (e.g., equilibrium constants, Gibbs free energies,
etc.) is combined with experimentally determined me-
tabolite and/or enzyme concentrations and flux distribu-
tions to estimate the remaining model parameters (i.e., the
rate constants). For the common case of incomplete data,
the missing information is approximated to “typical”
values or is randomly generated to create an ensemble of
models that are screened for models that agree with ex-
perimental observations [20]. Based on the “sloppiness”
property, we would expect that models parameterized
using “typical” values will perform reasonable well. How-
ever, the typical values generally fall within relatively
wide ranges, making the selection of parameter values
to simulate a particular condition a non-trivial task. In
contrast, the rate expressions we used enabled us to read-
ily obtain the bulk of the model parameters (221 out of
227) directly from available experimental data (i.e., flux
distributions and gene expression; see Methods and Add-
itional File 1). Moreover, we circumvented mining the lit-
erature or using randomly generated values for
thermodynamic parameters by assuming a single par-
ameter (β) for relating the forward and backward reac-
tion rates to the overall rate for all reversible reactions.
This crude approximation, inspired in part by the “slop-
piness” property of biological systems, worked surprisingly
well for the examples studied here. Our method
performed well even if the uptake and production rates of
extracellular metabolites were the only metabolic data
available, as demonstrated in the analysis of S. cerevisiae
tolerance to WOAs (see Additional File 1 for simulations
using only uptake and production rates of extracellular
metabolites under histidine starvation).
An additional attribute of our method is the use of

gene expression data to parameterize the model to simu-
late different conditions, an element that has been used
in constraint-based approaches to create context-specific
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models [7-10], but which has not been fully exploited in
other kinetic modeling approaches. An exception is the
work by Bruck et al. [34], in which gene expression was
integrated with a kinetic model of S. cerevisiae glycolysis
based on a mechanistic model developed by Teusink et al.
[35]. However, Bruck et al. [34] estimated a subset of 31
parameters to fit the model to data from all conditions
they simulated and did not present simulations without
the gene expression data, preventing an assessment of the
contribution of gene expression changes. In contrast, our
models were able to simulate metabolic responses with
a smaller subset of fitting parameters and our analysis
showed the important role of gene expression on model
predictions. Note that requiring gene expression data in
order to simulate other conditions could also be consi-
dered a weakness, but no other model includes the predic-
tion of protein/gene expression changes for the systems of
the size of the network we analyzed.
Constructed models generated biological insights
We demonstrated that the constructed models were
able to integrate transcriptional and metabolic responses
to produce insights that would have been difficult to
grasp from the analysis of the individual responses. For
example, in their analysis of S. cerevisiae response to
WOAs, Abbott et al. [24] identified differentially expressed
genes as those with an expression change larger than two-
fold and a false discovery rate lower than 0.5%. With these
criteria, they found hundreds of differentially expressed
genes under each treatment condition, but only 14 genes
that were upregulated under all treatment conditions.
Therefore, they concluded that the generic (i.e., common
to all treatments) transcriptional response to WOAs was
minimal and suggested that more relevance should be given
to the specific responses to the specific treatment condi-
tions. We agree that attention should be paid to the specific
responses, but our analysis also suggests that the gen-
eric response, despite involving a few genes, is a major
factor contributing to WOA tolerance. Based on our
simulation results, we hypothesize that S. cerevisiae tightly
regulates the expression levels of two reactions (glucose
uptake-phosphorylation and decarboxylation of pyruvate
to acetaldehyde) to increase the tolerance under all treat-
ment conditions. Firstly, this generic response was not
identified in the Abbott et al. [24] analysis because the
gene expression changes for these reactions did not
meet their criteria for differentially expressed genes (see
Additional File 1). Secondly, we estimated that regulat-
ing these two reactions accounted for most of the in-
crease in tolerance to WOAs (Figure 8 and Table 5). If
correct, this hypothesis implies that S. cerevisiae has a
generic response to WOAs that is critical for the adap-
tation to these stressors.
Identification of important reactions in a metabolic net-
work has been one of the major goals of several model-
based approaches. For example, Kummel et al. [36] devel-
oped a thermodynamics-based method to identify regulated
reactions, assuming that reactions far from equilibrium are
more likely to be regulated. In contrast with our method,
their approach does not use any kinetic information but re-
quires thermodynamic and metabolome data. In another
example, Smallbone et al. [22] combined log-linear kinetics
with metabolic control analysis [37,38] to identify reactions
exerting the most control over biomass production in a
genome-scale metabolic network of S. cerevisiae. Similar to
these efforts, our method was able to identify important
regulated reactions under specific conditions. However, our
method also provided mechanistic insights into how the
cell regulates such reactions through transcriptional regula-
tion and how this response is reflected in its phenotype.
In another effort to link the regulatory and metabolic re-

sponses, Moxley et al. [25] proposed a hybrid approach to
predict changes in metabolic fluxes using gene expression
changes. Their approach was based on the assumption that
gene expression changes and fluxes are more correlated in
pathways with fewer metabolite-enzyme interactions (me-
tabolite-enzyme interactions exist between an enzyme and
metabolites that regulate its activity). Thus, their approach
combined a metabolic network model with a metabolite-
enzyme interaction network. Using this approach, they pre-
dicted flux changes that had a relatively high correlation
(ρ = 0.80) with the experimentally estimated flux changes for
a subset of reactions. For the same subset, our model predic-
tions showed a considerably higher correlation (ρ = 0.96).
Moreover, our method required less information because
knowledge of the metabolite-enzyme interaction network is
not needed. Interestingly, their predictions, using only the
metabolic network model (without considering metabolite-
enzyme interactions), had a similar ρ of approximately 0.75,
reflecting the major contribution of the network structure to
its function. In terms of biological insights, they observed a
redistribution of the glycine synthesis fluxes. They proposed
that the increase in glycine production from threonine is me-
diated by the increased expression of the associated genes,
but they do not fully explain why the flux from serine to gly-
cine decreased. Our analysis led to the plausible explanation
that the decrease in the flux from serine to glycine could
have been caused by the decrease of tetrahydrofolate, which,
in turn, could have been caused by off-target inhibitions of
3-AT. In addition, and in contrast with their approach, our
method also predicted concentration changes. In fact, we are
unaware of other modeling efforts with similar scope that
produce similar levels of accuracy, using condition-specific
data directly as model parameters and using only five fitting
parameters.
An additional conjecture about the use of gene expres-

sion changes to parameterize protein activity changes
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can be derived from our simulation results. We omitted
post-translational and other regulatory mechanisms and
yet the model predictions were consistent with experimen-
tal data. This suggests that, for the metabolic network and
the experiments considered here, transcriptional regulation
was the main mechanism that regulated the response at the
system level. Moreover, the accuracy of the model predic-
tions suggests that gene expression changes were a good
approximation for protein level changes, in agreement with
experimental observations [27,39].

Further developments
The proposed method does not need knowledge of the abso-
lute values of metabolite concentrations for steady-state sim-
ulations, but these are required for analysis of transient
behavior. Developments in analytical techniques have in-
creased the accuracy and scope of metabolite concentration
measurements. However, such data are still generally incom-
plete and, thus, missing data must be estimated or assumed.
Note that the requirement of metabolite concentrations to
describe dynamic behavior is common to similar modeling
approaches. Thus, it remains to be investigated how the pro-
posed modeling framework performs in describing dynamic
and transient properties associated with metabolic processes.
The models constructed with the proposed method

present some limitations. For example, the generic rate
expressions may be poor approximations for some reac-
tions or may miss important allosteric regulations (e.g.,
feedback loops) and other factors that have an effect on
protein activity and abundance (e.g., post-translational
modifications). Lumping sequential reactions reduced the
size of the model. However, in our approach, the rate ex-
pressions for lumped reactions are only an approximation
to the sequence of individual reactions. In the experiments
we analyzed, the final results were not sensitive to our
somewhat arbitrary parameter choice mi and β. This may
not be always the case and estimating more accurate pa-
rameters values may be necessary. As for any method,
identifying and correcting modeling errors is a painstaking
task. This could be especially true for automated model
generation. Procedures to address this problem in a sys-
tematic way need to be developed. Furthermore, our
method needs to be tested to determine whether it can be
applied to genome-scale metabolic networks. Such appli-
cation could be problematic because of the higher uncer-
tainty of lowly expressed genes and small metabolic
fluxes, the buildup of approximation errors, and nume-
rical challenges to solve the model. Regarding its scope,
the proposed method is limited to gene expression and
metabolism. Although it enables a deeper, mechanistic
analysis of these processes, further developments to in-
clude other cellular processes (e.g., signal transduction,
cell division, etc.) would greatly enhance the modeling
framework.
Conclusions
In summary, we investigated how gene expression changes
induce metabolic responses when cells adapt to a stressful
condition. For this purpose, we developed a modeling
framework for constructing and simulating large-scale
kinetic models that provided a mechanistic link between
transcriptional regulation and cellular metabolism. Ana-
lysis of the response of S. cerevisiae to treatment with
WOA and under histidine starvation generated several
insights and testable hypotheses: 1) 3-AT also inhibits
the synthesis of tetrahydrofolate; 2) S. cerevisiae has an
important generic response to WOA, involving glucose
uptake and decarboxylation of pyruvate to acetaldehyde;
3) the contribution to tolerance to 3-AT is distributed
among several reactions while the contribution to tolerance
to WOA is mainly concentrated in two reactions; 4) the
magnitude of gene expression changes was not correlated
with the magnitude of their effect on the overall response.
Taken together, these results suggest that the proposed
framework is able to dissect different “omics” data to deter-
mine important features of the transcriptional-metabolic
response of S. cerevisiae.
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