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Abstract

Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard
to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical
outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests.
Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to
dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups
of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules
associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology.
Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns
of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical
pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules
have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene
signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression
modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the
rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression
modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to
identify putative biomarkers of adverse health effects.
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Introduction

Exposure to toxic chemicals is a major environmental health

hazard for military personnel, potentially causing both acute and

long-term adverse health effects [1]. Accurately diagnosing

exposure injuries through non-invasive tests would allow for early

intervention, treatment, damage assessment, and prediction of

potential for recovery [2,3]. There are multiple theoretical and

practical challenges in deriving serum or urine biomarkers that

could address these issues [2,3]. Here, we are primarily addressing

issues related to identifying sets of genes that are characteristic of

and specific to chemical exposure conditions and liver-injury

outcomes.

A toxic insult triggers numerous interconnected biochemical

signaling and response pathways at the cellular, organ, and

systemic levels. Xenobiotic metabolism, damage control and

repair, and inflammation are all central ways for the biological

system to cope with chemical stress. Part of this response is

encoded and executed through transcriptional control, and a

multitude of studies has used gene expression microarrays to

characterize this toxicogenomic response [4–9]. The concept of a

finite set of molecular toxicity pathways that govern these stress-

responses has been used as an argument for using cell-based

systems to understand and identify chemical toxicity. However,

cell-based assays and studies often fail to mimic all of the effects of

toxicants at the organ or whole-body level. Here, we have

examined a large toxicogenomics data collection, DrugMatrix

[10], hosted by the National Institute of Environmental Health

Sciences (NIEHS) in an effort to conceptually connect molecular

toxicity pathways to co-expressed gene modules and link these

pathways to specific injuries. The DrugMatrix database contains

normalized, organ-specific data on chemically induced gene

expression changes and associated changes in clinical pathology,
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organ weight, and histopathology endpoints in male Sprague

Dawley rats [10].

Co-expressed gene modules have been used to identify (classify)

genes specific to tumors of certain cancers [11], as well as for

repurposing drugs as cancer therapeutics [12]. Modules are

typically constructed to represent injury or injured states based on

activation or repression of the genes in the module. The key

feature of a module is that the constituent genes share an

expression pattern across a set of stress conditions. Conceptually,

the simplest module could simply be the top differentially

expressed genes under conditions causing injury. Computational

methods that have been developed to create these modules,

including hierarchical clustering [13], bi-clustering [14,15],

overlay of transcriptomics data to biological networks to create

network modules [16], and use of gene signatures from

classification models [17], such as support vector machines

(SVMs) [18].

The conceptualization of molecular toxicity pathways allows us

to define the desirable properties of gene modules in the context of

biomarker discovery. Foremost, genes within a module should

exhibit a high level of intra-module gene correlation, which

implies (but does not guarantee) an underlying common regulatory

biological process that governs their expression pattern. The

correlated gene set in a module may not span all conditions in the

study (not all toxicants induce the same response) and genes in one

module may appear in other modules (genes may be part of

multiple response pathways). An additional desirable module

property is that gene regulation within the module is specific to the

injury, e.g., regardless of which chemicals cause fibrosis in the

liver, the gene module is activated in a similar manner, and, hence,

is specific to fibrosis.

Given the role of the liver in detoxification and as a primary site

of chemical injuries, we performed a bioinformatics analysis of all

liver arrays run on the Affymetrix platform and their coupled

clinical chemistry endpoints in DrugMatrix. We evaluated several

methods for gene module construction in terms of injury specificity

and intra-module gene correlation. Of the methods tested, we

found that the iterative signature algorithm (ISA) [14,15]

maximized these parameters and we used it to compute 78 gene

co-expression modules associated with the liver data in DrugMa-

trix. Each of these modules was then associated with a specific set

of activation patterns for 25 diverse injury endpoints (indicators)

categorized from clinical pathology, organ weight changes, and

liver histopathology [19].

We found that the activation patterns of the modules were

characteristic for each injury indicator. Furthermore, when we

mapped module genes to biochemical pathways, we found that

different injuries could be characterized not only by a difference in

co-regulation module activation patterns, but also by their

different utilization of these biochemical pathways. These

biochemical pathway associations with injuries are well docu-

Table 1. DrugMatrix [21,22] clinical injury indicators.

Injury indicators

General clinical pathology (CP)

1. Corpuscular hemoglobin decrease

2. Corpuscular hemoglobin concentration decrease

3. Corpuscular hemoglobin concentration decrease, days 5/7

4. Basophil increase

5. Lipase increase

6. Lymphocyte decrease

7. Glucose increase

8. Leukocyte increase

9. Albumin increase

10. Creatinine increase

11. Glucose decrease

12. Monocyte increase

13. Total protein increase

14. Hemoglobin decrease

15. Leukocyte count decrease

16. Alkaline phosphatase decrease

Body organ weight (OW)

1. Liver weight decrease

2. Liver weight increase

3. Spleen weight decrease

Liver histopathology (LH)

1. Periportal lipid accumulation

2. Eosinophilia

3. Centrilobular inflammatory cell infiltrate

4. Periportal fibrosis

5. Centrilobular lipid accumulation

6. Periportal hypertrophy

doi:10.1371/journal.pone.0107230.t001

Table 2. DrugMatrix [21,22] structure-activity classified drugs and toxicants.

Stressors Exemplar chemicals

1. Estrogen receptor agonists Estriol, beta-estradiol, ethinylestradiol, mestranol

2. GR-MR agonists Betamethasone, cortisone, dexamethasone, fluocinolone acetonide, hydrocortisone

3. PDE4 inhibitors Piclamilast, roflumilast, rolipram

4. HMG-CoA reductase inhibitors Cerivastatin, fluvastatin

5. DNA alkylators Aflatoxin B1, 2-acetylaminofluorene, hydrazine, 4,4’-methylenedianiline, n-nitrosodiethylamine

6. PPAR alpha agonists or fibric acid Bezafibrate, cofibric acid, gemfibrozil, nafenopin, pirinixic acid

7. Toxicant heavy metals, all doses Lead(IV) acetate, sodium arsenite

8. Toxicant heavy metals, low dose Lead(IV) acetate, sodium arsenite

9. H+/K+-ATPase inhibitors Pentoprazole, rabeprazole

doi:10.1371/journal.pone.0107230.t002
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mented in the literature, and many of the specific module gene sets

have curated relationships with liver disease in the Comparative

Toxicogenomics Database [20]. Hence, the modules we con-

structed retained part of the broadly underlying disease biology

and a response context consistent with the notion of molecular

pathways of toxicity in the liver. Based on this rationale, we

examined the potential for deriving biomarker hypotheses based

on the constructed modules to create signature gene sets for liver

fibrosis, steatosis, and general liver injury. The bulk of the selected

genes (58 out of 69) had no known associations with liver disease;

therefore, they provide important avenues of future validation and

biomarker discovery.

In conclusion, gene co-expression modules can be used to

characterize chemically induced liver injuries and provide a

rational basis for selecting putative biomarkers, a necessary step in

the development of diagnostic tests for monitoring adverse health

effects due to environmental toxicant exposures.

Materials and Methods

Data
We used data from DrugMatrix [21], a public available

database that contains matched data associating chemical

exposures with 1) transcriptomic changes in multiple tissues/

organs of male Sprague Dawley rats and 2) clinical pathology,

histopathology, and organ weight assessments. The specimens

used to generate the database were collected at multiple time

points after administration of drugs and toxicants at different

concentrations and from multiple organs such as liver, kidney,

heart, bone marrow, spleen, thigh muscle, blood, and brain.

Microarray gene expression experiments were then executed in

triplicates for selected tissue samples and clinical endpoints were

measured, although not for all possible drug-exposure conditions

in all organs. Based on the Natsoulis et al. [22] analysis, we focused

on a data-rich set of 2,218 Affymetrix microarrays from

DrugMatrix run on liver tissue. The data span 25 general and

liver-specific toxicity endpoints and nine structure-activity sets

derived from well-defined chemical drug and toxicant classes. This

data set contained 200 different and diverse chemicals. Table 1
shows these clinical endpoints designated as general clinical

pathology, body organ weight, and liver histopathology. Note

that the category Eosinophilia is listed under histopathology as it

was categorized from the histopathology inspection, i.e., hepato-

cellular eosinophilia. Table 2 lists the drug-activity classes and the

drugs/toxicants used to define these sets.

Each microarray corresponds to gene transcription changes in

the liver as caused by a specific exposure scenario or ‘‘condition’’

versus control samples. Here, we defined ‘‘condition’’ as a specific

organ-chemical-concentration-time combination. Following the

nomenclature of Natsoulis et al. [22], injury indicators take on a

value of +1 if a positive injury (abnormal) indication is recorded for

that specific condition.

Data processing
We downloaded the 2,218 liver microarray datasets run on

Affymetrix GeneChip Rat Genome 230 2.0 Array from DrugMa-

trix [23]. We used the ArrayQualityMetrics [24] BioConductor

package to assess the quality of the Robust Multi-Array Averaged

(RMA) [25] pre-processed data. In this process, we found and

removed 155 outlier arrays and renormalized the remaining data.

After array-level filtering and normalization, we performed gene

level filtering using the BioConductor package genefilter [26].

Specifically, we removed genes without Entrez IDs or with low

variance across conditions. We implemented the low variance

criteria from Bourgon et al. [27] by computing and sorting the

expression variance of each gene over the complete condition set

and removing the bottom half as low-variance genes. Additional

filtering was performed using the default settings for the affy
package from BioConductor to remove probe sets below a signal-

to-noise threshold. The number of replicates for each condition

that had a ‘‘Present’’ call was determined for each probe set. Only

probe sets for which at least 25% of the conditions had ‘‘Present’’

calls for all replicates within a condition were retained for further

analysis. In the rest of the paper, we have used the terms gene id
and probeset interchangeably. When we discuss the gene

expression or log ratio values, we refer only to probesets.

With the remaining genes and conditions, we calculated log

ratios (LRs) for each gene as the difference between treatment and

control RMA expression levels. We computed log2 expression

values for treatment and control as averages over replicates. We

assembled a log ratio matrix LR with rows defined by genes,

columns defined by conditions, and the matrix elements, LRi,j,

defined as log ratios for genes i under conditions j. As a last step,

we transformed the log ratios into Z-scores. The Z-score of gene i
under condition j is given by

Zi,j~
LRi,j{SLRT
� �

s
, ð1Þ

where the average ,…. runs over all genes i and conditions j in

the data set, and s denotes the standard deviation of the LR

average. The resultant log-ratio Z-score matrix contained 7,826

genes by 640 conditions and the entire data set is provided in the

Supporting Information as Table S1.

Gene set selection procedures
We used six different methods to construct gene sets based on

hierarchical clustering, protein-protein interaction (PPI) data,

existing gene sets derived from the examined data, randomized

data, highest fold-change selection, and the ISA. The latter

algorithm partially uses the other gene sets as input for a more

comprehensive gene set refinement.

Hierarchical clustering. We used the R package Hclust
[13] to cluster the gene dimension of the log-ratio matrix. Each

gene in this matrix was represented by a vector of 640 log2 ratio

values, each value representing the response of the gene to the

imposed condition (chemical, concentration, time, tissue). Using

these vectors, we computed all gene-pair Pearson correlation

coefficients. We used 1 minus the Pearson correlation (1 – r) as a

distance metric between the genes, and we used average linkage to

compute the distance between gene clusters. We utilized the

cutreeDynamic function within the dynamicTreeCut [28] R

package to automate extraction of clusters. The dynamic tree

cut algorithm uses the cluster dendrogram to identify and split

clusters into sub-clusters until the minimum cluster size threshold

is reached. When implementing cuttreeDynamic we used the

minimum cluster size set to 16, method set to hybrid, deepsplit set to

True, and the maximum cluster size set to 100.

Protein-protein interaction (PPI) network gene sets. We

mapped the Affymetrix Rat Genome 230 2.0 Array probe IDs to

their human orthologs using the National Center for Biotechnol-

ogy Information HomoloGene database (http://www.ncbi.nlm.

nih.gov/homologene). A high-confidence human PPI network

[29] was used to construct protein interaction gene sets. We

defined a gene set as an individual protein and all of its directly

interacting partners within the PPI network. We constructed

11,789 PPI-based gene sets in this way. We chose DrugMatrix

microarrays associated with positive instances of the injury
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PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e107230

http://www.ncbi.nlm.nih.gov/homologene
http://www.ncbi.nlm.nih.gov/homologene


indicators, and we mapped these to the PPI gene sets. To score the

11,789 gene sets we determined the number of up- and down-

regulated genes (N
up
i,p and Ndown

i,p ) in each set i for a given injury

indicator p. We converted these to Z-scores using the following

equations:

Z
up
i,p~

N
up
i,p-SNupT

� �

sup
, ð2Þ

Zdown
i,p ~

Ndown
i,p -SNdownT

� �

sdown
, ð3Þ

where the average ,…. and standard deviation s were

computed over 106 permutations of the positive conditions

associated with injury indicator p. To establish a reliable

significance threshold for these scores, we ran the randomization

experiment 100 times. Each time we determined the most

significant positive Z-score and the most significant negative Z-

score (using the randomized Z-score values) to form two groups

with 100 Z-scores each. We sorted the up-regulated group in

decreasing order and the down-regulated group in increasing

order. Identification of the fifth entry in each list, i.e., the fifth

percentile out of the 100 scores, allowed us to define a gene set Z-

score threshold that produced an estimated maximum false

positive rate of 5%.

Support vector machine (SVM) gene sets. We used the 34

signatures developed by Natsoulis et al., [22] for predicting 25

injury endpoints, as well as the activity of nine selected chemical

structure activity classes. These genes sets were developed for

endpoint classifications using the DrugMatrix data, but, as shown

by the authors, they also contain biological information relevant to

the effects of the chemical.

Random (RAND) and maximum average Z (MAZ) gene

sets. To generate random gene sets we used the generate.seeds
routine, which is part of the eisa [15,30] BioConductor package, to

construct randomly selected sets of 100 genes.

To generate maximum average Z clusters (MAZ), we selected

the positive class conditions associated with each injury indicator

and sorted the genes in decreasing order by their average

magnitude Z-scores across the condition set. We chose the top

genes in the sorted list to generate the MAZ gene clusters.

Gene set refinement using the iterative signature

algorithm (ISA) [14]. We used the R package eisa to generate

ISA co-expression modules associated with the entire Z-score

matrix of 7,826 genes by 640 conditions. We first ran ISAIterate,

which requires a starter gene set Gstarter that is typically built using

previous biological knowledge associated with the genes, e.g., using

gene sets g from hierarchical clustering or KEGG pathway genes.

An individual starter gene set was built using Nstarter genes and was

defined as

Gstarter~ g1,g2, . . . ,gNstarter

� �
: ð4Þ

Each condition c was given a score sc using the average Z-score

value of the starter genes for that condition:

sc(c)~
1

Nstarter

XNstarter

i[gNstarter

Zi,c: ð5Þ

The conditions are relevant if their scores sc(c) were greater

than tc standard deviations away from the mean score across all

conditions. We denoted the set of Nr relevant conditions as

Crelevant, which is formally written as

Crelevant~ c1,c2, . . . ,cNrf g: ð6Þ

In the current work, we defined a relevant condition as one for

which tc was equal to or greater than 1.8.

Each gene i was then scored as the weighted average of its Z-

score values across the relevant conditions:

sg(i)~
1

Nr

XNr

c[Crelevant

sc(c)|Zi,c: ð7Þ

The genes were relevant if their scores sg(i) were more than tg
standard deviations away from the mean score for that condition

set. We identified the set of Ng relevant genes as Grelevant by setting

tg to 3.5. The process was then iterated by substituting the starter

gene set Gstarter with Grelevant and recalculating all scores. The

iterations were continued until the set of relevant genes Grelevant

and relevant conditions Crelevant did not change by more than 1%

in a given iteration.

A single starter gene set will converge to a particular co-

expression module defined as a set of genes Grelevant and associated

set of conditions Crelevant for which the gene expression values were

correlated. Many starter gene sets and iterations were required to

generate gene sets that can characterize all genes and conditions

that the DrugMatrix data encompass. In order to avoid the

creation of redundant modules, we pruned our results using the

routine ISAUnique, with the parameter cor.limit set to its default

value. To ensure that the gene sets were robust, i.e., the core

module composition did not change when adding random genes,

we used the routine ISAFilterRobust with default parameters.

As mentioned above, we used values of tg and tc set to 3.5 and

1.8, respectively. We determined these values after many trials of

the ISA using fixed starter gene sets derived from HC, PPI

networks, and SVMs in order to ensure that the modules were no

larger than the size of an average KEGG pathway. At the same

time, we maximized the module parameters for indicator

specificity and intra-module gene correlation as is discussed below.

Script S1 in the Supporting Information provides the R script

and the input files used for the generation of ISA modules.

Module evaluation parameters
Specificity. The activation Az

m,p of module m associated with

positive instances of injury indicator p is the average Z-score for all

genes in the module m across all conditions with a positive instance

of the injury and is given by

Gene Co-Expression Modules in Liver Injuries
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Az
m,p~

1

NmNz
p

XNm

i[m

XNz
p

j

Zi,j , ð8Þ

where Nm is the number of genes associated with module m, Nz
p is

the number of positive class conditions for indicator p, and the Z-

score matrix elements are defined by Equation (1).

We assessed the statistical significance of the activation scores by

calculating the distribution of all Az
m,p activation scores for all m

and p pairs. The distribution of scores indicated that an absolute

activation score of 1.5 or larger was associated with the ,5%-tails

of the near-normal distribution. We used activation scores larger

than 1.5 in this work as indicative of a significant association

between a module m and an injury indicator p.

The absolute value of the difference in the activation of module

m between positive class instances of injury indicators p and q is

Dz
m,p,q~DAz

m,p{Az
m,qD: ð9Þ

This was used to compute the specificity of module m to injury

indicator p,

Sz
m,p~

XNI

q~1

Dz
m,p,q, ð10Þ

where NI denotes the 25 injury indicators shown in Table 1. The

maximum specificity to injury indicator p is

sz
p ~max Sz

m,p

n o
; m~1 : NM , ð11Þ

where NM denotes the total number of modules and the global

specificity is given by

Sz~
1

NI

XNI

p~1

sz
p , ð12Þ

with larger values of Sz indicating module sets with higher injury-

indicator specificity.

Intra-module gene correlation. The average Pearson

correlation rz
m,p of genes in module m under conditions that cause

positive instances of injury indicator p is,

rz
m,p~

1

N2
m

XNm

i[m

XNm

j[m

r
p
i,j , ð13Þ

where m and p are module and injury indicator indices, Nm is the

number of genes in module m, i and j are gene indices, and r
p
i,j is

the Pearson correlation between genes i and j across conditions

that cause positive instances of injury indicator p.

The maximum intra-module gene correlation for injury

indicator p is,

rz
p ~max rz

m,p

n o
; m~1 : NM , ð14Þ

where NM denotes the total number of modules and the global

intra-module gene correlation R+ is,

Rz~
1

NI

XNI

p~1

rz
p , ð15Þ

where NI denotes the 25 injury indicators shown in Table 1.

Larger values of Rz indicate module sets with higher intra-

module gene correlation.

Pathway association of gene co-expression modules
We mapped the genes in the co-expression modules to KEGG

[31] pathways. We used Fisher’s exact test with Bonferroni-

corrected p-values to determine the statistical significance of the

resulting pathways. We filtered the pathways using the following

constraints: 1) pathways must be associated with absolute module

activation scores Az
m,p (Equation (8)) that are larger than 1.5 for

conditions causing a particular injury type, 2) Bonferroni-

corrected p-values of the pathways must be smaller than 0.05,

and 3) pathways must contain at least six genes from a module to

be mapped to it.

Activation of individual genes under different injury
conditions

Similar to the module activation defined in Equation (8), we can

define the activation of a particular gene in response to an injury

indicator. Thus, the activation az
i,p of gene i associated with

positive instances of injury indicator p is given by

Figure 1. Iterative signature algorithm (ISA) module genera-
tion analysis. Number of iterative signature algorithm (ISA) modules
NM as a function of the number of starter gene sets, Nstarter.
doi:10.1371/journal.pone.0107230.g001
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az
i,p~

1

Nz
p

XNz
p

j

Zi,j , ð16Þ

where the summation runs over all Nz
p members of positive class

conditions for indicator p, and the Z-score matrix elements are

defined by Equation (1).

Center gene selection
In order to simplify the selection of a gene from a module as a

specific biomarker for a particular injury indicator, we introduced

the concept of a representative center gene. For a given module m
containing Nm genes, we computed the Pearson correlation sum r

p
i

for each gene i and for a given injury indicator p as,

r
p
i ~

XNm

j[m

PNp
c Zi,c-SZiTð Þ Zj,c-SZjT

� �
sisj

, ð17Þ

where i and j denote gene indices, Np is the number of conditions

that invoke an abnormal instance of injury indicator p, and the

average ,Zi/j. and standard deviations si/j were computed across

the second index of the Z-score matrix as defined in Equation (1).

Using the values of r
p
i we determined the center gene of module m

as the gene with the largest Pearson correlation sum. If the average

Z-score of the center gene across conditions causing abnormal

instances of the injury indicator was less than the module average,

the gene was thrown out, and a new center gene was chosen as the

gene with the next largest Pearson correlation sum with average

activation larger than the module mean.

External validation
We further evaluated the relevance of the periportal fibrosis and

general liver injury gene signatures using external datasets

collected from the Toxicogenomics Project-Genome Assisted

Toxicity Evaluation System (TG-GATEs) database [32] and the

Gene Expression Omnibus (GEO) [33]. All the external datasets

utilized Affymetrix GeneChip Rat Genome 230 2.0 Arrays. For all

the external datasets, we collected the raw CEL files and processed

them in the same manner as described above for the DrugMatrix

data.

The TG-GATEs database contains gene expression data from

both in vitro and in vivo studies. It contains expression data from

Sprague-Dawley rats and hepatocytes that have been exposed to

150 selected chemicals at different dose and time points. This

database includes biochemistry and histopathology data associated

with each exposure. We selected the exposures with a high dose

(15 mg/kg) of naphthyl isothiocyanate at four, eight, and 15 days

as an external validation set for our periportal fibrosis gene

signature since these exposures produced observable periportal

liver fibrosis. Next, we evaluated the periportal fibrosis gene

signature in the GEO dataset - GSE13747 [34]. In this dataset,

liver fibrosis was induced by bile duct ligation, and there were six

replicates of liver fibrosis samples and six controls. For the genes in

the periportal fibrosis gene signature, we compared their fold-

change in the DrugMatrix study to the fold-change in these

external sets using a Pearson correlation.

We used the GEO dataset - GSE5509 to validate the general

liver injury gene signature [35]. In this dataset, rats were treated

with three toxic compounds (a-naphthyl-isothiocyanate, dimethyl

nitrosamine, and N-methyl formamide) and three non-toxic

compounds (rosiglitazone, caerulin, and di-nitrophenol). There

were five replicates of each chemical exposure. We evaluated the

ability of the general liver injury gene signature to separate toxic

and non-toxic compounds in this dataset. We used the classical

multi-dimensional scaling (MDS) function in R to create the MDS

plot.

Results and Discussion

Gene sets for module construction
The constructed Z-score matrix elements represent normalized

gene activation patterns in liver tissues in response to different

chemical exposure conditions. The matrix contained 7,826 genes

arrayed in 640 different conditions and constitutes the coupled

transcriptional response for multiple overlapping and intertwined

toxic response mechanisms. As outlined in the Methods, we used

multiple methods to construct co-expression gene sets that can

Figure 2. Module specificity and intra-module correlation. A)
Tests for maximum module specificity, and B) maximum intra-module
gene correlation. ISA, iterative signature algorithm gene co-expression
modules; HC, hierarchical clustering gene sets; MAZ, gene sets
composed of the top differentially expressed genes associated with
injury indicator; SVM, support vector machines gene sets; PPI, protein-
protein interaction network gene sets; RAND, gene sets composed of
100 genes selected at random. All method results were statistically
significantly (p-value ,0.05) different from the results generated using
the random gene set.
doi:10.1371/journal.pone.0107230.g002
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represent these responses. Using hierarchical clustering, we

generated 231 gene sets that each contained an average of 33

genes. The gene set construction method based on PPIs gave a

total of 595 significantly up- or down-regulated gene sets with an

average size of 50 genes. The previously constructed 34 gene sets

from Natsoulis et al. [22] contained an average of 79 genes.

Furthermore, we generated 34 maximum expression change gene

sets each containing 50 genes and 100 random gene sets

containing 100 genes each. We used the randomly constructed

gene sets to assess the ability of the deployed methods to create co-

expression modules above the random noise level (the null-

hypothesis).

For the ISA gene set construction we used the entire Z-score

matrix as input and defined the 859 initial starter gene sets using

the hierarchical gene set clusters (231), protein-interaction derived

gene sets (595), and the SVM gene sets from Natsoulis et al. [22].

We repeatedly expanded this set by adding 100 randomly selected

genes to each starter gene set to generate thousands of starter gene

sets, each derived from the original 860 gene sets. Figure 1 shows

the number of gene co-expression modules generated by ISA as a

function of the number of starter gene sets input to ISA. At over

14,000 starter gene sets, we generated 78 co-expression modules

with average size of 31 genes. Further expansion did not

significantly increase the number of unique gene sets.

Gene set evaluation using specificity and correlation
metrics

We used the global specificity and correlation metrics defined in

Equations (12) and (15) to evaluate the different methods’ ability to

generate gene sets for module construction. Figure 2A shows the

global specificity and Figure 2B shows the global intra-set gene

correlation computed for each of the investigated construction

methods. In general, the ISA, hierarchical clustering, and

maximum-fold-change-derived genes sets were better than the

protein-interaction-derived and the SVM-derived gene sets for

these metrics, with the random case showing the least specificity

and correlation among the different groupings. Given that the ISA

procedure produced the most coherent gene sets, we chose them

for further analysis and characterization as gene modules
associated with toxic response pathways. Table S2 in the

Supporting Information provides the gene membership of the

ISA modules.

Gene module mappings to injury indicators
We used Equation (8) to calculate module activation under

conditions causing abnormal (+) instances of the 25 injury

indicators, as well as those known to contain the nine chemical

structure-activity classes listed in Tables 1 and 2. Table S3 in

the Supporting Information gives the calculated gene module map

consisting of 78 rows of modules and 34 columns defined by injury

indicator or structure activity classes. Each entry of this matrix

corresponds to the module activation calculated using Equation

(8).

The ISA-constructed modules contain partly overlapping

information, as the gene module-membership is not unique, in

contrast to hierarchical clustering. The appearance of a gene in

several different co-expression modules is consistent with the idea

that similar molecular toxicity pathways can be activated under

different conditions, and the idea that a gene can be part of more

than one toxicity pathway. To account for the similarity of the

modular response, we performed hierarchical clustering of the 25

injury indicators using 1 minus the Pearson correlation (1 – r) as

the distance measure between indicators based on the module’s

activation patterns. Figure 3A shows the results of this clustering

where we have defined 11 generalized indicator clusters based on

Figure 3. Clustering and analysis of injury indicators using module activation patterns. A) Correlation among injury indicators. The
clinical endpoints used in Table 1 are not independent, but highly correlated both from a biological point of view as well as from the gene
transcription activation pattern. The hierarchical clustering dendrogram identifies the most related endpoints based on a Pearson correlation of
iterative signature algorithm (ISA) module activation patterns. B) Correlation of injury indicators with structure activity classes. The clustering of the
indicators is shown by a dendrogram at left; at center are the various injury indicators; at right is a heat map with elements equal to the Pearson
correlation between the injury indicators at center, and the structure activity indicators arrayed across the top right. The Pearson correlation is
determined using the covariance of the ISA module activation patterns of the injury indicators and structure activity classes. The Pearson correlation
value in the first column of the table is the average intra-cluster correlation between indicators in the same cluster. CP, clinical pathology; LH, liver
histopathology; OW, organ weight.
doi:10.1371/journal.pone.0107230.g003
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similarity in module activation. We further categorized these

groups in Figure 3B to link them to the injury indicator and to

show their relationship to the different structure activity classes

also present in the dataset.

The presence of several different classes of drugs and chemical

toxicants in the data allowed us to match the adverse clinical

diagnostic response (injury indicators) to these chemical classes.

We used the correlation of module activation patterns between the

chemical classes shown in Table 2 and the injury indicators

shown in Table 1 to analyze these associations. Figure 3B shows

the correlation pattern and highlights that drugs have multiple

potential adverse effects in addition to their therapeutic effects

[36–38].

Figure 4. Clustering of the iterative signature algorithm (ISA) modules. By construction, the modules represent groups of genes co-
expressed across a subset of the conditions, and they may share genes. The clustering gauges the independence of the modules and groups some
modules together. A dendrogram of the clustering is shown at right, giving the module membership 1–78 of each of the 28 module clusters. The
Pearson correlation is the average intra-cluster correlation between modules in the same cluster.
doi:10.1371/journal.pone.0107230.g004

Figure 5. Activation pattern of module clusters. 5A) Reduced representation of the each module cluster’s activation patterns for the injury
indicators shown in Figures 3 and 4. The illustration highlights the differences and similarities of each injury indicator based on their module
activation patterns. 5B) Shows the root-mean-square distance between all unique injury-indicator cluster pairs calculated using the averaged
activation scores Az

m,p .
doi:10.1371/journal.pone.0107230.g005
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For the cases where the exposure conditions that defined the

chemical class activation patterns were not the same conditions/

chemicals that caused the abnormal injury indications, we noted

several adverse effect associations. PDE4 inhibitors and Glucocor-
ticoid-mineralocorticoid receptor (GR-MR) agonists had the most

wide-spread positive correlations with the injury indicators. Many

PDE4 inhibitors are known to have a low therapeutic index and

are associated with such side effects as nausea, vomiting, and

weight loss [39–41]. Glucocorticoid receptor agonists are reported

to have a diverse side effect profile, including weight gain,

metabolic syndrome, lipodystrophy, hypertension, and fractures

[37]. More specifically, glucocorticoids are reported to stimulate

glucose production and decrease the number of circulating

monocytes, eosinophils, and basophils [42]. These patterns of

adverse effects were in qualitative agreement with our correlative

analysis. Thus, the activity class GR-MR agonists had a positive

correlation with glucose increase, lymphocyte decrease, leukocyte

count decrease and negative correlation with glucose decrease,

basophil increase, and monocyte increase in our analysis.

Furthermore, estrogen receptor agonists are known to affect lipid

profiles and metabolism [38,43,44], and we noted that the activity

class Estrogen receptor agonists was most highly correlated with

Periportal lipid accumulation (Pearson correlation, r = 0.85). The

known association between DNA alkylators and liver fibrosis [45–

47] was in agreement with the observed correlation between DNA
alkylators and Fibrosis (r = 0.91). Thus, even though there was no

overlap between the chemicals known to cause an adverse effect in

this analysis, we were able to link the chemicals to their adverse

effects based on the correlative analysis of the module activation

patterns. These observations support the constructed co-expres-

sion modules as linkages to observable clinical injury associations.

Although the co-expression gene modules represent distinct but

still partly overlapping molecular responses, we can also simplify

the module characterization by clustering them into similar

response modules. Figure 4 shows the hierarchical clustering of

the 78 modules using the similarity (Pearson correlations) of the

activation pattern across the 25 injury indicators. The clustering

reduced the number of co-expression modules into 28 clusters

based on a minimum correlation cutoff of 0.90. We used the

corresponding dendrogram to create the averaged activation

patterns across the 11 reduced indicator clusters shown in

Figure 3A. Figure 5A shows the corresponding reduced activa-

tion patterns calculated by averaging the Z-score over all

indicators within an indicator cluster, and all modules within a

module cluster. The Supporting Information Table S4 provides

the results before averaging over the module clusters. Each of the

11 reduced injury indicator clusters (except for hemoglobin levels)

contained at least one module with an absolute Az
m,p greater than

1.5, indicating that the constructed co-expression modules had a

varied activation pattern that covered the bulk of the response

inherent to the injury indicators. The Figure 5B shows the

distribution of the root-mean-square activation distance between

all unique injury-indicator cluster pairs. The minimum distance of

2.1 shows that the indicator clusters were well separated from each

other and carried a characteristic activation pattern specific to the

injury indicators.

Linking injury indicator to KEGG pathways via module
activation

We further analyzed the constructed gene co-expression

modules by mapping them to KEGG pathways as outlined in

the Method section. Table 3 shows that the injury indicators

listed on the right hand side are associated with distinct gene

module patterns (center), and each of these gene module patterns

is enriched with genes from a different set of KEGG pathways. For

example, Periportal lipid accumulation was associated with up-

regulation of genes in modules 1 and 27, which are enriched in

genes involved with glutathione metabolism and the proteasome

[48]. The up-regulation of proteasome pathways in the liver is

Figure 6. Activation patterns for selected modules and
biomarker genes. Activation patterns shown correspond to the 25
injury indicators in Table 1. Labeled peaks represent average module
activation score Az

m,p greater than 1.5 as calculated using Equation (8).
A) The top graph shows averaged activation of modules 43 and 44
compared with the gene activation pattern of alanine aminotransferase
(Gpt). B) The middle graph shows the average activation of modules 47
to 51 compared to the gene activation pattern of aspartate
aminotransferase (Got1). CP, clinical pathology; OW, organ weight.
doi:10.1371/journal.pone.0107230.g006

Gene Co-Expression Modules in Liver Injuries

PLOS ONE | www.plosone.org 10 September 2014 | Volume 9 | Issue 9 | e107230



consistent with proteasomal degradation of the regulatory binding

protein (Srepb1), a transcription factor that activates lipid

biosynthesis [49]. This shuts down lipid biosynthesis as a response

to the high lipid levels associated with chemical injuries.

Mechanistic links have also been recorded between Eosinophilia
and fatty acid metabolism [50–52].

In our analysis, Periportal fibrosis was associated with up-

regulation of modules 40 and 41 which are enriched in genes

associated with activation of the phagosome, leukocyte transen-

dothelial migration, regulation of the actin cytoskeleton, and

natural killer cell-mediated cytotoxicity pathways [53]. These are

all processes linked to fibrosis, e.g., when hepatocytes are injured,

hepatic stellate cells migrate to the site of injury and transform into

myofibroblasts, which produce large amounts of extracellular

matrix proteins (ECM), such as collagen. Activated stellate cells

produce cytokines and chemokines, which recruit and direct

leukocytes to the injury site. Arriving leukocytes migrate through

the endothelium to get to the injury site. Once at the injury site,

leukocytes produce cytokines that cause the activated stellate cells

to produce more collagen. A cycle occurs in which inflammatory

(leukocytes) and fibrogenic (stellate) cells stimulate each other [53],

causing production of ECM and ultimately scar tissue or fibrosis.

These observations showed that the different biochemical

response pathways underlying different injury indicators could

qualitatively be described by the difference in gene co-expression

module activation patterns.

Known biomarkers used in liver function tests
Injury-specific biomarkers found in the serum/plasma of both

humans and rats have the potential to be used for diagnosing

chemical toxicity and predicting adverse human health effects

[19,54]. Although a successful biomarker may be unrelated to co-

expression or co-regulation of gene transcription, our module

methodology attempts to map such processes through the concept

of molecular toxicity pathways. Thus, to further characterize the

co-expression modules, we examined their relationship to

biomarker panels used in standard animal and human diagnostic

tests for liver disease.

Co-expression modules linkage to ALT and AST. Alanine

aminotransferase (ALT or Gpt) and aspartate aminotransferase

(AST or Got1) are two clinically used serum biomarkers that have

the potential to be generally informative of mammalian liver

injuries through their serum levels [19,54]. We analyzed their

corresponding gene transcription in terms of individual gene

activation (Z-scores associated with the log ratio of expression

values) as well as activation patterns of modules containing these

genes. Because genes in our construction may belong to multiple

modules, we created an average activation score of those modules

based on membership of the module clusters (Figure 4). Thus,

the Gpt module activation pattern was constructed from averaging

the Az
m,p-values across modules 43 and 44, whereas the Got1 was

created using modules 47–51.

Figure 6A shows that the activation patterns of the modules

containing Gpt were never significantly up- or down-regulated,

whereas the pattern of Gpt expression was significantly (Az
m,p larger

than 1.5) up- or down-regulated for seven injury indicators

associated with abnormal clinical pathology endpoints. The gene

activations relate Gpt to clinical pathology endpoints and body-

organ weight changes, but not to any abnormal liver histopathol-

ogy. This is consistent with the fact that ALT measurements,

though highly informative at diagnosing liver injury, do not always

correlate well with preclinical histopathology [54]. Importantly,

the absence of module activation under conditions with a large

increase in Gpt indicated a lack of a strongly co-expressed liver

gene set that contained Gpt. Figure 6B shows that the activation

patterns of the modules containing Got1 were more similar to the

individual gene activation pattern of Got1 itself. Here, both

activation patterns relate Got1 to clinical pathology endpoints and

body-organ weight changes, but again, not to any abnormal

histopathology indications. With the exception of Lipase increase,

both ALT and AST genes were indicative of increased activation

of the same general clinical pathology and body-organ weight

changes.

Our module construction emphasized the module activation

pattern, not individual gene activation patterns, as central to the

molecular toxicity pathways. This provides an avenue for detecting

gene signatures and potential biomarker panels that can be

associated conceptually with toxicity response pathways that are

highly co-expressed. Given that the underlying data represents

acute, non-fatal toxicity as captured via transcriptomics, our

approach is limited. For example, it cannot identify chronic liver

damage or injury due to non-specific deregulation, nor can it

identify when proteins undergo enhanced excretion or leakage.

While these processes may lead to robustly detectable biomarkers

in biofluids, they are not necessarily informative of the full

spectrum of possible liver injures.

Co-expression modules linked to the FibroSure [55]

diagnostic test. We further determined which of our 78 co-

expression modules contained the gene markers used in FibroSure

[55], a diagnostic test for human liver fibrosis, steatosis, and

hepatitis. Out of the five proteins in the test, the gene encoding

alpha-2-macroglobulin was present in module 55, whereas the

alanine aminotransferase gene was found in modules 43 and 44.

However, as discussed above, the latter two modules were not

activated, as the activation score Az
m,p calculated using Equation

Figure 7. Module 55 activation across the 25 injury indicators.
Activations shown represent the 25 injury indicators in Table 1.
Labeled peaks represent a module 55 activation score Az

m,p greater than
1.5 as calculated using Equation (8). CP, clinical pathology; LH, liver
histopathology.
doi:10.1371/journal.pone.0107230.g007
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(8) did not exceed the threshold of 1.5 for any of the injury

indicators in Table 2. In contrast, Figure 7 shows that module

55 was significantly (Az
m,p larger than 1.5) up-regulated for seven

injury indicators associated with both abnormal liver histopathol-

ogy and clinical pathology endpoints. Module 55 activation relates

the FibroSure diagnostic endpoints of liver fibrosis and steatosis to

the liver histopathology endpoint of Periportal fibrosis and

Centrilobular lipid accumulation, respectively. Likewise, module

55 association with Leukocyte increase and Monocyte increase is

consistent with the FibroSure diagnostic endpoint of hepatitis.

These observations showed how our computed gene co-

expression modules could be linked, directly and indirectly, to

clinical tests and established biomarkers for both animal and

human liver injury. In order to explore the strengths of the co-

expression modules and their capacity to describe liver injures, we

next identified specific gene sets linked to select injuries.

Gene sets as liver injury biomarker hypotheses
The construction of gene co-expression modules that broadly

characterize chemical injuries to the liver can be used to select

specific gene signatures that may be proposed as genes and

proteins for future development of clinical biomarkers. We

propose two general strategies that focused on either a specific

module that is activated under chemical stress or a particular

injury indicator.

Creation of liver injury gene signatures based on

modules. Based on the association of FibroSure biomarker

A2M with module 55, we examined all genes in this module with

an activation score az
i,p greater than 1.5 under conditions that can

be linked to fibrotic injuries using Equation (16). Figure 8 shows a

bar plot of these genes and their activation levels for Periportal

fibrosis, Centrilobular lipid accumulation, and Periportal lipid
accumulation. As discussed above, A2m is up-regulated under

fibrotic conditions, but both Lcn2 (lipocalin 2) and Lbp
(lipopolysaccharide binding protein), showed much larger magni-

tudes of activation under fibrotic conditions than did A2m itself.

However, no gene activations could be significantly associated

with Periportal lipid accumulation. Both Lcn2 and Pcolce
(procollagen C-endopeptidase enhancer) code for secreted pro-

teins, and Lcn2 has a known association with liver injury in the

Comparative Toxicogenomics Database [20]. The genes listed in

Figure 8 thus constitute a plausible set of putative biomarkers of

liver injury associated with fibrosis and centrilobular lipid

accumulation.
Creation of gene signatures based on liver injury

characteristics. As a second example of signature selection,

we simultaneously analyzed the activation profile of all 78 co-

expression modules for two injury indicators, Periportal lipid
accumulation and Periportal fibrosis. Figure 9 shows the module

activation Az
m,p profiles for these two indicators as calculated using

Equation (8). To find genes that were broadly characteristic of

these modules we identified the center genes, as described in the

Methods, derived from all modules that showed an activation of

DAz
m,pD greater than 1.5. Tables 4 and 5 list the characteristic

genes for the two injury indicators, as well as functional gene

annotations from the Rat Genome Database (RGD) [56].

In the case of periportal lipid accumulation (Figure 9A,

Table 4), Gulo (module 13) and Car3 (module 12), are associated

with liver injury in the CTD [20], and Serpina6 (a member of

modules 8-11) and Dhrs7 (a member of module 20) code for

secreted proteins. In the case of periportal fibrosis (Figure 9B,

Table 5), Tagln2 (module 38), Cyba (module 41), Alad (module

6), Opb3 (module 15), and Rgn (module 8) are associated with liver

Figure 8. Activation of selected genes from Module 55. Selected genes show significant gene activation az
i,p for fibrotic conditions. Lcn2,

lipocalin 2; Lbp, lipopolysaccharide binding protein; A2m, alpha-2-macroglobulin; Ltb, lymphotoxin beta; Pcolce, procollagen C-endopeptidase.
doi:10.1371/journal.pone.0107230.g008
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injury in the CTD [20], and Opb3 and serpina6 code for proteins

that are secreted. Although part of these signature panels overlap

(Slc22a8 and Serpina6 are common to both injury indicators), the

fact that some of these genes are already known to be associated

with liver injury suggests that these genes sets may be used to

generate potential biomarker panels for chemically-induced liver

fibrosis and steatosis.

Creation of a general liver injury gene signature. Finally,

we analyzed the activation profile of all 78 co-expression modules

for all injury indicators simultaneously. We created a general liver

injury panel by collecting 69 center genes from modules with an

activation of DAz
m,pD greater than 1.5 under conditions causing any

of the injury indicator types. Table S5 in the Supporting

Information lists the general liver injury gene signature. Out of the

69 selected genes in Table S5, 11 (16%) are known to be

associated with liver injuries in the CTD. Table 6 shows genes

associated with liver disease endpoints that include 1) blood

chemistry (anemia: low hemoglobin), 2) fatty liver (accumulation of

triglyceride droplets), 3) fibrosis/cirrhosis (scar tissue formation),

and 4) necrosis (non-programmed cell death). Among these genes,

Sod2 was associated with multiple degrees of severe disease, while

the others could potentially be used to stratify the injury severity.

Both Gulo and Car3 appear as markers of Periportal lipid
accumulation in Table 4, and Obp3 and Rgn as markers of

Periportal fibrosis in Table 5. Thus, the identified genes provided

a complex signature for a broad range of liver disease endpoints.

External validation
We further evaluated our gene signatures using external datasets

collected from the TG-GATEs database and GEO. In the TG-

GATEs database, high dose (15 mg/kg) of naphthyl isothiocya-

nate at four, eight, and 15 days exposures produced periportal

liver fibrosis. For the genes in the periportal fibrosis gene signature,

we compared the log-ratios in the DrugMatrix dataset to each of

the three exposures and Figure 10 A–C shows the observed

correlation between these datasets. All the three exposure

conditions exhibited positive correlation (r.0.6) with the Drug-

Matrix data. The four, eight, and 15 days exposures had

correlation coefficient of 0.64, 0.94, and 0.90, respectively. Next,

we evaluated the same fibrosis gene signature in a different dataset

from GEO (GSE13747). In this dataset, liver fibrosis was induced

by bile duct ligation. Figure 10-D shows the observed correlation

between log-ratios of periportal fibrosis signature genes in

DrugMatrix and GSE13747 dataset. Similar to the above results,

we found the signature genes exhibit positive correlation (r = 0.94)

in this dataset. These results show that genes that were identified to

be relevant to liver fibrosis in our study behaved in a similar

manner in external and independent fibrosis datasets.

Finally, we evaluated the general liver injury gene signature

using GEO dataset, GSE5509. In this dataset, gene expression

data were collected from three toxic compounds (a-naphthyl-

isothiocyanate, dimethyl nitrosamine, and N-methyl formamide)

and three non-toxic compounds (rosiglitazone, caerulin, and di-

nitrophenol). We used our general liver injury genes and evaluated

the ability to group these two classes separately. Figure 11 shows

the MDS plot where we can see that the three non-toxic conditions

grouped separately from the toxic conditions. These results

provide an external validation and verification of our gene

signatures.

Conclusion

We have implemented a bioinformatics approach for selecting

groups of co-expressed genes to classify different aspects of liver

injury caused by drugs and chemical toxicants. From a range of

different ways to construct such gene sets, we selected an iterative

method (ISA) that produced gene modules based on sets of partly

overlapping co-expressed genes. These modules were both

descriptive of and specific to all the general pathology and liver

histopathology assessments associated with the 200 chemicals

administered at multiple sub-lethal doses and time points in male

Sprague Dawley rats.

These modules consisted of genes that were highly co-expressed

under the same set of exposure conditions and exhibited large

activation changes under conditions causing abnormal injury

indications. This provided modules that were both specific to an

injury and contained genes that could be hypothesized to belong to

Figure 9. Module activation patterns for periportal lipid
accumulation and periportal fibrosis. Module activation patterns
for A) Periportal lipid accumulation and B) Periportal fibrosis. The grey
box represents an absolute module activation score Az

m,p greater than
1.5 as calculated using Equation (8). Activation scores greater than the
cut-off are labeled by their associated module numbers and module
clusters. Modules are labeled with their center genes if the genes have a
curated association with liver injury in the Comparative Toxicogenomics
Database (*), if the genes code for secreted proteins ({), or if the genes
are shared between periportal lipid accumulation and periportal fibrosis
(`). Modules are also labeled with member genes (not necessarily
center genes) if they are part of the FibroSure biomarker set (#).
doi:10.1371/journal.pone.0107230.g009
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a common biological process, inferred via the connection between

co-expression and co-regulation. The common biological back-

ground of the toxic response processes were inferred from

literature examples of specific genes in particular modules, and

some of the identified genes encode proteins that are already part

of clinically used diagnostics tests. As such, the modules may be

Table 4. Gene signatures for Periportal lipid accumulation.

Module Activation Gene symbol Gene name Rat Genome Database terms[56]

30 q Gpd1l Glycerol-3-phosphate dehydrogenase 1-like Metabolic process; NADH metabolic process;
negative regulation of peptidyl-serine
phosphorylation

29 q Cndp2 CNDP dipeptidase 2 (metallopeptidase M20 family) Proteolysis

27 q Psma5 Proteasome (prosome, macropain) subunit, alpha
type 5

Ubiquitin-dependent protein catabolic process;
ubiquitin/proteasome degradation pathway

1 q Atpif1 ATPase inhibitory factor 1 Erythrocyte differentiation; heme biosynthetic
process; negative regulation of endothelial cell
proliferation

19,15 Q Slc22a8 Solute carrier family 22 (organic anion transporter),
member 8

Glutathione transport; quaternary ammonium group
transport; response to methotrexate

8-11 Q Serpina6 Serine (or cysteine) peptidase inhibitor, clade A,
member 6 (secreted)[57]

Glucocorticoid metabolic process

13 Q Gulo* Gulonolactone (L-) oxidase* L-ascorbic acid biosynthetic process

6 Q Nrep Neuronal regeneration related protein Axon regeneration; regulation of neuron
differentiation; regulation of transforming growth
factor beta receptor signaling pathway

20 Q Dhrs7 Dehydrogenase/reductase (SDR family) member 7
(secreted)[57]

Encodes a protein that exhibits oxidoreductase
activity

12 Q Car3*[58] Carbonic anhydrase 3 (secreted)[57] Response to ethanol; response to oxidative stress

*Listed as having a curated association with liver injury in the Comparative Toxicogenomics Database [20].
doi:10.1371/journal.pone.0107230.t004

Table 5. Gene signatures for Periportal fibrosis.

Module Activation Gene symbol Gene name Rat Genome Database terms[56]

37 q Vim Vimentin Aging; cellular response to fibroblast growth factor stimulus;
decidualization

55 q Cp Ceruloplasmin (secreted)[57] Hypoxia inducible factor pathway; porphyrin and chlorophyll
metabolic pathway

38 q Tagln2* Transgelin 2 Muscle organ development

40 q Unc93b1 Unc-93 homolog B1 (C. elegans) Antigen processing and presentation of exogenous peptide
antigen via MHC class II; intracellular protein transport; toll-like
receptor 3 signaling pathway

41 q Cyba* Cytochrome b-245, alpha polypeptide Cellular response to amino acid stimulus; cellular response to
gamma radiation; cellular response to glucose stimulus

6 Q Alad* Aminolevulinate dehydratase Cellular response to lead ion; heme biosynthetic process;
response to activity; heme biosynthetic pathway; porphyrin and
chlorophyll metabolic pathway

18-20 Q Slc22a8 Solute carrier family 22 (organic anion
transporter), member 8

Glutathione transport; quaternary ammonium group transport;
response to methotrexate; bile acid transport pathway

9-11,13 Q Serpina6 Serine (or cysteine) peptidase inhibitor,
clade A, member 6 (secreted)[57]

Glucocorticoid metabolic process

15 Q Obp3* Alpha-2u globulin PGCL4 (secreted)[57] Extracellular region

8 Q Rgn* Regucalcin Cellular calcium ion homeostasis; positive regulation of ATPase
activity; regulation of calcium-mediated signaling

7 Q Slc13a4 Solute carrier family 13 (sodium/sulfate
symporter), member 4

Sodium ion transport; transmembrane transport

14 Q Slc17a2 Solute carrier family 17, member 2 Transmembrane transport

12 Q Ust5r Integral membrane transport protein UST5r Integral to membrane

*Listed as having a curated association with liver injury in the Comparative Toxicogenomics Database [20].
doi:10.1371/journal.pone.0107230.t005
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useful for constructing gene signatures that could capture disease

states and disease progression associated with chemical injuries.

Focusing on injuries and health effects potentially allows us to

capture the medically relevant aspect of chemical injuries, without

resorting to large-scale in vivo characterizations of the multitude of

potentially harmful chemicals we encounter in the environment.

We used the modules to examine different approaches to create

genes set signatures derived from the entire dataset and based on

module activation, fibrotic and steatotic injuries, or general liver

injures. These genes sets were enriched with genes with known

associations to known liver disease in the Comparative Toxicoge-

nomics Database [20] and were descriptive of a broad range of

clinical outcomes. Most of these signature gene sets currently have

no direct associations with liver disease and, thus, provide a robust

Table 6. Selected general liver injury signature genes with known disease annotations in the Comparative Toxicogenomics
Database [20].

Disease/Pathology Genes

Blood chemistry, anemia Sod2

Fatty liver Sod2

Fibrosis/cirrhosis Sod2, Hao2, Sult1e1, Got1, Gulo, Obp3, Bdh1

Necrosis Sod2

Liver neoplasms Sod2, Rgn, Anxa2, Car3, Gstp1

Carcinoma Sod2, Gstp1

doi:10.1371/journal.pone.0107230.t006

Figure 10. Validation of external datasets. Scatter plots show the
correlation of the log-ratios between DrugMatrix data and external
datasets for the periportal fibrosis gene signature. Comparison of the
log-ratios in DrugMatrix periportal fibrosis conditions with A) 15 mg/kg
of naphthyl isothiocyanate at four days of exposure obtained from the
Toxicogenomics Project-Genome Assisted Toxicity Evaluation System
(TG-GATEs), B) 15 mg/kg of naphthyl isothiocyanate at eight days of
exposure obtained from TG-GATEs, C) 15 mg/kg of naphthyl isothio-
cyanate at 15 days of exposure obtained from TG-GATEs, and D) liver
fibrosis produced by bile duct ligation obtained from GSE13747.
doi:10.1371/journal.pone.0107230.g010

Figure 11. Analysis of exposures in GSE5509 using the general
liver injury gene signature. Multidimensional scaling (MDS) plot of
six chemical exposures in GSE5509 using the general liver injury gene
signature. This figure shows the ability of the genes in the general liver
injury signature to separate toxicants from non-toxicants. Rosiglitazone,
caerulin, and di-nitro phenol, the non-toxic compounds in this set are
marked in green circles. a-Naphthyl-isothiocyanate, dimethyl nitrosa-
mine, and N-methyl formamide are the toxic compounds in this set, and
they are marked with red triangles. In the MDS plot, the non-toxic
compounds clustered separately form the toxic compounds. We have
highlighted the non-toxic compounds within a green circle.
doi:10.1371/journal.pone.0107230.g011
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basis for developing predictive gene and protein biomarker panels

for early diagnosis of toxic liver injuries.

The overall value of the computational approach was that we

could readily integrate genome-scale amounts of biological data

for a large number of different chemical exposure conditions with

in vivo measurement of clinical chemistry and histopathological

injury indications. In the presented module creation approach, we

showed that it was computationally possible to find modules that

were enriched in known liver-disease biomarkers, as well as being

specific to particular liver injuries such as fibrosis. The disadvan-

tage of the computational approach is that ultimately the

conclusions drawn from the data rely on correlative and

mathematical constructions that are not necessarily reflective of

the underlying biological mechanisms. Correlative behavior is not

necessarily related to causality; hence, even though the identified

biomarker candidates can be proposed as strong hypotheses, they

must still be experimentally verified in independent studies.
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