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Abstract

Study Objectives: Alertness impairment is generally assessed by the psychomotor vigilance test (PVT). However, performing a PVT
in the real world is not practical because it is time-consuming and interrupts everyday activities. Here, we aimed to replace the PVT
with passively recorded facial videos and use these measurements to make personalized alertness-impairment predictions.

Methods: We retrospectively analyzed data from a 62-hour total sleep deprivation (TSD) challenge involving 26 healthy young adults
(14 men), where every 3 hours they performed a 5-minute PVT followed by a 3-minute video recording of the face. We then extracted
ocular and facial features from the first 1 minute of the videos, used the features to train linear mixed-effects models that predicted
PVT mean reaction times, and used the predicted PVT to customize the unified model of performance (UMP) and make personalized
alertness-impairment predictions for each participant.

Results: For the mixed-effects models, the average root mean square error (RMSE) between the measured and predicted PVT data was
39 ms (standard deviation, 9 ms). For the personalized UMP predictions based on PVT predicted from the videos, the average RMSE
between the measured PVT data and the model-predicted alertness impairment was 36 ms (standard error, 5 ms), which is nearly
indistinguishable from the within-participant variability of 30 ms for PVT mean reaction time under rested conditions.

Conclusions: As a proof of principle, we developed a practical approach for predicting an individual’s alertness impairment using
passively recorded facial videos.

Clinical Trial Information: Title: “Real-Time Caffeine Optimization During Total Sleep Deprivation.” Registration number: NCT04399083.
Website: https://clinicaltrials.gov/study/NCT04399083.
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Graphical Abstract

Objective: Develop and validate an algorithm that makes personalized alertness predictions, using one-minute

smart phone-collected videos of an individual’s face, without the need to perform psychomotor vigilance tests (PVT)

Methods:
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Statement of Significance

Alertness impairment, which compromises work and safety in civilian and military settings, is often assessed using the psychomotor
vigilance test (PVT). However, this test, which is also used to customize alertness-prediction models, is impractical for everyday use. Here,
obviating the need to perform PVTs, we developed and assessed a new approach to customize predictive models and make personalized
alertness predictions using passively recorded 1-minute facial videos. This new capability offers the potential to popularize the use of
personalized predictive models of alertness, which have been handicapped by the need to perform PVTs. Future efforts should focus on
validating our results with videos collected outside a laboratory environment, as was done in this study.

The psychomotor vigilance test (PVT), which measures the reac-
tion time (RT) to a visual stimulus, is the “gold standard” neurobe-
havioral test for assessing alertness impairment following sleep
loss [1]. The PVT is a simple test, takes 5-10 minutes to complete,
and is a well-validated, sensitive assay applicable to different
sleep-loss challenges [2]. However, performing a PVT outside of
a laboratory setting is often not practical because it interrupts
everyday activities and is time-consuming, as evidenced by the
small number of test results collected in shift-worker studies [3,
4]. In addition, PVT results depend on the individual’s level of
effort, further underscoring the practical challenges of assays that
require active participation [5-7]. An ideal neurobehavioral test
would assess alertness-impairment passively and unobtrusively.

As an alternative to the PVT, a number of studies have investi-
gated the use of ocular, oculomotor, and facial features for build-
ing mathematical models that assess alertness impairment in
adults. For example, Abe et al. [8] built a Bayesian model using
ocular features (eye blink duration and average eye-opening
degree) and oculomotor features (saccade and microsaccade

properties) extracted from facial videos recorded during a
38-hour total sleep deprivation (TSD) challenge. From the vid-
eos, the model estimated the probability of each of the three lev-
els of attention vigilance, as quantified by PVT mean RT. Other
less-challenging sleep-loss studies, involving one night of 4 hours
of sleep restriction [9-11] or one night of TSD [12], built logistic
regression models to estimate the probability of each of two lev-
els of fatigue [9-11] or of driving performance impairment [9, 12].
As model predictors, Akerstedt et al. [9] used variability in the
vehicle lateral position during driving tasks, blink duration, and
the ratio of blink amplitude to peak eyelid-closing velocity (i.e. the
eyelid-closing amplitude-velocity ratio); Wilkinson et al. [11] used
blink duration, inter-event duration (i.e. the interval between
when the eyelid-closing and -reopening velocities reach their
respective peak values), eyelid-closing amplitude-velocity ratio,
and the percentage of time the eyes are fully closed; Shiferaw et al.
[12] used blink rate, blink duration, fixation rate, saccade ampli-
tude, driving duration, and binary sleep-deprivation status (i.e.
yes or no); and Puspasari et al. [10] used blink duration, amplitude
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Figure 1. Study design. The study consisted of a home phase and a laboratory phase. During the 12 days of the home phase, participants maintained
their habitual sleep and caffeine schedules. The laboratory phase started with an 8-hour sleep opportunity, was immediately followed by a 62-hour
total sleep deprivation (TSD) challenge, and ended with a 12-hour recovery sleep. During the first 42 hours of TSD, participants performed 5-minute
psychomotor vigilance tests (PVTs) every 3 hours (filled circles). Five minutes after each PVT, we obtained a 3-minute video recording (open squares)

of each participant facing a mobile phone camera.

and peak velocity of saccades, the percentage of time the eyes are
more than 80% closed (PERCLOS), and microsleep (blinks with a
duration greater than 500 ms) frequency. A few studies also built
data-driven classifiers using other machine learning approaches,
including artificial neural networks [13], support vector machines
[14, 15], or a collection of different machine learning models [15,
16]. These models used ocular features alone [14] or a combina-
tion of ocular and facial features [13, 15, 16] to classify individuals
into one of two [14-16] or three [13] levels of alertness impair-
ment induced by night driving or 24-30 hours of TSD.

Although these studies developed the ability to estimate alert-
ness impairment based on facial and ocular features, all of their
models—except those of Massoz et al. [14]-classified alertness
impairment into discrete categories rather than quantifying it on
a continuous scale. Such a quantification would help us detect
declining trends in vigilance and administer countermeasures
early on rather than waiting until an individual is classified as
impaired. Importantly, except for a few studies [8, 13-16], oth-
ers [9-12] did not assess model performance on an independent
dataset, and the one study that validated model performance
through cross-validation and predicted alertness impairment on
a continuous scale showed a relatively large error (106 ms) in the
prediction of PVT mean RT based on ocular features [14]. This
error is more than three times as large as the within-participant
variability of ~30 ms in alertness impairment under rested condi-
tions [17], indicating the need for more accurate models.

Here, we aimed to develop personalized alertness-prediction
models based on facial and ocular features, rather than on PVT
measurements as in our previous modeling efforts [18-21]. To this
end, we used laboratory data from a recent 62-hour TSD study
involving 26 participants, where we collected PVT data every 3
hours (14 tests in total) and concurrently collected 3-minute facial
videos from each participant. Using a 5-fold nested cross-validation
(CV) procedure, we built (i.e. trained) personalized models to
quantitatively predict continuous alertness-impairment levels
and assessed their performance on independent data not used
for model training.

Methods
Study design

To develop personalized models that predict alertness levels
based on an individual’s facial and ocular features, we retro-
spectively analyzed data from a recent sleep-deprivation study
conducted at the Social, Cognitive, and Affective Neuroscience

(SCAN) Lab at the University of Arizona College of Medicine
(Tucson, AZ) [22]. The study included healthy men (n=14) and
non-pregnant, non-lactating healthy women (n=12), with ages
ranging from 18 to 36 years [mean = 21.6 years, standard devia-
tion (SD) = 3.9 years] and no history of sleep disorders or physical
and mental health problems (Table S1). The study consisted of a
12-day home phase, where participants maintained their habit-
ual sleep and caffeine-consumption schedules, followed by a
laboratory phase (Figure 1). The laboratory phase started with 8
hours of time in bed (23:00 to 07:00), was immediately followed
by a 62-hour TSD challenge during which participants performed
S5-minute PVTs every 3 hours, and ended with a 12-hour recov-
ery sleep. Five minutes after the end of each PVT, we collected a
3-minute video recording of each participant’s face as they sat
facing the camera of a mobile phone (Samsung Galaxy S20). We
set up the camera so that the participant’s face covered approx-
imately one-third of the height of the frame (frame height, 1920
pixels; frame width, 1080 pixels) and recorded the videos at 240
frames per second.

After the first 42 hours of TSD, participants consumed caf-
feine as part of the experimental design of the original study
[22]. Therefore, to exclude caffeine effects, we only analyzed data
collected during the first 42 hours of the TSD challenge, which
consisted of 14 PVT sessions and their associated videos (Figure
1). The protocol was reviewed and approved by the University of
Arizona College of Medicine Institutional Review Board and the
US Army Office of Human Research Oversight.

Personalized alertness predictions

Based on the two-process model postulated by Borbély and
Achermann [23], we previously developed and validated the uni-
fied model of performance (UMP) [18-21] that, given sleep history
and caffeine history (optional), predicts alertness impairment as
measured by the PVT mean RT. The UMP predicts the temporal
patterns of alertness impairment P (Table 1, Equation 1) as a func-
tion of the circadian process, which depends on the time of day
(Equation 2), and the homeostatic process, which depends on the
time awake (Equation 3). The model also considers the amount
of sleep debt in the prior sleep history and its effect on recovery
sleep (Equations 4-6) [19]. To personalize the UMP to a particu-
lar individual [18], the model recursively adjusts the values of
its five most sensitive parameters (Table 1) after each PVT meas-
urement so that, progressively, the model predictions reflect the
participant’s response to sleep loss measured by the PVT. At the
start of this process, the model assumes that the participant is
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Table 1. Governing equations and parameter values of the unified model of performance (UMP)

Performance impairment (P):

P(t) = S(t) + kC(t),

where S and C denote the homeostatic and circadian processes of the two-process model at time t, respectively, and k represents the

circadian amplitude.

Circadian Process (C):

Ct) = ; a; sin [12ZZ(t + ¢)],

wherea,i=1,...,5, represents the amplitude of the five harmonics (a, =0.97, a,=0.22,a,=0.07, a, = 0.03, and a, = 0.001), and v and
¢, respectively, denote the period and phase of the circadian oscillator (~24 h).

Homeostatic Process (S):

ds (t) [U—S(t)/n, during wakefulness
Tar {[L(t) —S(1)] /7 during sleep

where L and U denote the lower and upper asymptotes of process S, respectively, T, [mean (standard error) 23.0 (3.2) h] and 7, [4.0
(1.0) h] denote the time constants of the increasing and decreasing sleep pressure during wakefulness and sleep, respectively.
S(0) =S, and L(0) = L, correspond to the initial state values for S and L, respectively.

Lower Asymptote (L) of Process S:
L(t) = U x Debt(t),
where Debt denotes the sleep debt.
Sleep Debt (Debt):

dDebt(t)
dt

= [Loss(t) — Debt(t)] /ia.

1 during wakefulness
Loss(t) = 4 _, during sleep,

where 1, [7.0 (2.6) d] denotes the time constant of the exponential decay of the effect of sleep history on performance impairment.

Personalized predictions:

Customization of the model to capture an individual’s sleep-loss phenotype requires that we update the value of five model
parameters (U, , ¢,S,, and L) after each PVT measurement. The initial values (and standard errors) for these parameters, which
correspond to the group-average model [20], are: U =497 (31) ms, x = 75 (7) ms, ¢ = 2.5(0.2) h, S, = 176 (15) ms, and L = 140 (14) ms.

an “average” individual and uses group-average parameter values
obtained by fitting the model to the group-average PVT data in
the study by Belenky et al. [24]. Then, after each PVT, the model
uses a Bayesian learning approach to balance the weight of each
PVT measurement against that of the group-average model. As
the number of PVT measurements increases, the importance
given to the measurements increases, leading to a personalized
model that represents the individual’s sleep-loss phenotype [18].
In a recent study, we showed that 12 PVTs measured during 36
hours of TSD are sufficient to personalize the UMP [25]. (Note that
the UMP can also account for the effect of caffeine; however, we
excluded this for simplicity because our study does not involve
caffeine use.).

In addition to the PVT, changes in an individual’s facial and
ocular features have been shown to be indicative of alertness lev-
els, as reported in multiple studies listed in Table 2. Therefore, in
place of performing a PVT to personalize the UMP, we sought to
identify facial and ocular features predictive of PVT results that
we could use instead of the measured PVT as input to the UMP
to personalize alertness predictions (Figure 2B). To this end, we
investigated several facial and ocular features extracted from the
video recordings that could be used to predict the measured PVT.

Feature extraction

From each video frame, we used the open-source Python library
dlib [48] to extract 68 facial landmark points (Figure 3A). As a first
step towards extracting ocular features, we computed “eye aspect
ratio” values from the facial landmarks, as described previously

[49]. Briefly, for each video frame, we computed the vertical height
h, between the upper and lower eyelids (Figure 3B), which indi-
cated the level of eye-opening. To minimize artifactual changes
in h, due to a participant’s movement relative to the camera,
we normalized it by dividing it by the horizontal eye width w,
(Figure 3B and Supplementary Materials). To obtain a single eye
aspect ratio h/w, we computed the ratio for each eye and aver-
aged them. Similar to the eye aspect ratio, we computed a mouth
aspect ratio by dividing the width w, of the mouth by its height
h,. (Figure 3C and Supplementary Materials). The time series of
eye aspect ratios over a recording indicated the dynamics of eye-
lid movement, where sharp downward peaks (troughs) indicated
blinks (Figure 3D). We extracted several ocular features based on
these blinks (Figure S1). Table 2 shows the definition of the 15
ocular and facial features we extracted from the time series of
landmarks.

Prediction of PVT based on ocular and facial
features

To predict PVT data from ocular and facial features, we used linear
mixed-effects models that represented the measured PVT data as a
linear function of the features. These models consisted of fixed- and
random-effects components, where the fixed component (“global
model”) captured the average linear relationship between the fea-
tures and the PVT data, and the random component captured
the within- and between-participant variabilities (Supplementary
Materials). To this end, we split the study data into training and test-
ing datasets, where we fitted (trained) the models using participants
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Table 2. Definition of facial and ocular features investigated in the study

Feature number Feature name (units) Feature definition Reference
1 Baseline eye-opening level Mean of the baseline eye aspect ratio (horizontal dashed traces [13, 26]?
(unitless) in Figure S1; Supplementary Materials)
2 Blink amplitudef (unitless)  Vertical distance between the baseline eye aspect ratio and the [9, 13, 27]
trough of a blink event (vertical dashed line in Figure S1B)
3 Blink rate (min™) Number of blinks per minute [12, 13,15, 27-31]
4 PERCLOS (%) Percentage of time the eyes were more than 80% closed [32-37]
(Supplementary Materials)
5 Eyelid-closing velocity® (s)t ~ Magnitude of the peak instantaneous velocity during the eyelid- [9, 13]
closing phase (Figure S1B)
6 Eyelid-reopening velocity? Magnitude of the peak instantaneous velocity during the eyelid- [9]
(s +* reopening phase (Figure S1B)
7 Eyelid-velocity ratiof Ratio between eyelid-closing velocity and eyelid-reopening §
(unitless) velocity
8 Eyelid-closing duration' (s) Interval between the time when the eyes were 33% closed [14, 38]
during the eyelid-closing phase and the time when the
eyelid-closing phase ended (thick dark horizontal lines in
Figure S1B)
9 Eyelid-reopening duration' (s) Interval between the time when the eyelid-reopening phase (14, 38]
began and the time when the eyes were 33% closed during
the eyelid-reopening phase (thick light horizontal lines in
Figure S1B)
10 Blink duration? (s) Interval between the time when the eyes were 33% closed [8-15, 27, 38-46]
during the eyelid-closing phase and the time when the
eyes were 33% closed during the eyelid-reopening
phase (Figure S1B)
11 Eyelid-closing amplitude- Ratio between blink amplitude and eyelid-closing velocity [9,11, 183, 34, 42, 43,

velocity ratiof (s)

46

12 Eyelid-reopening amplitude- Ratio between blink amplitude and eyelid-reopening velocity [11, 34, 40, 42, 43]
velocity ratiof (s)

13 Head-movement velocity Mean instantaneous velocity of the head [15, 16]3, [47]
(a.u./s)

14 Variance of head-movement Variance of the instantaneous velocity of the head [47]7
velocity (a.u./s?)

15 Baseline mouth aspect ratio ~ Median value of the time series of the mouth aspect ratio [26]
(unitless)

aStudies reporting metrics that essentially captured the characteristics of the feature reported here.
‘The blink amplitude served as a reference to define the level of eye closure. For example, we assumed that the eyes were 80% closed when the eye aspect ratio

decreased from baseline to 80% of the blink amplitude.
Metrics averaged across the blinks detected in a video recording.

*Units for velocity, s, derived from the change in normalized eye-opening height (unitless) per second.

§ Feature not previously studied.
a.u., arbitrary units.

from the training datasets and assessed model predictions using
participants from the testing datasets. We developed these models
using a 5-fold nested CV procedure (Steps 1-9, Figure S2), in which
we trained the global models using different subsets of participants
and extracted features. To obtain the feature subsets, in each of the
five outer CV folds of the CV procedure, we used a forward selection
procedure, where at each cycle we added the next most informative
feature to the model and at the end selected the feature subset with
the best model performance (Steps 2-6, Figure S2). The data used to
train a global mixed-effects model to obtain the video-predicted PVT
mean RT for a specific participant did not include any data (meas-
ured PVT or extracted ocular/facial features) from the participant
we wished to predict. Specifically, to train a global model for a par-
ticipant, we used measured PVT data and video-extracted features
collected from approximately 20 other participants in the training
dataset (boxes labeled “Train” in Figure S2), explicitly excluding the
specific participant.

To independently assess model performance for the par-
ticipants in the testing dataset not used for model training, we
computed the root mean square error (RMSE) between the model
predictions (i.e. the video-predicted PVT mean RT) and the meas-
ured PVT data (Steps 11a and 12a, Figure S2). To reduce the effect
of outliers in the selection of the training and testing datasets, we
repeated the CV procedure 100 times (Step 10, Figure S2), each
time using a different subset of participants (and hence different
features to construct 100 distinct global models for each specific
participant). Finally, to obtain the video-predicted PVT mean RT
for a specific participant, we used video-extracted features from
this participant as input to each of 100 distinct global models
and averaged the predicted results (Steps 11b and 12b, Figure S2).
This average, obtained without using any information from the
specific participant during model training, served as the video-
predicted PVT mean RT for that participant for the time the video
was recorded.
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Figure 2. Inputs and outputs of the personalized unified model of performance (UMP) and the process of using ocular and facial video-extracted
features to make personalized alertness predictions. (A) The UMP is personalized to an individual based on the individual’s sleep history and mean
reaction times (RTs) measured by a psychomotor vigilance test (PVT). (B) Instead of using the measured PVT mean RTs, we propose to use predicted
PVT mean RTs from videos to personalize the UMP. To this end, we built linear mixed-effects models that predicted PVT mean RTs from facial and

ocular features extracted from video recordings.
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Figure 3. Feature extraction from facial videos. (A) Facial landmarks (68 points, filled circles) from a video frame of a representative participant. (B)
Eye landmarks (corresponding to the left eye in panel A) from which we computed the eye aspect ratio as the ratio between the vertical eye-opening
height h, and the horizontal eye width w,. (C) Mouth landmarks (from panel A) from which we computed the mouth aspect ratio as the ratio between
the width of the mouth w, (the distance between points m; and ms) and the height of the mouth h_ (the distance between points m, and my). (D) Eye
aspect ratio time-series data (light trace, raw data; dark trace, smoothed data) averaged across the left and right eyes for a representative participant.
The dashed trace indicates the baseline of the eye aspect ratio, and the downward peaks (troughs) indicate blinks, from which we extracted several

ocular features.

Video-length analysis

To assess the effect of video duration on the accuracy of the
video-predicted PVT mean RT, we analyzed frames of video
lengths ranging from 10 to 180 seconds of each recording. Then,
from these frames, we extracted features, predicted PVT data,
and assessed model performance.

Video-based personalization of the UMP

To personalize the UMP for each participant using video record-
ings, we followed the procedure discussed above (Personalized alert-
ness predictions), except that we replaced each PVT measurement
with the average of the predicted PVTs over the 100 mixed-effects
model predictions for each video recording (Step 12b, Figure S2).
Accordingly, after each prediction corresponding to one of the
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14 video recordings of a given participant, we adjusted the UMP
model parameters by providing as inputs to the UMP the averaged
video-predicted PVT data along with the sleep history (Figure 2B).
After adjusting the UMP parameters using all of the 14 predicted
PVTs, we obtained the personalized UMP, which we used to pre-
dict alertness impairment for the corresponding participant for
a given time of day. To obtain a measure of variability around
the predictions of the personalized UMP for each participant, we
repeated the model-personalization procedure 100 times, each
time using the predicted PVT data from one of the 100 mixed-
effects models of the CV procedure. Then, from the 100
video-based personalized UMP predictions, we computed a
percentile-based 95% confidence interval.

Assessment of video-based personalization of
the UMP

To assess the video-based personalized UMP’s ability to learn
an individual’s response to sleep loss, for each participant we
computed the RMSE between the measured PVT data and the
time-matched UMP predictions (i.e. UMP predictions calculated
at the time points when PVT measurements occurred). We also
computed the RMSE between the predictions of the personal-
ized PVT-based UMP (i.e. using the actual PVT measurements to
individualize the model) and the measured PVT data. Finally, to
assess the benefit of the personalized video-based UMP over a
model with no individualization, i.e. a group-average UMP [25],
we computed the RMSE between the measured PVT data and the
predictions of the group-average model, where the only input to
the model was sleep history.

Statistical analyses

We compared the prediction accuracy of the three types of UMP
models (group-average UMP, personalized PVT-based UMP, and
personalized video-based UMP) using repeated-measures analy-
sis of variance (ANOVA) in MATLAB with Tukey-Kramer post hoc
tests. Using the same statistical analysis, we also compared the
accuracy of video-predicted PVT mean reaction times obtained
from mixed-effects models built using 1-, 2-, or 3-minute videos.
To assess whether individual facial and ocular features were
predictive of the measured PVT data, we performed a univar-
iate analysis by separately fitting a linear mixed-effects model
to each feature and computing two complementary R? metrics:
the marginal R and the conditional R? [50]. R? captured the pro-
portion of the variance explained by a participant-specific model
(i.e. the full model, which includes both the fixed and the ran-
dom effects), whereas R% captured the proportion of the variance
explained by the global model (i.e. the fixed-effects component
of the model) and provided a measure of the ability of the model
to predict PVT data for participants not used for model fitting.
Therefore, we used the RZ, values associated with the individual
features to rank them and used a cutoff value of 0.1 to identify
features that should be considered informative in predicting PVT
data. The reported p values indicated the statistical significance
(p < .05) of the slope of the univariate mixed-effects model fits not
being equal to zero. To assess the extent of agreement between
the measured and predicted data, we used the 14 data points for
each participant to compute the concordance correlation coef-
ficient (CCC) [51], using the epiR statistical package in R [52]. For
each participant, we computed two CCC values: one for the meas-
ured PVT versus the video-predicted PVT and the other for the
measured PVT versus the personalized video-based UMP alert-
ness (i.e. PVT) prediction.
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Results

Video-length determination

Our analysis of the effect of video duration on the ability to pre-
dict PVT data indicated that videos >1 minute captured at least
one blink in each of the 14 video recordings of each participant,
with no significant group differences in RMSE between the meas-
ured and video-predicted PVT data across 1-, 2-, or 3-minute
videos [repeated-measures ANOVA, F(2,50) = 0.05, p = .95, for dif-
ferences in RMSEs < 0.20 ms over the 100 predictions for each of
the 26 participants]. Therefore, we report results based on videos
of 1-minute duration.

Feature assessment

To assess whether extracted features were predictive of PVT data,
we separately fitted linear mixed-effects models to each of the
17 features (the 15 ocular and facial features in Table 2 plus age
and sex). We observed large participant-to-participant variations
in the range of feature values and PVT data. Figure 4 shows the
models for three of the 17 features, including the global model
based on all participants (thick line) and individual models (thin
lines), where we captured individual differences by including
participant-specific intercepts, and Table 3 shows the statistical
significance of the fitted slopes and the proportion of variance
explained by the models, as measured by the marginal R% and the
conditional R2. The top three features ranked by R? were baseline
eye-opening level, PERCLOS, and eyelid-closing velocity. For these
features, R, ranged from 0.13 to 0.18, indicating that the global
model only captured a small proportion of the total variance. The
corresponding R? values were considerably larger (0.54-0.58), indi-
cating that the between-participant variability (see arrows in the
bottom panel of Figure 4) contributed substantially towards the
total variance. Analysis of the model slopes indicated that the PVT
data decreased with baseline eye-opening level and eyelid-closing
velocity, but increased with PERCLOS (p < .001). For the remaining
14 features, R was less than 0.10, suggesting that these features
are likely to be less predictive of PVT data, and R? ranged from 0.45
to 0.61, indicating large between-participant variability (Figure
S3). Analysis of the slope of the model for these features indicated
that there was no significant linear relationship between the PVT
data and five features, i.e. age, sex, variance of head-movement
velocity, blink rate, and eyelid-reopening amplitude-velocity ratio
(p > .06). The remaining nine features showed a significant linear
relationship with the PVT data (p < .05).

PVT data prediction from videos
Model selection

To develop multivariate mixed-effects models to predict PVT data
(Figure 2B), in each of the five outer CV folds of the repeated (100
times) nested CV procedure, we used a forward selection proce-
dure. Table 3 (last column) shows the frequencies at which the
procedure selected each feature. The top three most frequently
selected features appeared in 29%-51% of the 5x 100 models,
while the remaining features appeared in less than 29% of the
models. The median number of features in the models (Step 6,
Figure S2) was 2 (interquartile range, 1-3), indicating model
parsimony.

Model evaluation

To evaluate the performance of the models on data not used
for model training, we computed the RMSE between the video-
predicted and the measured PVT data in the test datasets (Step 8,
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Figure 4. Linear association between psychomotor vigilance test (PVT)
mean reaction time (RT) and individual ocular features, as determined
by univariate linear mixed-effects model fit. The panels show model
fitting for the top three features ranked by the marginal R?, R2,. In each
panel, the thick line indicates the global model fit (i.e. the fixed-effects
component of the mixed-effects model), and the thin lines indicate
participant-specific model fits for the 26 participants using the fixed and
random effects. The arrows in the bottom panel mark two participants
with very different ranges of predictor and response variable values. The
fitted slopes were significant for each of the three features (p <.001).
PERCLOS, percentage of time the eyes were more than 80% closed.

Figure S2). The average RMSE across the repetitions of the 5-fold
CV (Step 12a, Figure S2) was 39 ms (SD, 9 ms). The average R% and
R? across the repetitions of the 5-fold CV (Step 12a, Figure S2)
were 0.18 (SD, 0.06) and 0.55 (SD, 0.05), respectively, indicating that
the fixed-effects component captured a moderate amount of the

total variance and that a large proportion of the variance came
from participant-to-participant variations. In addition, for each
participant, we computed the CCC between the video-predicted
PVT mean RT data (closed circles in Figure 5) and the measured
PVT mean RT data (open circles in Figure 5). We observed con-
siderable between-participant variability, with generally low CCC
values, which ranged from -0.19 to 0.50 (Figures 6A and Figure S4).

Personalization of the UMP

To assess the utility of using facial and ocular features to develop
personalized predictive models of alertness, we compared the
performance of the UMP developed using three different inputs
to the model: (1) sleep history only (group-average UMP), (2) sleep
history and measured PVT data (personalized PVT-based UMP),
and (3) sleep history and video-predicted PVT data (personalized
video-based UMP). Figure 5 shows the predictions of each of the
three models along with the 95% confidence intervals for the
predictions of the video-based personalized UMP (shaded areas),
the measured PVT data (open circles), and the video-predicted
PVT data (closed circles). The 26 participants in the figure were
sorted from the most resilient to the most vulnerable to sleep
loss (Supplementary Materials). Some of the most extreme par-
ticipants in terms of sleep-loss phenotype (e.g. #1, #25, and #26)
showed the largest differences between the two personalized
models, although some participants with a less extreme sleep-
loss phenotype (e.g. #9 and #11) also showed large differences.
For other participants (e.g. #3, #4, #7, and #12), the two person-
alized models yielded very similar performance, which occurred
when the video-predicted PVT data matched the measured
data. In contrast, for the majority of the participants, the group-
average UMP did not perform as well as either of the two person-
alized models.

To obtain an overall assessment of the models, we averaged
the RMSEs across the 26 participants for each of the three UMP
models (Figure 7). A repeated-measures ANOVA yielded a signifi-
cant group difference in the averaged RMSE values [F(2,50) = 44.8,
p <.001]. Tukey-Kramer post hoc tests indicated that the person-
alized video-based UMP model yielded an average RMSE that was
significantly smaller than that of the group-average UMP {36 ms
[standard error (SE), 5 ms] vs. 53 ms (SE, 3 ms); p <.001} and sig-
nificantly larger than that of the personalized PVT-based UMP
model [36 ms (SE, 5 ms) vs. 22 ms (SE, 2 ms); p < .001]. Importantly,
for nearly half of the participants (n=12), the personalized
video-based UMP models yielded RMSEs that were lower than the
conservatively estimated within-participant variability of 30 ms
for PVT mean RT [17] (dotted horizontal line in Figure 7).

We also computed the CCC values to assess the extent of
agreement between the measured PVT mean RT data (open cir-
cles in Figure 5) and the predicted PVT data obtained using the
personalized video-based UMP predictions (dashed lines in Figure
5). Figures 6B and Figure S5 show the results, which indicated a
considerably better agreement with the measured data than the
video-predicted results in Figure 6A, with the CCC achieving a
maximum of 0.85 for participant #12.

Discussion

Objective measurements of alertness level are based on neu-
robehavioral tests, such as the PVT, which are time-consuming
and dependent on the individual’s level of effort. Here, based on
a 42-hour TSD challenge, we developed and validated models,
which obviated the need for such tests and predicted personalized
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Table 3. Statistical results of the univariate linear mixed-effects model to predict psychomotor vigilance test mean reaction time as a
function of each of the 15 ocular and facial features extracted from 1-minute video recordings, age, and sex as well as the frequencies
at which these features were selected to build the best models in the 5-fold nested cross-validation rocedure

Feature number Feature name RZ R Slope* Selection frequency (rank order)
Trend P-value

1 Baseline eye-opening level 0.18 0.58 Neg <.001"* .32.(2)
2 PERCLOS 0.14 0.54 Pos <.001*** 51(1)
3 Eyelid-closing velocity 0.13 0.54 Neg <.001** .29 (3)
4 Baseline mouth aspect ratio 0.09 0.61 Neg .008" 00 (17)
5 Eyelid-closing amplitude-velocity ratio 0.08 0.53 Pos <.001** 27 (4)
6 Eyelid-velocity ratio 0.06 0.52 Neg <.001"* .23 (5)
7 Blink duration 0.06 0.53 Pos <.001** 05 (16)
8 Blink amplitude 0.06 0.49 Neg <.001** 07 (11)
9 Eyelid-reopening velocity 0.04 0.49 Neg .002" .05 (15)
10 Eyelid-closing duration 0.03 0.50 Pos <.001** .10 (7)
11 Eyelid-reopening duration 0.02 0.51 Pos .001" 06 (13)
12 Sex 0.01 0.48 Pos 406 07 (10)
13 Head-movement velocity 0.01 0.48 Pos .028 .08 (8)
14 Blink rate 0.01 0.45 Pos 184 .11 (6)
15 Eyelid-reopening amplitude-velocity ratio 0.01 0.48 Pos 112 06 (14)
16 Variance of head-movement velocity 0.01 0.47 Pos .080 .08 (9)
17 Age 0.00 048  Pos 621 06 (12)

Neg, negative slope; PERCLOS, percentage of time the eyes were more than 80% closed; Pos, positive slope.

*Slope, slope of the mixed-effects model.

1R2, proportion of the variance explained by a global model fit (i.e. a line fit with an intercept and a slope common to all participants).
#RZ, proportion of the variance explained by a participant-specific model fit (i.e. a line fit with an intercept that is participant specific and a slope that is common

to all participants).
**p <.001, "p<.01, p<.05.

alertness impairment on a continuous scale based on 1-min video
recordings. Based on independent test data not used for model
training, we found that the average error of 36 ms between the
measured PVT data and the individualized video-based UMP pre-
dictions was nearly indistinguishable from the within-participant
variability in alertness impairment (30 ms) under rested condi-
tions. As a proof of principle, this finding suggests that for TSD we
can substitute facial videos for PVTs to obtain adequate person-
alized alertness predictions.

Personalized alertness prediction based on video recordings
involves two steps: predicting PVT data using features extracted
from videos and using these data to personalize the UMP. In the
first step, the 5-fold repeated (100 times) CV procedure results
in 5 x 100 different mixed-effects models, each with its own fea-
ture subsets and model parameters. Hence, in real-world use, to
obtain personalized alertness predictions based on a new video
recording, one should extract features from the recording, use the
500 models to predict 500 PVT results, average the results, and
then use the average PVT to personalize the UMP.

When building the multivariate mixed-effects models to pre-
dict PVT data from video recordings, we minimized model over-
fitting through cross-validation and by using a forward feature
selection that only added informative features to the model. The
results indicated that 75% of the models only required three or
fewer features, indicating model simplicity and generalizabil-
ity. Among the features used in the models, PERCLOS was the
most frequently selected (used in 51% of the 500 models), an
expected result given that in vigilance tests this feature is one of
the most sensitive indicators of alertness [32, 53]. In agreement

with previous studies that used PVT data as a measure of fatigue
[33-35], PERCLOS correlated with alertness impairment, indicat-
ing its suitability for passively detecting fatigue. In a future effort,
this feature-selection process could be simplified by using a tree-
based method, such as XGBoost [54, 55].

Baseline eye-opening level, which measures the extent of
“droopy” or “hanging eyelids,” was the second most frequently
selected feature (used in 32% of the models). The relationship
between this feature and alertness impairment has not been
well studied. A previous investigation [26] in which observers
rated photographs of rested and sleep-deprived individuals with
respect to facial cues of fatigue found that the extent of hang-
ing eyelids was greater (i.e. the eyelids were more droopy) in the
sleep-deprived group. In agreement with these results, we found
that a relatively lower value of this feature (indicating more
hanging of the upper eyelids) was associated with greater alert-
ness impairment. Another investigation [13], involving on-road
driving, assessed the correlation between sleepiness and mean
eye-opening level (equivalent to the baseline eye-opening level
in our study) and found that, in agreement with our results, the
mean eye-opening level decreased with sleepiness. The upper
eyelid is kept in the open position by the tonic activity of the leva-
tor palpebrae muscle, whose tone is affected by alertness level
[56], potentially explaining the decreased baseline eye-opening
level under low-alertness conditions.

Eyelid-closing velocity was the third most frequently selected
feature (used in 29% of the models). This feature was evaluated as
a fatigue indicator only by two previous studies [9, 13], which found
that it decreased with sleep deprivation time [9] and sleepiness level
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Figure 5. Personalization of the unified model of performance (UMP). Each panel shows the data (circles) and UMP predictions (lines) associated
with each of the 26 participants. The open circles correspond to the measured psychomotor vigilance test (PVT) mean reaction times (RTs), and the
filled circles correspond to the PVT mean RT predicted from the facial video features. The light continuous traces correspond to the predictions of

the group-average UMP model. The dark continuous lines correspond to the predictions of the UMP personalized by sleep history and measured PVT
data (personalized PVT-based UMP). The dashed lines correspond to the predictions of the UMP personalized by sleep history and video-predicted PVT
data (personalized video-based UMP). The shaded regions indicate 95% confidence intervals for the predictions of the personalized video-based UMP

model. For participant #26, the two measured PVT data points that were above 440 ms are not shown.

[13] during driving tasks. Supporting and extending their findings
to non-driving scenarios and PVT-based vigilance evaluations, we
found that eyelid-closing velocity decreased with alertness impair-
ment. For all remaining significant features (Table 3), the direction

of their change with alertness impairment was consistent with that
found by previous studies (see references in Table 2).
Using mixed-effects models based on the most informative
features, we predicted PVT mean RT and used these predictions
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Figure 7. Comparison of the performance of the unified model of
performance (UMP) based on three different inputs to the model: (A)
sleep history only (group-average UMP), (B) sleep history and measured
PVT data (personalized PVT-based UMP), and (C) sleep history and
video-predicted PVT data (personalized video-based UMP). Each open
circle represents the root mean square error (RMSE) between the
measured PVT data and the predictions of the corresponding UMP
model for each of the 26 participants. Error bars denote one standard
error of the mean. The horizontal dotted line marks a conservative
estimate of the within-participant variability (30 ms) in the measured
PVT data. “p < .001, repeated-measures ANOVA with Tukey-Kramer post
hoc tests.

to personalize the UMP for each participant (Figure 2B). The aver-
age error of 36 ms for these personalized UMP predictions was
substantially lower than that of the group-average model (53 ms),
indicating the benefit of personalized prediction of alertness. In
a previous study, a support vector machine regression model

also predicted alertness-impairment levels based on video-
extracted ocular features [14]. However, this model yielded a sub-
stantially higher discrepancy between measured and predicted
PVT mean RT (106 ms), highlighting the advantage of our mod-
eling approach. Although the average error of the personalized
video-based predictions across the participants was relatively low,
for half of the participants the error was >30 ms, partially due to
the large range in feature values and PVT mean RT data. For the
other half of the participants, the error was <30 ms, indicating
good model performance for these participants. Nevertheless,
our models could be further improved. As a potential next step
to enhance PVT data prediction from video recordings, we could
take advantage of recent developments in deep neural network
architectures (e.g. Transformers) [57], which often have the
potential to predict alertness impairment based on entire video
recordings without the need to define and extract features.

To assess the agreement between the measured and pre-
dicted PVT data, we also computed the CCC values for both
the video-predicted PVT and the personalized video-based UMP
predictions versus the measured PVT mean RT (Figure 6, A and
B, respectively). For nearly all of the participants, the CCC was
considerably higher when we used the UMP. We attribute this
improvement to two factors: (1) the structure of the UMP itself,
which accounts for the homeostatic and circadian processes and
thereby allows the predictions to more closely follow the phys-
iology of sleep regulation, and (2) that the UMP predictions are
based on a series of PVT estimates from the videos, as opposed
to a single estimate. These results support the notion that the
absolute error of an estimated quantity (in our case, the PVT
based on a single video) should not be considered in isolation, but
rather within the context of its use (in our case, as an input to the
UMP to predict future PVT values) [58]. We also assessed whether
the agreement between the measured and predicted PVT data
was reflected in the personalized UMP model parameters. As
expected, there was a significant positive correlation between the
RMSE of the measured and video-predicted PVTs and the devia-
tions in key UMP model parameters (S, L, and U) personalized
with measured versus video-predicted PVTs (Pearson correlation
coefficient r = 0.24-0.94, p < .001), with lower RMSE values associ-
ated with smaller absolute deviations between the corresponding
UMP model parameters.
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Although we used 1-minute video recordings for alertness
predictions, shorter recordings, ideally a few seconds in dura-
tion, would be more practical for real-world implementation.
However, for participants with a low blink rate, videos with a few
seconds in duration may be devoid of the sufficient number of
blinks required to compute informative features (PERCLOS and
eyelid-closing velocity). As an alternative, within a time window
of <1 hour, one could record a collection of videos of short dura-
tions during which individuals face the camera and use the col-
lection of recordings to compute the required features.

Limitations

This study has limitations. First, we developed our models using
data from a homogeneous population of healthy relatively young
adults. Therefore, it is unclear whether our models are applica-
ble to a heterogeneous, older population. In this regard, a recent
study [39] found that sleep deprivation (29 hours of TSD) affected
ocular metrics (PERCLOS, blink duration, and the frequency of
long eye closures [>500 ms]) only in young adults (mean age, 24
years) but not in older adults (mean age, 57 years), warranting
further research to develop age-appropriate alertness-prediction
models. Second, we developed our models using data collected
during a TSD challenge. Hence, additional studies involving dif-
ferent sleep-loss challenges, including chronic sleep restric-
tion, are necessary to assess the generalizability of our findings.
Finally, we obtained videos from participants who sat consist-
ently facing the camera. In the real world, individuals may not be
able to always face the camera as they may be engaged in various
activities. Hence, it is unclear if our models will apply in those
settings. However, when continuous video monitoring is possible,
one could build predictive models based on features extracted
from those time periods when individuals are facing the camera.

Conclusions

In this proof-of-concept study, we created a more practical method
for predicting an individual’s alertness level using passively col-
lected video recordings of their face. The method involved two
steps: prediction of PVT mean RT based on mobile phone video
recordings and personalized predictions of alertness using the
predicted PVT data. Assessment of model performance indicated
that the personalized video-based predictions were adequately
accurate with errors lower than the within-participant variability
in alertness impairment under rested conditions for half of the
participants, significantly better than the group-average model
predictions, but not as accurate as the personalized model pre-
dictions based on actual PVT data. Future efforts should focus on
investigating the use of artificial intelligence-based Transformer
models [57] to capture facial features in video recordings predic-
tive of alertness impairment.
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