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Abstract 

Study Objectives:  Alertness impairment is generally assessed by the psychomotor vigilance test (PVT). However, performing a PVT 
in the real world is not practical because it is time-consuming and interrupts everyday activities. Here, we aimed to replace the PVT 
with passively recorded facial videos and use these measurements to make personalized alertness-impairment predictions.

Methods:  We retrospectively analyzed data from a 62-hour total sleep deprivation (TSD) challenge involving 26 healthy young adults 
(14 men), where every 3 hours they performed a 5-minute PVT followed by a 3-minute video recording of the face. We then extracted 
ocular and facial features from the first 1 minute of the videos, used the features to train linear mixed-effects models that predicted 
PVT mean reaction times, and used the predicted PVT to customize the unified model of performance (UMP) and make personalized 
alertness-impairment predictions for each participant.

Results:  For the mixed-effects models, the average root mean square error (RMSE) between the measured and predicted PVT data was 
39 ms (standard deviation, 9 ms). For the personalized UMP predictions based on PVT predicted from the videos, the average RMSE 
between the measured PVT data and the model-predicted alertness impairment was 36 ms (standard error, 5 ms), which is nearly 
indistinguishable from the within-participant variability of 30 ms for PVT mean reaction time under rested conditions.

Conclusions:  As a proof of principle, we developed a practical approach for predicting an individual’s alertness impairment using 
passively recorded facial videos.

Clinical Trial Information:  Title: “Real-Time Caffeine Optimization During Total Sleep Deprivation.” Registration number: NCT04399083. 
Website: https://clinicaltrials.gov/study/NCT04399083.
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Graphical Abstract 

Statement of Significance

Alertness impairment, which compromises work and safety in civilian and military settings, is often assessed using the psychomotor 
vigilance test (PVT). However, this test, which is also used to customize alertness-prediction models, is impractical for everyday use. Here, 
obviating the need to perform PVTs, we developed and assessed a new approach to customize predictive models and make personalized 
alertness predictions using passively recorded 1-minute facial videos. This new capability offers the potential to popularize the use of 
personalized predictive models of alertness, which have been handicapped by the need to perform PVTs. Future efforts should focus on 
validating our results with videos collected outside a laboratory environment, as was done in this study.

The psychomotor vigilance test (PVT), which measures the reac-
tion time (RT) to a visual stimulus, is the “gold standard” neurobe-
havioral test for assessing alertness impairment following sleep 
loss [1]. The PVT is a simple test, takes 5–10 minutes to complete, 
and is a well-validated, sensitive assay applicable to different 
sleep-loss challenges [2]. However, performing a PVT outside of 
a laboratory setting is often not practical because it interrupts 
everyday activities and is time-consuming, as evidenced by the 
small number of test results collected in shift-worker studies [3, 
4]. In addition, PVT results depend on the individual’s level of 
effort, further underscoring the practical challenges of assays that 
require active participation [5–7]. An ideal neurobehavioral test 
would assess alertness-impairment passively and unobtrusively.

As an alternative to the PVT, a number of studies have investi-
gated the use of ocular, oculomotor, and facial features for build-
ing mathematical models that assess alertness impairment in 
adults. For example, Abe et al. [8] built a Bayesian model using 
ocular features (eye blink duration and average eye-opening 
degree) and oculomotor features (saccade and microsaccade 

properties) extracted from facial videos recorded during a 
38-hour total sleep deprivation (TSD) challenge. From the vid-
eos, the model estimated the probability of each of the three lev-
els of attention vigilance, as quantified by PVT mean RT. Other
less-challenging sleep-loss studies, involving one night of 4 hours
of sleep restriction [9–11] or one night of TSD [12], built logistic
regression models to estimate the probability of each of two lev-
els of fatigue [9–11] or of driving performance impairment [9, 12]. 
As model predictors, Akerstedt et al. [9] used variability in the
vehicle lateral position during driving tasks, blink duration, and
the ratio of blink amplitude to peak eyelid-closing velocity (i.e. the 
eyelid-closing amplitude-velocity ratio); Wilkinson et al. [11] used 
blink duration, inter-event duration (i.e. the interval between
when the eyelid-closing and -reopening velocities reach their
respective peak values), eyelid-closing amplitude-velocity ratio,
and the percentage of time the eyes are fully closed; Shiferaw et al. 
[12] used blink rate, blink duration, fixation rate, saccade ampli-
tude, driving duration, and binary sleep-deprivation status (i.e.
yes or no); and Puspasari et al. [10] used blink duration, amplitude 
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and peak velocity of saccades, the percentage of time the eyes are 
more than 80% closed (PERCLOS), and microsleep (blinks with a 
duration greater than 500 ms) frequency. A few studies also built 
data-driven classifiers using other machine learning approaches, 
including artificial neural networks [13], support vector machines 
[14, 15], or a collection of different machine learning models [15, 
16]. These models used ocular features alone [14] or a combina-
tion of ocular and facial features [13, 15, 16] to classify individuals 
into one of two [14–16] or three [13] levels of alertness impair-
ment induced by night driving or 24–30 hours of TSD.

Although these studies developed the ability to estimate alert-
ness impairment based on facial and ocular features, all of their 
models–except those of Massoz et al. [14]–classified alertness 
impairment into discrete categories rather than quantifying it on 
a continuous scale. Such a quantification would help us detect 
declining trends in vigilance and administer countermeasures 
early on rather than waiting until an individual is classified as 
impaired. Importantly, except for a few studies [8, 13–16], oth-
ers [9–12] did not assess model performance on an independent 
dataset, and the one study that validated model performance 
through cross-validation and predicted alertness impairment on 
a continuous scale showed a relatively large error (106 ms) in the 
prediction of PVT mean RT based on ocular features [14]. This 
error is more than three times as large as the within-participant 
variability of ~30 ms in alertness impairment under rested condi-
tions [17], indicating the need for more accurate models.

Here, we aimed to develop personalized alertness-prediction 
models based on facial and ocular features, rather than on PVT 
measurements as in our previous modeling efforts [18–21]. To this 
end, we used laboratory data from a recent 62-hour TSD study 
involving 26 participants, where we collected PVT data every 3 
hours (14 tests in total) and concurrently collected 3-minute facial 
videos from each participant. Using a 5-fold nested cross-validation  
(CV) procedure, we built (i.e. trained) personalized models to
quantitatively predict continuous alertness-impairment levels
and assessed their performance on independent data not used
for model training.

Methods
Study design
To develop personalized models that predict alertness levels 
based on an individual’s facial and ocular features, we retro-
spectively analyzed data from a recent sleep-deprivation study 
conducted at the Social, Cognitive, and Affective Neuroscience 

(SCAN) Lab at the University of Arizona College of Medicine 
(Tucson, AZ) [22]. The study included healthy men (n = 14) and 
non-pregnant, non-lactating healthy women (n = 12), with ages 
ranging from 18 to 36 years [mean = 21.6 years, standard devia-
tion (SD) = 3.9 years] and no history of sleep disorders or physical 
and mental health problems (Table S1). The study consisted of a 
12-day home phase, where participants maintained their habit-
ual sleep and caffeine-consumption schedules, followed by a
laboratory phase (Figure 1). The laboratory phase started with 8
hours of time in bed (23:00 to 07:00), was immediately followed
by a 62-hour TSD challenge during which participants performed
5-minute PVTs every 3 hours, and ended with a 12-hour recov-
ery sleep. Five minutes after the end of each PVT, we collected a
3-minute video recording of each participant’s face as they sat
facing the camera of a mobile phone (Samsung Galaxy S20). We
set up the camera so that the participant’s face covered approx-
imately one-third of the height of the frame (frame height, 1920
pixels; frame width, 1080 pixels) and recorded the videos at 240
frames per second.

After the first 42 hours of TSD, participants consumed caf-
feine as part of the experimental design of the original study 
[22]. Therefore, to exclude caffeine effects, we only analyzed data 
collected during the first 42 hours of the TSD challenge, which 
consisted of 14 PVT sessions and their associated videos (Figure 
1). The protocol was reviewed and approved by the University of 
Arizona College of Medicine Institutional Review Board and the 
US Army Office of Human Research Oversight.

Personalized alertness predictions
Based on the two-process model postulated by Borbély and 
Achermann [23], we previously developed and validated the uni-
fied model of performance (UMP) [18–21] that, given sleep history 
and caffeine history (optional), predicts alertness impairment as 
measured by the PVT mean RT. The UMP predicts the temporal 
patterns of alertness impairment P (Table 1, Equation 1) as a func-
tion of the circadian process, which depends on the time of day 
(Equation 2), and the homeostatic process, which depends on the 
time awake (Equation 3). The model also considers the amount 
of sleep debt in the prior sleep history and its effect on recovery 
sleep (Equations 4–6) [19]. To personalize the UMP to a particu-
lar individual [18], the model recursively adjusts the values of 
its five most sensitive parameters (Table 1) after each PVT meas-
urement so that, progressively, the model predictions reflect the 
participant’s response to sleep loss measured by the PVT. At the 
start of this process, the model assumes that the participant is 

Figure 1.  Study design. The study consisted of a home phase and a laboratory phase. During the 12 days of the home phase, participants maintained 
their habitual sleep and caffeine schedules. The laboratory phase started with an 8-hour sleep opportunity, was immediately followed by a 62-hour 
total sleep deprivation (TSD) challenge, and ended with a 12-hour recovery sleep. During the first 42 hours of TSD, participants performed 5-minute 
psychomotor vigilance tests (PVTs) every 3 hours (filled circles). Five minutes after each PVT, we obtained a 3-minute video recording (open squares) 
of each participant facing a mobile phone camera.
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an “average” individual and uses group-average parameter values 
obtained by fitting the model to the group-average PVT data in 
the study by Belenky et al. [24]. Then, after each PVT, the model 
uses a Bayesian learning approach to balance the weight of each 
PVT measurement against that of the group-average model. As 
the number of PVT measurements increases, the importance 
given to the measurements increases, leading to a personalized 
model that represents the individual’s sleep-loss phenotype [18]. 
In a recent study, we showed that 12 PVTs measured during 36 
hours of TSD are sufficient to personalize the UMP [25]. (Note that 
the UMP can also account for the effect of caffeine; however, we 
excluded this for simplicity because our study does not involve 
caffeine use.).

In addition to the PVT, changes in an individual’s facial and 
ocular features have been shown to be indicative of alertness lev-
els, as reported in multiple studies listed in Table 2. Therefore, in 
place of performing a PVT to personalize the UMP, we sought to 
identify facial and ocular features predictive of PVT results that 
we could use instead of the measured PVT as input to the UMP 
to personalize alertness predictions (Figure 2B). To this end, we 
investigated several facial and ocular features extracted from the 
video recordings that could be used to predict the measured PVT.

Feature extraction
From each video frame, we used the open-source Python library 
dlib [48] to extract 68 facial landmark points (Figure 3A). As a first 
step towards extracting ocular features, we computed “eye aspect 
ratio” values from the facial landmarks, as described previously 

[49]. Briefly, for each video frame, we computed the vertical height 
he between the upper and lower eyelids (Figure 3B), which indi-
cated the level of eye-opening. To minimize artifactual changes 
in he due to a participant’s movement relative to the camera, 
we normalized it by dividing it by the horizontal eye width we 
(Figure 3B and Supplementary Materials). To obtain a single eye 
aspect ratio he/we, we computed the ratio for each eye and aver-
aged them. Similar to the eye aspect ratio, we computed a mouth 
aspect ratio by dividing the width wm of the mouth by its height 
hm (Figure 3C and Supplementary Materials). The time series of 
eye aspect ratios over a recording indicated the dynamics of eye-
lid movement, where sharp downward peaks (troughs) indicated 
blinks (Figure 3D). We extracted several ocular features based on 
these blinks (Figure S1). Table 2 shows the definition of the 15 
ocular and facial features we extracted from the time series of 
landmarks.

Prediction of PVT based on ocular and facial 
features
To predict PVT data from ocular and facial features, we used linear 
mixed-effects models that represented the measured PVT data as a 
linear function of the features. These models consisted of fixed- and 
random-effects components, where the fixed component (“global 
model”) captured the average linear relationship between the fea-
tures and the PVT data, and the random component captured 
the within- and between-participant variabilities (Supplementary 
Materials). To this end, we split the study data into training and test-
ing datasets, where we fitted (trained) the models using participants 

Table 1.  Governing equations and parameter values of the unified model of performance (UMP)

Performance impairment (P):

  �  P(t) = S(t) + κC(t), (1)

 �where S and C denote the homeostatic and circadian processes of the two-process model at time t, respectively, and κ represents the 
circadian amplitude.

Circadian Process (C):

  �  C(t) =
5∑

i=1
ai sin

[
i 2πτ (t+ φ)

]
,

(2)

 �where ai, i = 1, . . . , 5, represents the amplitude of the five harmonics (a1 = 0.97, a2 = 0.22, a3 = 0.07, a4 = 0.03, and a5 = 0.001), and τ and 
ϕ, respectively, denote the period and phase of the circadian oscillator (~24 h).

Homeostatic Process (S):

dS (t)
dt

=

®
[U− S (t)] /τw
[L (t)− S (t)] /τs

during wakefulness

during sleep

(3)

 �where L and U denote the lower and upper asymptotes of process S, respectively, τw [mean (standard error) 23.0 (3.2) h] and τs [4.0 
(1.0) h] denote the time constants of the increasing and decreasing sleep pressure during wakefulness and sleep, respectively. 
S(0) = S0 and L(0) = L0 correspond to the initial state values for S and L, respectively.

Lower Asymptote (L) of Process S:

  �L(t) = U× Debt(t), (4)

 �where Debt denotes the sleep debt.

Sleep Debt (Debt):

dDebt(t)
dt

= [Loss(t)− Debt(t)] /τLA,
(5)

Loss(t) =

®
1

−2

during wakefulness
during sleep,

(6)

 �where τLA [7.0 (2.6) d] denotes the time constant of the exponential decay of the effect of sleep history on performance impairment.

Personalized predictions:
Customization of the model to capture an individual’s sleep-loss phenotype requires that we update the value of five model 
parameters (U, κ, ϕ,S0, and L0) after each PVT measurement. The initial values (and standard errors) for these parameters, which
correspond to the group-average model [20], are: U = 497 (31) ms, κ = 75 (7) ms, ϕ = 2.5(0.2) h, S0 = 176 (15) ms, and L0 = 140 (14) ms.
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from the training datasets and assessed model predictions using 
participants from the testing datasets. We developed these models 
using a 5-fold nested CV procedure (Steps 1–9, Figure S2), in which 
we trained the global models using different subsets of participants 
and extracted features. To obtain the feature subsets, in each of the 
five outer CV folds of the CV procedure, we used a forward selection 
procedure, where at each cycle we added the next most informative 
feature to the model and at the end selected the feature subset with 
the best model performance (Steps 2–6, Figure S2). The data used to 
train a global mixed-effects model to obtain the video-predicted PVT 
mean RT for a specific participant did not include any data (meas-
ured PVT or extracted ocular/facial features) from the participant 
we wished to predict. Specifically, to train a global model for a par-
ticipant, we used measured PVT data and video-extracted features 
collected from approximately 20 other participants in the training 
dataset (boxes labeled “Train” in Figure S2), explicitly excluding the 
specific participant.

To independently assess model performance for the par-
ticipants in the testing dataset not used for model training, we 
computed the root mean square error (RMSE) between the model 
predictions (i.e. the video-predicted PVT mean RT) and the meas-
ured PVT data (Steps 11a and 12a, Figure S2). To reduce the effect 
of outliers in the selection of the training and testing datasets, we 
repeated the CV procedure 100 times (Step 10, Figure S2), each 
time using a different subset of participants (and hence different 
features to construct 100 distinct global models for each specific 
participant). Finally, to obtain the video-predicted PVT mean RT 
for a specific participant, we used video-extracted features from 
this participant as input to each of 100 distinct global models 
and averaged the predicted results (Steps 11b and 12b, Figure S2). 
This average, obtained without using any information from the 
specific participant during model training, served as the video- 
predicted PVT mean RT for that participant for the time the video 
was recorded.

Table 2.  Definition of facial and ocular features investigated in the study

Feature number Feature name (units) Feature definition Reference

1 Baseline eye-opening level 
(unitless)

Mean of the baseline eye aspect ratio (horizontal dashed traces 
in Figure S1; Supplementary Materials)

[13, 26]a

2 Blink amplitude*,† (unitless) Vertical distance between the baseline eye aspect ratio and the 
trough of a blink event (vertical dashed line in Figure S1B)

[9, 13, 27]

3 Blink rate (min-1) Number of blinks per minute [12, 13, 15, 27–31]

4 PERCLOS (%) Percentage of time the eyes were more than 80% closed 
(Supplementary Materials)

[32–37]

5 Eyelid-closing velocity† (s-1)‡ Magnitude of the peak instantaneous velocity during the eyelid-
closing phase (Figure S1B)

[9, 13]

6 Eyelid-reopening velocity† 
(s-1) ‡

Magnitude of the peak instantaneous velocity during the eyelid-
reopening phase (Figure S1B)

[9]

7 Eyelid-velocity ratio† 
(unitless)

Ratio between eyelid-closing velocity and eyelid-reopening 
velocity

§

8 Eyelid-closing duration† (s) Interval between the time when the eyes were 33% closed 
during the eyelid-closing phase and the time when the 
eyelid-closing phase ended (thick dark horizontal lines in 
Figure S1B)

[14, 38]

9 Eyelid-reopening duration† (s) Interval between the time when the eyelid-reopening phase 
began and the time when the eyes were 33% closed during 
the eyelid-reopening phase (thick light horizontal lines in 
Figure S1B)

[14, 38]

10 Blink duration† (s) Interval between the time when the eyes were 33% closed 
during the eyelid-closing phase and the time when the 
eyes were 33% closed during the eyelid-reopening  
phase (Figure S1B)

[8–15, 27, 38–46]

11 Eyelid-closing amplitude-
velocity ratio† (s)

Ratio between blink amplitude and eyelid-closing velocity [9, 11, 13, 34, 42, 43, 
46]

12 Eyelid-reopening amplitude-
velocity ratio† (s)

Ratio between blink amplitude and eyelid-reopening velocity [11, 34, 40, 42, 43]

13 Head-movement velocity 
(a.u./s)

Mean instantaneous velocity of the head [15, 16]a, [47]

14 Variance of head-movement 
velocity (a.u./s2)

Variance of the instantaneous velocity of the head [47]a

15 Baseline mouth aspect ratio 
(unitless)

Median value of the time series of the mouth aspect ratio [26]a

aStudies reporting metrics that essentially captured the characteristics of the feature reported here.
*The blink amplitude served as a reference to define the level of eye closure. For example, we assumed that the eyes were 80% closed when the eye aspect ratio 
decreased from baseline to 80% of the blink amplitude.
†Metrics averaged across the blinks detected in a video recording.
‡Units for velocity, s-1, derived from the change in normalized eye-opening height (unitless) per second.
§ Feature not previously studied.
a.u., arbitrary units.
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Video-length analysis
To assess the effect of video duration on the accuracy of the  
video-predicted PVT mean RT, we analyzed frames of video 
lengths ranging from 10 to 180 seconds of each recording. Then, 
from these frames, we extracted features, predicted PVT data, 
and assessed model performance.

Video-based personalization of the UMP
To personalize the UMP for each participant using video record-
ings, we followed the procedure discussed above (Personalized alert-
ness predictions), except that we replaced each PVT measurement 
with the average of the predicted PVTs over the 100 mixed-effects 
model predictions for each video recording (Step 12b, Figure S2). 
Accordingly, after each prediction corresponding to one of the 

Figure 2.  Inputs and outputs of the personalized unified model of performance (UMP) and the process of using ocular and facial video-extracted 
features to make personalized alertness predictions. (A) The UMP is personalized to an individual based on the individual’s sleep history and mean 
reaction times (RTs) measured by a psychomotor vigilance test (PVT). (B) Instead of using the measured PVT mean RTs, we propose to use predicted 
PVT mean RTs from videos to personalize the UMP. To this end, we built linear mixed-effects models that predicted PVT mean RTs from facial and 
ocular features extracted from video recordings.

Figure 3.  Feature extraction from facial videos. (A) Facial landmarks (68 points, filled circles) from a video frame of a representative participant. (B) 
Eye landmarks (corresponding to the left eye in panel A) from which we computed the eye aspect ratio as the ratio between the vertical eye-opening 
height he and the horizontal eye width we. (C) Mouth landmarks (from panel A) from which we computed the mouth aspect ratio as the ratio between 
the width of the mouth wm (the distance between points m1 and m3) and the height of the mouth hm (the distance between points m2 and m4). (D) Eye 
aspect ratio time-series data (light trace, raw data; dark trace, smoothed data) averaged across the left and right eyes for a representative participant. 
The dashed trace indicates the baseline of the eye aspect ratio, and the downward peaks (troughs) indicate blinks, from which we extracted several 
ocular features.
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14 video recordings of a given participant, we adjusted the UMP 
model parameters by providing as inputs to the UMP the averaged 
video-predicted PVT data along with the sleep history (Figure 2B). 
After adjusting the UMP parameters using all of the 14 predicted 
PVTs, we obtained the personalized UMP, which we used to pre-
dict alertness impairment for the corresponding participant for 
a given time of day. To obtain a measure of variability around 
the predictions of the personalized UMP for each participant, we 
repeated the model-personalization procedure 100 times, each 
time using the predicted PVT data from one of the 100 mixed- 
effects models of the CV procedure. Then, from the 100  
video-based personalized UMP predictions, we computed a  
percentile-based 95% confidence interval.

Assessment of video-based personalization of 
the UMP
To assess the video-based personalized UMP’s ability to learn 
an individual’s response to sleep loss, for each participant we 
computed the RMSE between the measured PVT data and the 
time-matched UMP predictions (i.e. UMP predictions calculated 
at the time points when PVT measurements occurred). We also 
computed the RMSE between the predictions of the personal-
ized PVT-based UMP (i.e. using the actual PVT measurements to 
individualize the model) and the measured PVT data. Finally, to 
assess the benefit of the personalized video-based UMP over a 
model with no individualization, i.e. a group-average UMP [25], 
we computed the RMSE between the measured PVT data and the 
predictions of the group-average model, where the only input to 
the model was sleep history.

Statistical analyses
We compared the prediction accuracy of the three types of UMP 
models (group-average UMP, personalized PVT-based UMP, and 
personalized video-based UMP) using repeated-measures analy-
sis of variance (ANOVA) in MATLAB with Tukey-Kramer post hoc 
tests. Using the same statistical analysis, we also compared the 
accuracy of video-predicted PVT mean reaction times obtained 
from mixed-effects models built using 1-, 2-, or 3-minute videos. 
To assess whether individual facial and ocular features were 
predictive of the measured PVT data, we performed a univar-
iate analysis by separately fitting a linear mixed-effects model 
to each feature and computing two complementary R2 metrics: 
the marginal R2

m and the conditional R2
c  [50]. R2

c  captured the pro-
portion of the variance explained by a participant-specific model 
(i.e. the full model, which includes both the fixed and the ran-
dom effects), whereas R2

m captured the proportion of the variance 
explained by the global model (i.e. the fixed-effects component 
of the model) and provided a measure of the ability of the model 
to predict PVT data for participants not used for model fitting. 
Therefore, we used the R2

m values associated with the individual 
features to rank them and used a cutoff value of 0.1 to identify 
features that should be considered informative in predicting PVT 
data. The reported p values indicated the statistical significance 
(p < .05) of the slope of the univariate mixed-effects model fits not 
being equal to zero. To assess the extent of agreement between 
the measured and predicted data, we used the 14 data points for 
each participant to compute the concordance correlation coef-
ficient (CCC) [51], using the epiR statistical package in R [52]. For 
each participant, we computed two CCC values: one for the meas-
ured PVT versus the video-predicted PVT and the other for the 
measured PVT versus the personalized video-based UMP alert-
ness (i.e. PVT) prediction.

Results
Video-length determination
Our analysis of the effect of video duration on the ability to pre-
dict PVT data indicated that videos ≥1 minute captured at least 
one blink in each of the 14 video recordings of each participant, 
with no significant group differences in RMSE between the meas-
ured and video-predicted PVT data across 1-, 2-, or 3-minute 
videos [repeated-measures ANOVA, F(2,50) = 0.05, p = .95, for dif-
ferences in RMSEs ≤ 0.20 ms over the 100 predictions for each of 
the 26 participants]. Therefore, we report results based on videos 
of 1-minute duration.

Feature assessment
To assess whether extracted features were predictive of PVT data, 
we separately fitted linear mixed-effects models to each of the 
17 features (the 15 ocular and facial features in Table 2 plus age 
and sex). We observed large participant-to-participant variations 
in the range of feature values and PVT data. Figure 4 shows the 
models for three of the 17 features, including the global model 
based on all participants (thick line) and individual models (thin 
lines), where we captured individual differences by including 
participant-specific intercepts, and Table 3 shows the statistical 
significance of the fitted slopes and the proportion of variance 
explained by the models, as measured by the marginal R2

m and the 
conditional R2

c . The top three features ranked by R2
m were baseline 

eye-opening level, PERCLOS, and eyelid-closing velocity. For these 
features, R2

m ranged from 0.13 to 0.18, indicating that the global 
model only captured a small proportion of the total variance. The 
corresponding R2

c  values were considerably larger (0.54–0.58), indi-
cating that the between-participant variability (see arrows in the 
bottom panel of Figure 4) contributed substantially towards the  
total variance. Analysis of the model slopes indicated that the PVT 
data decreased with baseline eye-opening level and eyelid-closing 
velocity, but increased with PERCLOS (p < .001). For the remaining 
14 features, R2

m was less than 0.10, suggesting that these features 
are likely to be less predictive of PVT data, and R2

c  ranged from 0.45 
to 0.61, indicating large between-participant variability (Figure 
S3). Analysis of the slope of the model for these features indicated 
that there was no significant linear relationship between the PVT 
data and five features, i.e. age, sex, variance of head-movement 
velocity, blink rate, and eyelid-reopening amplitude-velocity ratio 
(p > .06). The remaining nine features showed a significant linear 
relationship with the PVT data (p < .05).

PVT data prediction from videos
Model selection
To develop multivariate mixed-effects models to predict PVT data 
(Figure 2B), in each of the five outer CV folds of the repeated (100 
times) nested CV procedure, we used a forward selection proce-
dure. Table 3 (last column) shows the frequencies at which the 
procedure selected each feature. The top three most frequently 
selected features appeared in 29%–51% of the 5 × 100 models, 
while the remaining features appeared in less than 29% of the 
models. The median number of features in the models (Step 6, 
Figure S2) was 2 (interquartile range, 1–3), indicating model 
parsimony.

Model evaluation
To evaluate the performance of the models on data not used 
for model training, we computed the RMSE between the video- 
predicted and the measured PVT data in the test datasets (Step 8, 
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Figure S2). The average RMSE across the repetitions of the 5-fold 
CV (Step 12a, Figure S2) was 39 ms (SD, 9 ms). The average R2

m and 
R2
c  across the repetitions of the 5-fold CV (Step 12a, Figure S2) 

were 0.18 (SD, 0.06) and 0.55 (SD, 0.05), respectively, indicating that 
the fixed-effects component captured a moderate amount of the 

total variance and that a large proportion of the variance came 
from participant-to-participant variations. In addition, for each 
participant, we computed the CCC between the video-predicted 
PVT mean RT data (closed circles in Figure 5) and the measured 
PVT mean RT data (open circles in Figure 5). We observed con-
siderable between-participant variability, with generally low CCC 
values, which ranged from -0.19 to 0.50 (Figures 6A and Figure S4).

Personalization of the UMP
To assess the utility of using facial and ocular features to develop 
personalized predictive models of alertness, we compared the 
performance of the UMP developed using three different inputs 
to the model: (1) sleep history only (group-average UMP), (2) sleep 
history and measured PVT data (personalized PVT-based UMP), 
and (3) sleep history and video-predicted PVT data (personalized 
video-based UMP). Figure 5 shows the predictions of each of the 
three models along with the 95% confidence intervals for the 
predictions of the video-based personalized UMP (shaded areas), 
the measured PVT data (open circles), and the video-predicted 
PVT data (closed circles). The 26 participants in the figure were 
sorted from the most resilient to the most vulnerable to sleep 
loss (Supplementary Materials). Some of the most extreme par-
ticipants in terms of sleep-loss phenotype (e.g. #1, #25, and #26) 
showed the largest differences between the two personalized 
models, although some participants with a less extreme sleep-
loss phenotype (e.g. #9 and #11) also showed large differences. 
For other participants (e.g. #3, #4, #7, and #12), the two person-
alized models yielded very similar performance, which occurred 
when the video-predicted PVT data matched the measured 
data. In contrast, for the majority of the participants, the group- 
average UMP did not perform as well as either of the two person-
alized models.

To obtain an overall assessment of the models, we averaged 
the RMSEs across the 26 participants for each of the three UMP 
models (Figure 7). A repeated-measures ANOVA yielded a signifi-
cant group difference in the averaged RMSE values [F(2,50) = 44.8, 
p < .001]. Tukey-Kramer post hoc tests indicated that the person-
alized video-based UMP model yielded an average RMSE that was 
significantly smaller than that of the group-average UMP {36 ms 
[standard error (SE), 5 ms] vs. 53 ms (SE, 3 ms); p < .001} and sig-
nificantly larger than that of the personalized PVT-based UMP 
model [36 ms (SE, 5 ms) vs. 22 ms (SE, 2 ms); p < .001]. Importantly, 
for nearly half of the participants (n = 12), the personalized  
video-based UMP models yielded RMSEs that were lower than the 
conservatively estimated within-participant variability of 30 ms 
for PVT mean RT [17] (dotted horizontal line in Figure 7).

We also computed the CCC values to assess the extent of 
agreement between the measured PVT mean RT data (open cir-
cles in Figure 5) and the predicted PVT data obtained using the 
personalized video-based UMP predictions (dashed lines in Figure 
5). Figures 6B and Figure S5 show the results, which indicated a 
considerably better agreement with the measured data than the 
video-predicted results in Figure 6A, with the CCC achieving a 
maximum of 0.85 for participant #12.

Discussion
Objective measurements of alertness level are based on neu-
robehavioral tests, such as the PVT, which are time-consuming 
and dependent on the individual’s level of effort. Here, based on 
a 42-hour TSD challenge, we developed and validated models, 
which obviated the need for such tests and predicted personalized 

Figure 4.  Linear association between psychomotor vigilance test (PVT) 
mean reaction time (RT) and individual ocular features, as determined 
by univariate linear mixed-effects model fit. The panels show model 
fitting for the top three features ranked by the marginal R2, R2

m. In each 
panel, the thick line indicates the global model fit (i.e. the fixed-effects 
component of the mixed-effects model), and the thin lines indicate 
participant-specific model fits for the 26 participants using the fixed and 
random effects. The arrows in the bottom panel mark two participants 
with very different ranges of predictor and response variable values. The 
fitted slopes were significant for each of the three features (p < .001). 
PERCLOS, percentage of time the eyes were more than 80% closed.
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alertness impairment on a continuous scale based on 1-min video 
recordings. Based on independent test data not used for model 
training, we found that the average error of 36 ms between the 
measured PVT data and the individualized video-based UMP pre-
dictions was nearly indistinguishable from the within-participant  
variability in alertness impairment (30 ms) under rested condi-
tions. As a proof of principle, this finding suggests that for TSD we 
can substitute facial videos for PVTs to obtain adequate person-
alized alertness predictions.

Personalized alertness prediction based on video recordings 
involves two steps: predicting PVT data using features extracted 
from videos and using these data to personalize the UMP. In the 
first step, the 5-fold repeated (100 times) CV procedure results 
in 5 × 100 different mixed-effects models, each with its own fea-
ture subsets and model parameters. Hence, in real-world use, to 
obtain personalized alertness predictions based on a new video 
recording, one should extract features from the recording, use the 
500 models to predict 500 PVT results, average the results, and 
then use the average PVT to personalize the UMP.

When building the multivariate mixed-effects models to pre-
dict PVT data from video recordings, we minimized model over-
fitting through cross-validation and by using a forward feature 
selection that only added informative features to the model. The 
results indicated that 75% of the models only required three or 
fewer features, indicating model simplicity and generalizabil-
ity. Among the features used in the models, PERCLOS was the 
most frequently selected (used in 51% of the 500 models), an 
expected result given that in vigilance tests this feature is one of 
the most sensitive indicators of alertness [32, 53]. In agreement 

with previous studies that used PVT data as a measure of fatigue 
[33–35], PERCLOS correlated with alertness impairment, indicat-
ing its suitability for passively detecting fatigue. In a future effort, 
this feature-selection process could be simplified by using a tree-
based method, such as XGBoost [54, 55].

Baseline eye-opening level, which measures the extent of 
“droopy” or “hanging eyelids,” was the second most frequently 
selected feature (used in 32% of the models). The relationship 
between this feature and alertness impairment has not been 
well studied. A previous investigation [26] in which observers 
rated photographs of rested and sleep-deprived individuals with 
respect to facial cues of fatigue found that the extent of hang-
ing eyelids was greater (i.e. the eyelids were more droopy) in the 
sleep-deprived group. In agreement with these results, we found 
that a relatively lower value of this feature (indicating more 
hanging of the upper eyelids) was associated with greater alert-
ness impairment. Another investigation [13], involving on-road 
driving, assessed the correlation between sleepiness and mean 
eye-opening level (equivalent to the baseline eye-opening level 
in our study) and found that, in agreement with our results, the 
mean eye-opening level decreased with sleepiness. The upper 
eyelid is kept in the open position by the tonic activity of the leva-
tor palpebrae muscle, whose tone is affected by alertness level 
[56], potentially explaining the decreased baseline eye-opening 
level under low-alertness conditions.

Eyelid-closing velocity was the third most frequently selected 
feature (used in 29% of the models). This feature was evaluated as 
a fatigue indicator only by two previous studies [9, 13], which found 
that it decreased with sleep deprivation time [9] and sleepiness level 

Table 3.  Statistical results of the univariate linear mixed-effects model to predict psychomotor vigilance test mean reaction time as a 
function of each of the 15 ocular and facial features extracted from 1-minute video recordings, age, and sex as well as the frequencies 
at which these features were selected to build the best models in the 5-fold nested cross-validation rocedure

Feature number Feature name R2
m † R2

c
# Slope‡ Selection frequency (rank order)

Trend P-value

1 Baseline eye-opening level 0.18 0.58 Neg <.001*** .32 (2)

2 PERCLOS 0.14 0.54 Pos <.001*** .51 (1)

3 Eyelid-closing velocity 0.13 0.54 Neg <.001*** .29 (3)

4 Baseline mouth aspect ratio 0.09 0.61 Neg .008** .00 (17)

5 Eyelid-closing amplitude-velocity ratio 0.08 0.53 Pos <.001*** .27 (4)

6 Eyelid-velocity ratio 0.06 0.52 Neg <.001*** .23 (5)

7 Blink duration 0.06 0.53 Pos <.001*** .05 (16)

8 Blink amplitude 0.06 0.49 Neg <.001*** .07 (11)

9 Eyelid-reopening velocity 0.04 0.49 Neg .002** .05 (15)

10 Eyelid-closing duration 0.03 0.50 Pos <.001*** .10 (7)

11 Eyelid-reopening duration 0.02 0.51 Pos .001** .06 (13)

12 Sex 0.01 0.48 Pos .406 .07 (10)

13 Head-movement velocity 0.01 0.48 Pos .028* .08 (8)

14 Blink rate 0.01 0.45 Pos .184 .11 (6)

15 Eyelid-reopening amplitude-velocity ratio 0.01 0.48 Pos .112 .06 (14)

16 Variance of head-movement velocity 0.01 0.47 Pos .080 .08 (9)

17 Age 0.00 0.48 Pos .621 .06 (12)

Neg, negative slope; PERCLOS, percentage of time the eyes were more than 80% closed; Pos, positive slope.
‡Slope, slope of the mixed-effects model.
†R2

m, proportion of the variance explained by a global model fit (i.e. a line fit with an intercept and a slope common to all participants).
#R2

c , proportion of the variance explained by a participant-specific model fit (i.e. a line fit with an intercept that is participant specific and a slope that is common 
to all participants).
***p < .001, **p < .01, *p < .05.
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[13] during driving tasks. Supporting and extending their findings
to non-driving scenarios and PVT-based vigilance evaluations, we
found that eyelid-closing velocity decreased with alertness impair-
ment. For all remaining significant features (Table 3), the direction

of their change with alertness impairment was consistent with that 
found by previous studies (see references in Table 2).

Using mixed-effects models based on the most informative 
features, we predicted PVT mean RT and used these predictions 

Figure 5.  Personalization of the unified model of performance (UMP). Each panel shows the data (circles) and UMP predictions (lines) associated 
with each of the 26 participants. The open circles correspond to the measured psychomotor vigilance test (PVT) mean reaction times (RTs), and the 
filled circles correspond to the PVT mean RT predicted from the facial video features. The light continuous traces correspond to the predictions of 
the group-average UMP model. The dark continuous lines correspond to the predictions of the UMP personalized by sleep history and measured PVT 
data (personalized PVT-based UMP). The dashed lines correspond to the predictions of the UMP personalized by sleep history and video-predicted PVT 
data (personalized video-based UMP). The shaded regions indicate 95% confidence intervals for the predictions of the personalized video-based UMP 
model. For participant #26, the two measured PVT data points that were above 440 ms are not shown.
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to personalize the UMP for each participant (Figure 2B). The aver-
age error of 36 ms for these personalized UMP predictions was 
substantially lower than that of the group-average model (53 ms), 
indicating the benefit of personalized prediction of alertness. In 
a previous study, a support vector machine regression model 

also predicted alertness-impairment levels based on video- 
extracted ocular features [14]. However, this model yielded a sub-
stantially higher discrepancy between measured and predicted 
PVT mean RT (106 ms), highlighting the advantage of our mod-
eling approach. Although the average error of the personalized  
video-based predictions across the participants was relatively low, 
for half of the participants the error was >30 ms, partially due to 
the large range in feature values and PVT mean RT data. For the 
other half of the participants, the error was <30 ms, indicating 
good model performance for these participants. Nevertheless, 
our models could be further improved. As a potential next step 
to enhance PVT data prediction from video recordings, we could 
take advantage of recent developments in deep neural network 
architectures (e.g. Transformers) [57], which often have the 
potential to predict alertness impairment based on entire video 
recordings without the need to define and extract features.

To assess the agreement between the measured and pre-
dicted PVT data, we also computed the CCC values for both 
the video-predicted PVT and the personalized video-based UMP 
predictions versus the measured PVT mean RT (Figure 6, A and 
B, respectively). For nearly all of the participants, the CCC was 
considerably higher when we used the UMP. We attribute this 
improvement to two factors: (1) the structure of the UMP itself, 
which accounts for the homeostatic and circadian processes and 
thereby allows the predictions to more closely follow the phys-
iology of sleep regulation, and (2) that the UMP predictions are 
based on a series of PVT estimates from the videos, as opposed 
to a single estimate. These results support the notion that the 
absolute error of an estimated quantity (in our case, the PVT 
based on a single video) should not be considered in isolation, but 
rather within the context of its use (in our case, as an input to the 
UMP to predict future PVT values) [58]. We also assessed whether 
the agreement between the measured and predicted PVT data 
was reflected in the personalized UMP model parameters. As 
expected, there was a significant positive correlation between the 
RMSE of the measured and video-predicted PVTs and the devia-
tions in key UMP model parameters (S0, L0, and U) personalized 
with measured versus video-predicted PVTs (Pearson correlation 
coefficient r = 0.24–0.94, p < .001), with lower RMSE values associ-
ated with smaller absolute deviations between the corresponding 
UMP model parameters.

Figure 6.  Distribution of concordance correlation coefficients for (A) the measured psychomotor vigilance test (PVT) versus the video-predicted 
PVT and (B) the measured PVT versus the personalized video-based UMP (unified model of performance) predictions. The participant population is 
indicated in sequential numbers from #1 to #26.

Figure 7.  Comparison of the performance of the unified model of 
performance (UMP) based on three different inputs to the model: (A) 
sleep history only (group-average UMP), (B) sleep history and measured 
PVT data (personalized PVT-based UMP), and (C) sleep history and 
video-predicted PVT data (personalized video-based UMP). Each open 
circle represents the root mean square error (RMSE) between the 
measured PVT data and the predictions of the corresponding UMP 
model for each of the 26 participants. Error bars denote one standard 
error of the mean. The horizontal dotted line marks a conservative 
estimate of the within-participant variability (30 ms) in the measured 
PVT data. ***p < .001, repeated-measures ANOVA with Tukey-Kramer post 
hoc tests.
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Although we used 1-minute video recordings for alertness 
predictions, shorter recordings, ideally a few seconds in dura-
tion, would be more practical for real-world implementation. 
However, for participants with a low blink rate, videos with a few 
seconds in duration may be devoid of the sufficient number of 
blinks required to compute informative features (PERCLOS and  
eyelid-closing velocity). As an alternative, within a time window 
of ≤1 hour, one could record a collection of videos of short dura-
tions during which individuals face the camera and use the col-
lection of recordings to compute the required features.

Limitations
This study has limitations. First, we developed our models using 
data from a homogeneous population of healthy relatively young 
adults. Therefore, it is unclear whether our models are applica-
ble to a heterogeneous, older population. In this regard, a recent 
study [39] found that sleep deprivation (29 hours of TSD) affected 
ocular metrics (PERCLOS, blink duration, and the frequency of 
long eye closures [>500 ms]) only in young adults (mean age, 24 
years) but not in older adults (mean age, 57 years), warranting 
further research to develop age-appropriate alertness-prediction 
models. Second, we developed our models using data collected 
during a TSD challenge. Hence, additional studies involving dif-
ferent sleep-loss challenges, including chronic sleep restric-
tion, are necessary to assess the generalizability of our findings. 
Finally, we obtained videos from participants who sat consist-
ently facing the camera. In the real world, individuals may not be 
able to always face the camera as they may be engaged in various 
activities. Hence, it is unclear if our models will apply in those 
settings. However, when continuous video monitoring is possible, 
one could build predictive models based on features extracted 
from those time periods when individuals are facing the camera.

Conclusions
In this proof-of-concept study, we created a more practical method 
for predicting an individual’s alertness level using passively col-
lected video recordings of their face. The method involved two 
steps: prediction of PVT mean RT based on mobile phone video 
recordings and personalized predictions of alertness using the 
predicted PVT data. Assessment of model performance indicated 
that the personalized video-based predictions were adequately 
accurate with errors lower than the within-participant variability 
in alertness impairment under rested conditions for half of the 
participants, significantly better than the group-average model 
predictions, but not as accurate as the personalized model pre-
dictions based on actual PVT data. Future efforts should focus on 
investigating the use of artificial intelligence-based Transformer 
models [57] to capture facial features in video recordings predic-
tive of alertness impairment.
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