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Summary

It is well established that individuals differ in their response to sleep loss. However,

existing methods to predict an individual's sleep-loss phenotype are not scalable or

involve effort-dependent neurobehavioural tests. To overcome these limitations, we

sought to predict an individual's level of resilience or vulnerability to sleep loss using

electroencephalographic (EEG) features obtained from routine night sleep. To this

end, we retrospectively analysed five studies in which 96 healthy young adults

(41 women) completed a laboratory baseline-sleep phase followed by a sleep-loss

challenge. After classifying subjects into sleep-loss phenotypic groups, we extracted

two EEG features from the first sleep cycle (median duration: 1.6 h), slow-wave activ-

ity (SWA) power and SWA rise rate, from four channels during the baseline nights.

Using these data, we developed two sets of logistic regression classifiers (resilient

versus not-resilient and vulnerable versus not-vulnerable) to predict the probability

of sleep-loss resilience or vulnerability, respectively, and evaluated model perfor-

mance using test datasets not used in model development. Consistently, the most

predictive features came from the left cerebral hemisphere. For the resilient versus

not-resilient classifiers, we obtained an average testing performance of 0.68 for the

area under the receiver operating characteristic curve, 0.72 for accuracy, 0.50 for

sensitivity, 0.84 for specificity, 0.61 for positive predictive value, and 3.59 for likeli-

hood ratio. We obtained similar performance for the vulnerable versus not-

vulnerable classifiers. These results indicate that logistic regression classifiers based

on SWA power and SWA rise rate from routine night sleep can largely predict an

individual's sleep-loss phenotype.
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1 | INTRODUCTION

Sustained vigilance is required in military, aviation, public safety, and

medical professions, where individuals often perform their duties

under limited sleep due to work and social demands (Chattu

et al., 2019; Good et al., 2020). However, vigilance and mental acuity

are often impaired under sleep-loss conditions, potentially resulting in

undesirable consequences, such as near misses, accidents, medical

mistakes, or even loss of life (Erickson et al., 2017; Institute of

Medicine, 2006). Ideally, tasks requiring sustained vigilance should be

performed by individuals who can maintain mental acuity despite

sleep loss. Indeed, it is well established that there is large
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individual-to-individual variability in response to sleep loss, with some

individuals being resilient, some vulnerable, and others in between

these two extreme phenotypic responses (Rupp et al., 2012;

Tkachenko & Dinges, 2018; Van Dongen et al., 2004). However, cur-

rent methods to identify such phenotypic responses are not practical,

often involving time-consuming, sleep-deprivation challenges per-

formed in a laboratory setting (Chua et al., 2014, 2019; Cui

et al., 2015; Rupp et al., 2012; St. Hilaire et al., 2019; Van Dongen

et al., 2004; Yamazaki et al., 2021; Zhao et al., 2018). Here, we sought

a more practical and scalable approach that does not require sleep-

loss challenges. Such an approach to identify an individual's pheno-

typic response to sleep loss could help to improve occupational safety

and productivity, where resilient individuals could be assigned to tasks

requiring sustained vigilance and attention while vulnerable individ-

uals could be offered sleep-loss countermeasures to mitigate safety

concerns and fatigue-related performance impairments.

Previous studies to characterise an individual's phenotypic

response to sleep loss without requiring a sleep-deprivation challenge

found that, under well-rested awake conditions, resilient and vulnera-

ble individuals differ in neurobehavioural task performance (Chua

et al., 2014; Patanaik et al., 2014; Patanaik et al., 2015; Zhao

et al., 2018), electroencephalographic (EEG) spectral power in the

high-theta frequency band (Chua et al., 2014), heart rate and its vari-

ability (Chua et al., 2014), cardiovascular haemodynamic measures

(Yamazaki et al., 2021), brain activation level (Caldwell et al., 2005;

Chee et al., 2006; Mu et al., 2005), as well as brain structural (Cui

et al., 2015; Rocklage et al., 2009) and functional connectivity (Yeo

et al., 2015). Furthermore, other studies found that baseline metrics

derived from neuroimaging (Caldwell et al., 2005; Chee et al., 2006;

Cui et al., 2015; Rocklage et al., 2009; Zhao et al., 2018), psychomotor

vigilance tests (PVTs) (Galli et al., 2022), or sleep (Subramaniyan

et al., 2023) are linearly associated with vulnerability to sleep loss as

indexed by neurobehavioural test performance. Finally, a few studies

have used PVT metrics collected during well-rested baseline condi-

tions (Chua et al., 2019; Patanaik et al., 2014; Patanaik et al., 2015;

St. Hilaire et al., 2019) as well as metrics derived from structural (Xu

et al., 2021) or functional (Yeo et al., 2015) brain imaging to develop

predictive mathematical models of an individual's phenotypic

response to sleep loss.

While these modelling studies have helped to identify some

promising discriminatory features, they have methodological limita-

tions. One limitation is that features derived from PVTs and used as

inputs to the models (Chua et al., 2019; Patanaik et al., 2014; Patanaik

et al., 2015; St. Hilaire et al., 2019) depend on an individual's level of

effort (Brewer et al., 2017; Massar et al., 2016; Robison et al., 2021),

making them less reliable as a predictive variable. In contrast, such a

limitation is not present in features derived from brain imaging, where

subjects do not need to perform cognitive tasks (Xu et al., 2021; Yeo

et al., 2015). However, brain imaging is costly and not easily accessible

or scalable. Another limitation is that some studies do not use an inde-

pendent dataset, that is, data not used to train the models, to estimate

model performance (Chua et al., 2019; Patanaik et al., 2014; Xu

et al., 2021). As a result, the reported model performance is likely to

be biased (Hastie et al., 2009; Varma & Simon, 2006), and the actual

ability of these models to generalise and predict unseen data is

unknown.

To overcome the above limitations, here we aimed to develop

data-driven models using EEG features collected during routine night

sleep, to predict the probability of a specific individual being either

resilient or vulnerable to sleep loss, and to estimate the models’ per-
formance using independent datasets not used for model training.

Previously, we found that, during routine night sleep, we could dis-

criminate between groups of resilient individuals and groups of vul-

nerable individuals based on slow-wave activity (SWA) power during

the first sleep cycle and SWA rise rate during the first 20 min of sleep

(Subramaniyan et al., 2023). Here, we sought to investigate the ability

of these features to discriminate between these phenotypic responses

to sleep loss at the individual level. Although the ultimate use of these

models does not require a sleep-deprivation challenge, training of

such models required knowledge of the sleep-loss phenotype of indi-

viduals as measured by the PVT. Hence, we leveraged data previously

collected from five sleep-deprivation studies to obtain EEG signals

recorded during routine sleep on baseline nights before the start of

the challenge and PVT data during the challenge. In total, we used

data from 96 healthy young men and women, and built logistic

regression classifiers following a nested cross-validation procedure

that conservatively estimated the models’ performance on novel

unseen data.

2 | METHODS

2.1 | Study design

For developing classifiers to predict an individual's resilience or vul-

nerability to sleep loss, we used data from five previously published

studies (Doty et al., 2017; Hansen et al., 2019; Reifman et al., 2019;

Rupp et al., 2012; Vital-Lopez et al., 2023), involving 96 healthy young

adults (41 women) between 18 and 39 years of age (Table 1). In Stud-

ies 1, 4, and 5, a total of three subjects (one in each study) were left

handed while the remaining were right handed. Handedness informa-

tion was not available for Studies 2 and 3. In all five studies, subjects

slept in the laboratory for 1 to 7 baseline nights, from which we

obtained polysomnography (PSG) data. Although the studies took

place at three different sleep laboratories (Studies 1, 2, and 3 at the

Walter Reed Army Institute of Research, Silver Spring, MD; Study 4 at

the Washington State University, Spokane, WA; and Study 5 at the

University of Arizona, Tucson, AZ), all study subjects experienced

comparable sleep environments during PSG recordings. Specifically,

all subjects slept in sound-attenuated rooms with the lights turned off

and ambient temperature set to around 20–23�C, and had no access

to personal electronic devices or the Internet. Following the baseline

sleep, the subjects underwent total sleep deprivation (TSD) in Studies

2, 4, and 5, chronic sleep restriction (CSR) in Study 3 or both in Study

1, followed by a recovery phase. During scheduled wakefulness, the

subjects performed PVTs every 1–3 h starting immediately after the
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baseline-sleep phase, through the sleep-loss challenge, and until the

end of the recovery phase.

2.2 | Subject classification

We classified the subjects into three groups based on the extent to

which their PVT reaction times during sleep-loss periods changed rel-

ative to those during baseline wake periods, as described previously

(Subramaniyan et al., 2023). Briefly, for each subject, we first normal-

ised the PVT reaction times by dividing the mean reaction time during

the sleep-loss period by that of the baseline period. For the crossover

study (Rupp et al., 2012), consisting of TSD and CSR challenges, we

separately normalised the reaction times for each subject for each of

the two phases, resulting in two values that we averaged to obtain a

single normalised reaction time per subject. Then, within each study,

we rank-ordered the subjects by their average normalised reaction

times and labelled the lower third as resilient, the upper third as vul-

nerable, and the middle third as “intermediate”.

2.3 | Sleep EEG data and preprocessing

The EEG data of the five studies (Doty et al., 2017; Hansen

et al., 2019; Reifman et al., 2019; Rupp et al., 2012; Vital-Lopez

et al., 2023) had sampling rates ranging from 100 to 500 Hz. For stud-

ies with a sampling rate greater than 100 Hz, we down-sampled the

EEG data to either 100 Hz (Doty et al., 2017; Hansen et al., 2019;

Vital-Lopez et al., 2023) or 128 Hz (Reifman et al., 2019). Because

one of the five studies did not record signals from the frontal EEG

channels, we only analysed the central and occipital channels (C3, C4,

O1, and O2 referenced to the contralateral mastoids, Figure 1a)

common to all five studies. We high-pass filtered the data (6 dB cutoff

frequency at 0.125 Hz), and scored sleep stages in 30 s epochs follow-

ing the guidelines of the American Academy of Sleep Medicine (Silber

et al., 2007). Finally, we segmented each channel's data into 5 s

epochs and excluded epochs in which we detected electrical or physi-

ological artefacts, as described previously (Subramaniyan et al., 2023).

2.4 | EEG features

As potential predictors of sleep-loss phenotype, from each EEG chan-

nel, we extracted the following two EEG features, which we have pre-

viously shown to discriminate between groups of sleep-loss resilient

and vulnerable individuals (Subramaniyan et al., 2023): (1) SWA

power, defined as the mean power spectral density in the frequency

range of 0.2–4.0 Hz, and (2) SWA rise rate, defined as the rate at

which SWA power changed during the first 20 min after sleep onset.

By extracting these two features from the four EEG channels (C3, C4,

O1, and O2), we obtained a total of eight EEG features to predict an

individual's sleep-loss phenotype.

We computed the SWA power and SWA rise rate as described

previously (Subramaniyan et al., 2023). Briefly, to compute the SWA

power for a given EEG channel, we obtained power spectral density

estimates for artefact-free epochs within the N2 and N3 stages of the

first sleep cycle and averaged the power spectral density within

the frequency band of 0.2–4.0 Hz for each epoch. Then, we averaged

the SWA power across all epochs and log (base 10) transformed the

average. To compute the SWA rise rate, we fitted a robust linear

regression to the SWA power data for epochs within the N1, N2, or

N3 stages of the first 20 min of sleep. To enhance the reliability of the

estimated EEG features, we required that subjects had at least one

baseline night with a minimum of 30 min (cumulative) of artefact-free

TABLE 1 Description of the five studies used to develop and validate the logistic regression classifiers for predicting an individual's resilience
or vulnerability to sleep loss.

Study
Baseline
nights, n

Baseline nights with
PSG data, n

TIB during
baseline nights, h

Sleep-loss
protocol

Number of subjects

(women)
Age, years
[mean (1 SD)]R I V

1. (Rupp

et al., 2012)a
7 1 10 63 h TSD and 3 h

TIB � 7 d

6 (3) 6 (3) 6 (3) 28.1 (4.8)

2. (Reifman

et al., 2019)

1 1 8 62 h TSD 7 (2) 7 (4) 7 (1) 24.6 (4.6)

3. (Doty

et al., 2017)

5 5 10 5 h TIB � 5 d 8 (5) 8 (2) 8 (3) 25.4 (3.6)

4. (Hansen

et al., 2019)

3 3 10 48 h TSD 4 (1) 4 (2) 4 (3) 27.4 (6.9)

5. (Vital-Lopez

et al., 2023)

1 1 8 62 h TSD 7 (2) 7 (2) 7 (5) 21.9 (4.4)

Overall 32 (13) 32 (13) 32 (15) 25.2 (5.1)

Abbreviations: I, intermediate subject group; PSG, polysomnography; R, resilient subject group; SD, standard deviation; TIB, time in bed; TSD, total sleep

deprivation; V, vulnerable subject group.
aCross-over study design with a gap of 2–4 weeks between the 63 h of TSD and the 3 h TIB challenges.
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N2 or N3 stage data in the first sleep cycle. Imposing this criterion

resulted in the exclusion of one subject in Study 2 (Reifman

et al., 2019) and two subjects in Study 5 (Vital-Lopez et al., 2023). For

a few subjects (depending on the channel, 2–4 resilient, 3 intermedi-

ate, and 2–4 vulnerable from Study 1 (Rupp et al., 2012); 1 resilient

from Study 3 (Doty et al., 2017); and 1 vulnerable from Study

4 (Hansen et al., 2019)), we only used data from one of the two nights

because the other night did not meet the quality criterion. To reduce

variability and minimise the “first-night” effect (Agnew Jr.

et al., 1966), for subjects for whom we had PSG recordings from mul-

tiple nights of baseline sleep (Studies 3 and 4), we selected the first

and last nights and averaged the EEG features from the two nights.

For the crossover study (Rupp et al., 2012), for which we had one

baseline night with PSG recordings prior to the TSD phase and

another for the CSR phase, for each subject, we averaged the EEG

features extracted from the baseline night of each of the two study

phases. We corrected the EEG features for the effect of age (Sprecher

et al., 2016) using a regression model, as described previously (Wang

et al., 2020).

The raw EEG feature values of a given subject group (resilient,

intermediate, or vulnerable) varied across the studies for a given EEG

channel, likely due to recording-setup differences between studies,

and across the channels within a given study due to differing record-

ing locations on the scalp. Because of this variability, we could not

directly associate the raw EEG feature values with the sleep-loss phe-

notypic categories (Subramaniyan et al., 2023). Therefore, to pool

studies together, we performed a within-study z-scoring normalisation

that brought feature values from different studies and channels into a

common scale. To normalise the data, within a given study, for each

EEG channel, we z-scored the feature values of each subject using the

mean and standard deviation computed from the pool of all subjects

of that study.

2.5 | Model for predicting resilience to sleep loss

Although we classified the subjects into resilient, intermediate, or

vulnerable individuals, our main goal was to predict whether a

given subject was resilient to sleep loss or not. Accordingly, we

first developed a classifier with subjects labelled as resilient and

not-resilient, where the not-resilient class consisted of both inter-

mediate and vulnerable subjects pooled together. We then

employed the following binary logistic regression classifier

[Equation (1), Figure 1a]:

F IGURE 1 Model development.
(a) We used slow-wave activity (SWA)
power and SWA rise rate extracted from
electroencephalographic (EEG) data
(channels C3, C4, O1, and O2) collected
during routine night sleep as inputs to a
logistic regression model, to produce the
probability of resilience to sleep loss as an
output. (b) Five-fold nested cross-

validation (CV) procedure for model
selection and evaluation. For model
selection, in the “inner CV”, we trained
models with different EEG feature subsets
and hyperparameter values (Steps 1–3).
We then used the feature subset and
hyperparameter value of the model that
showed the best validation performance
based on validation error averaged across
the four inner-CV folds (Steps 4 and 5), to
fit a new model (the “best” model) to the
pool of all four studies of the inner-CV
(Step 6). Next, we tested (model
evaluation) the best model associated
with each outer-CV fold on the fifth study
which was set aside for the final testing
(Steps 7 and 8). Finally, to estimate the
overall performance of the models, we
averaged the results over the five outer-
CV folds (Step 9).

4 of 12 SUBRAMANIYAN ET AL.
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p resilient;Xð Þ¼ 1

1þe� WTXþbð Þ , ð1Þ

where p represents the probability of a given subject being resilient, X

denotes the vector of EEG features from a given subject, W denotes

the vector of model coefficients (parameters) associated with the cor-

responding vector of EEG features, T denotes the matrix-transpose

operation, and b represents the model's intercept parameter. We

obtained the model parameters by minimising an objective function that

consisted of a cross-entropy error term (Bishop, 2006) and a regularisa-

tion term (L2-norm penalty, for minimising overfitting) defined by a hyper-

parameter. The cross-entropy error measured how much the predicted

probabilities deviated from their corresponding true values and the hyper-

parameter controlled the strength of regularisation. If two models differed

in their parameter values or their number of input features, we treated

them as different models. For simplicity, we referred to the cross-entropy

error as “error”. We developed the models using the open-source Python

package Scikit-learn (Pedregosa et al., 2011).

2.6 | Model building

We built models using a five-fold nested cross-validation

(CV) procedure (Figure 1b) consisting of an “inner CV”, in which we

performed model selection (training), and an “outer CV”, in which

we performed model evaluation (testing).

2.6.1 | Data preparation

To create the five folds of data, instead of pooling subjects from all

five studies and randomly splitting them into five folds, we simply

assigned data from each study to a separate data fold. We split the

data this way because we used EEG features z-scored within each

study, as z-scoring is not possible at the individual subject level. As

such, our model was designed to be ultimately used to predict the

sleep-loss phenotype of each individual of a group for which we col-

lected EEG data during routine sleep.

2.6.2 | Model selection

For model selection (Steps 1–6, Figure 1b), we fitted different logistic

regression models to training datasets and selected a single model

based on the performances of the models on validation datasets. Spe-

cifically, for each of the five outer-CV folds, we performed a four-fold

inner-CV (three studies for training and one study for validation; Steps

1–4, Figure 1b), which we used for model selection (i.e., the identifica-

tion of the most informative feature-subset and optimal hyperpara-

meter; Step 5, Figure 1b). When we selected the optimal

hyperparameter or the most informative feature-subset (among those

of different sizes) based on the validation error (cross-entropy error of

the validation dataset; Step 5, Figure 1b), there were several models

with validation errors that were close to the lowest validation error.

Hence, among such models, we selected the least-complex model

(i.e., the model fitted with the smallest number of features and the

highest regularisation strength) as our “best-performing” model. If

two models have similar validation errors, the less-complex model is

likely to generalise better on future novel data.

To identify the most informative feature subset, we performed

forward-stepwise feature selection (Hastie et al., 2009), an iterative

procedure where we first assessed (validated) the performance of

models fitted with a single EEG feature and then progressively tested

models fitted with larger subsets of features while retaining the fea-

ture subsets associated with the best-performing models from the

previous iterations. When fitting a model with a given feature subset,

we also optimised the hyperparameter for that model. Next, we

selected the model that had the best performance across all iterations.

Finally, using the feature subset and hyperparameter value of the

selected model, we fitted a new model to the training data set (four

studies pooled together; Step 6, Figure 1b) of the given outer-CV fold

and assessed the model performance on the test data set (fifth study)

not used for model selection (Step 7, Figure 1b).

2.6.3 | Model evaluation and performance metrics

To assess the performance of a model in the outer-CV folds (Step

8, Figure 1b), we used six metrics: area under the receiver operating

characteristic curve (AUC), accuracy, sensitivity, specificity, positive pre-

dictive value (PPV), and likelihood ratio (LR, true positive rate divided by

false positive rate) as defined previously (Webb & Sidebotham, 2020).

To compute each metric, we classified a subject as resilient if their pre-

dicted probability was greater than or equal to 0.50, and as not-resilient

otherwise, and designated resilient individuals as the positive class.

Finally, to obtain a measure of performance, we averaged each metric

across the five outer-CV folds (Step 9, Figure 1b).

2.7 | Model for predicting vulnerability to
sleep loss

To predict the probability of a given individual being vulnerable to

sleep loss, we created a second set of classifiers following the same

procedure as the one described above for the resilient versus not-

resilient classifier. Namely, we labelled each subject as vulnerable or

not-vulnerable, where the not-vulnerable class consisted of resilient

and intermediate subjects. When computing performance metrics, we

treated the vulnerable subjects as the positive class.

2.8 | Statistical analysis

For all performance metrics, we computed the mean and standard devi-

ation values across the five outer-CV folds. To compute the confidence

interval for the mean AUC value for the resilient versus not-resilient

classification, or the vulnerable versus not-vulnerable classification, we

aggregated the predicted class probabilities of the five outer-CV fold

SUBRAMANIYAN ET AL. 5 of 12
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test datasets and computed the 95% confidence interval using an ana-

lytic method described previously (Hanley & McNeil, 1982).

3 | RESULTS

3.1 | Classification of resilient versus not-resilient
individuals

3.1.1 | Model selection

To select models with minimal complexity, we minimised overfitting and

selected the most informative EEG feature subsets for each of the five

outer-CV folds. Table 2 shows that the feature selection procedure

selected the SWA power and SWA rise rate (from one or more chan-

nels) in each of the five outer-CV folds, suggesting that both of these

SWA features provide discriminative information. Specifically, the pro-

cedure repeatedly selected the features C3-SWA power and O1-SWA

rise rate in each of the five outer-CV folds, suggesting that these fea-

tures are consistent indicators of resilience to sleep loss. In contrast, the

procedure did not select features C4-SWA power or O2-SWA rise rate

in any of the five outer-CV folds, indicating that these features are not

discriminatory. The remaining four EEG features appeared mostly as

part of the feature subset of only one of the outer-CV folds in the test-

ing of Study 5. Taken together, these results suggest that, out of the

eight evaluated EEG features, primarily two EEG features associated

with channels C3 or O1 were the most informative ones for predicting

the probability of an individual being resilient to sleep loss.

3.1.2 | Model evaluation

Table 3 shows the classifier performance values averaged across the

five outer-CV folds for the training (Step 6, Figure 1b) and testing

(Step 7, Figure 1b) procedures, where we used a 0.50 threshold for the

binary classification (resilient versus not-resilient). The training and

testing accuracies were comparable, suggesting that model overfitting

was minimal. The testing AUC was 0.68 (Figure 2a) and its 95% confi-

dence interval (0.56, 0.80) excluded 0.50, suggesting that the model

performed better than a classifier that randomly assigned test subjects

into either class. The testing accuracy was 0.72, which was higher than

the random chance-level performance of 0.50. The model had a mod-

est testing sensitivity (0.50) but high specificity (0.84). These results

indicate that while the model correctly classified only half of the resil-

ient subjects as such, it is less likely to classify an individual who is not

resilient as resilient, which is desirable for mission-critical task assign-

ments where it is important not to identify a more vulnerable individ-

ual as resilient. The testing likelihood ratio was 3.59, suggesting that

the model was at least three times more likely to identify a resilient

subject as resilient than a subject who was not resilient as resilient.

The model's testing PPV was 0.61, indicating that out of all the testing

subjects whom the model predicted to be resilient, 61% of them were

truly resilient while 39% were falsely predicted to be resilient. For

assigning individuals to critical tasks requiring a high level of alertness

under limited sleep, it is essential to identify resilient individuals with

more certainty. To this end, we computed the PPV for a range of clas-

sification thresholds and found that with a threshold of 0.59, the test-

ing PPV increased to 0.81 (Table 3), resulting in an improved

probability that an individual predicted to be resilient was truly resil-

ient. Although at this alternative threshold the testing sensitivity

decreased, the testing accuracy remained nearly the same, and the

testing specificity increased. The likelihood ratio decreased, but it was

based on only one of the five studies (see Table 3). Overall, these

results suggest that the logistic regression classifier can be used to pre-

dict the probability of resilience to sleep loss.

3.2 | Classification of vulnerable versus not-
vulnerable individuals

3.2.1 | Model selection

Table 4 shows the EEG feature subsets selected in the vulnerable ver-

sus not-vulnerable classification models for each of the five outer-CV

TABLE 2 EEG feature subsets selected for the final resilient versus not-resilient classification models for each of the five outer cross-
validation (CV) folds.

CV test study

EEG feature

Feature subset size

SWA power SWA rise rate

C3 C4 O1 O2 C3 C4 O1 O2

1 yes no no no no no yes no 2

2 yes no no no no no yes no 2

3 yes no no no no no yes no 2

4 yes no no no yes no yes no 3

5 yes no yes yes yes yes yes no 6

Feature inclusion frequency 5 0 1 1 2 1 5 0

Note: Entries with a “yes” identify the most informative features selected to predict the sleep-loss phenotype of subjects of the corresponding outer-CV

test study.

Abbreviations: EEG, electroencephalography; SWA, slow-wave activity.
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folds. The results showed that the procedure selected SWA power

and SWA rise rate in each of the five outer-CV folds, suggesting that

both of these SWA features provide discriminative information.

Specifically, the procedure repeatedly selected features O1-SWA

power, C3-SWA rise rate, or O1-SWA rise rate at least three times,

suggesting that these features are informative in predicting

TABLE 3 Performance summary of
the resilient versus not-resilient logistic
regression classifiers, averaged over the
five outer cross-validation (CV) folds.

Metric

Performance [mean (1 SD)]

Threshold of 0.50 Threshold of 0.59

Training Testing Training Testing

AUC 0.72 (0.05) 0.68 (0.10) 0.72 (0.05) 0.68 (0.10)

Accuracy 0.71 (0.04) 0.72 (0.09) 0.73 (0.03) 0.71 (0.11)

Sensitivity 0.35 (0.12) 0.50 (0.20) 0.24 (0.12) 0.25 (0.17)

Specificity 0.90 (0.02) 0.84 (0.09) 0.98 (0.02) 0.95 (0.10)

Positive predictive value 0.63 (0.06) 0.61 (0.13) 0.91 (0.07) 0.81 (0.32)a

Likelihood ratio 3.40 (0.83) 3.59 (1.73) 11.12 (1.51)b 0.57 (�)c

Abbreviations: AUC, area under the receiver operating characteristic curve; SD, standard deviation.
aPositive predictive values (PPVs) were averaged across four outer-CV folds because PPV was undefined

for one of the outer-CV folds (due to a division of zero by zero).
bLikelihood ratio (LR) values were infinity for two outer-CV folds (due to a division by zero).
cLR values were infinity for three outer-CV folds (due to a division by zero) and undefined for one outer-

CV fold (due to a division of zero by zero).

F IGURE 2 Model performance.
(a) Performance of the resilient versus not-
resilient classifiers. The grey continuous
traces indicate the receiver operating
characteristic (ROC) curves obtained from
the testing procedure in the five outer-CV
folds, and the black continuous trace
denotes the mean ROC curve. The dotted
grey trace indicates the performance of a

random classifier. AUC, area under the
mean ROC curve. Value in parentheses
denotes one standard deviation.
(b) Performance of the vulnerable versus
not-vulnerable classifiers.

TABLE 4 EEG feature subsets selected for the final vulnerable versus not-vulnerable classification models for each of the five outer cross-
validation (CV) folds.

CV test study

EEG feature

Feature subset size

SWA power SWA rise rate

C3 C4 O1 O2 C3 C4 O1 O2

1 no no yes yes yes no no no 3

2 no yes yes no yes no no no 3

3 no no yes no yes no yes no 3

4 no no yes no yes no yes no 3

5 yes no no no no no yes no 2

Feature inclusion frequency 1 1 4 1 4 0 3 0

Note: Entries with a “yes” identify the most informative features selected to predict the sleep-loss phenotype of subjects of the corresponding outer-CV

test study.

Abbreviations: EEG, electroencephalography; SWA, slow-wave activity.
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vulnerability to sleep loss. In contrast, the procedure did not select

features C4-SWA rise rate and O2-SWA rise rate in any of the CV

folds, indicating that these features are not discriminatory. The

remaining three features each appeared once in different CV folds,

suggesting that these features are needed to account for study-

to-study variations in how vulnerability to sleep loss is manifested in

EEG signals. Taken together, these results suggest that, out of the

eight evaluated EEG features, three features were the most informa-

tive ones for predicting vulnerability to sleep loss, and these features

were associated almost exclusively with channels C3 or O1.

3.2.2 | Model evaluation

Table 5 shows the classifier performance values averaged across the

five outer-CV folds for the training (Step 6, Figure 1b) and testing

(Step 7, Figure 1b) procedures, where we used a 0.50 threshold for

the binary classification (vulnerable versus not-vulnerable). The train-

ing and testing accuracies were comparable, indicating minimal model

overfitting. The testing AUC (Figure 2b) was 0.72 with its 95% confi-

dence interval (0.60, 0.83) excluding 0.50, which suggested that the

model performed better than a classifier that randomly assigned test

subjects into either class. The testing accuracy was 0.78, which was

higher than the random chance-level performance of 0.50. The testing

sensitivity was modest (0.41), whereas the specificity was high (0.95).

These values suggest that although our model correctly classified

fewer than half of the vulnerable subjects, it rarely classified a subject

who was not vulnerable as vulnerable. The testing likelihood ratio was

4.33, indicating that the model was at least four times more likely to

classify a vulnerable individual as vulnerable than an individual who

was not vulnerable as vulnerable. (The likelihood ratio of 4.33 is an

underestimate of the true value because in three studies it reached

positive infinity; Table 5). The testing PPV was 0.87, suggesting a high

probability of a subject classified as vulnerable being truly vulnerable.

This PPV value can be further increased, if necessary. For example,

this may be required when we need to identify vulnerable individuals

with high certainty, either to exclude them from performing critical

tasks or to offer them sleep-loss countermeasures. By investigating a

range of classification thresholds, we found that at a threshold value

of 0.69, the PPV increased to 1.0 (Table 5), indicating high certainty

that an individual predicted to be vulnerable was truly vulnerable. At

this higher threshold value, the testing sensitivity decreased substan-

tially, however, the testing accuracy decreased only slightly, and the

testing specificity increased (Table 5). We could not compute the like-

lihood ratio as its calculation involved division by zero in all five test

studies (Table 5). Taken together, these results show that the logistic

regression classifier can be used to predict vulnerability to sleep loss

using routine night sleep EEG data.

4 | DISCUSSION

Using EEG signals collected during routine night sleep, we developed

two sets of classifiers to predict the probability that an individual is

resilient or vulnerable to sleep loss. Both of these predictions consis-

tently required two or three features extracted from the central

(C3) or occipital (O1) EEG channels located over the left cerebral

hemisphere (Figure 1a). We estimated the performance of these

models conservatively by using unique study data not involved in

model selection as test sets, so that when our models are used in real-

world applications their performance should be similar to those

reported here. With the ability to place an individual on a continuous

scale of resilience or vulnerability to sleep loss, these classifiers can

help identify resilient individuals with the required sleep-loss pheno-

type for certain mission-critical tasks, and vulnerable individuals who

may need additional sleep-loss countermeasures.

When building the classifiers to predict resilience or vulnerability

to sleep loss, we used a five-fold nested cross-validation procedure.

This resulted in five different models, each with its own EEG feature

subset and model parameters. Hence, for future real-world

TABLE 5 Performance summary of
the vulnerable versus not-vulnerable
logistic regression classifiers, averaged
over the five outer cross-validation (CV)
folds.Metric

Performance [mean (1 SD)]

Threshold of 0.50 Threshold of 0.69

Training Testing Training Testing

AUC 0.77 (0.01) 0.73 (0.08) 0.77 (0.01) 0.73 (0.08)

Accuracy 0.78 (0.02) 0.78 (0.04) 0.75 (0.02) 0.73 (0.03)

Sensitivity 0.44 (0.03) 0.41 (0.17) 0.24 (0.06) 0.15 (0.08)

Specificity 0.94 (0.01) 0.95 (0.06) 1.00 (0.00) 1.00 (0.00)

Positive predictive value 0.77 (0.05) 0.87 (0.16) 1.00 (0.00) 1.00 (0.00)a

Likelihood ratio 7.44 (2.07) 4.33 (0.33)b c c

Abbreviations: AUC, area under the receiver operating characteristic curve; SD, standard deviation.
aPositive predictive values (PPVs) were averaged across four outer-CV folds because PPV was undefined

for one of the outer-CV folds (due to a division of zero by zero).
bLikelihood ratio (LR) values were infinity for three outer-CV folds (due to a division by zero).
cLR values were infinity for four outer-CV folds (due to a division by zero) and undefined for one outer-

CV fold (due to a division of zero by zero).
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applications, an ensemble of these five models should be used as the

“final” model, where the respective EEG feature subsets of a test sub-

ject are given to these models as inputs, and the model outputs are

averaged across the five models to produce a single value of class

probability. Although feature selection results indicated that the most

informative features primarily originated from channels located on the

left cerebral hemisphere (C3 and O1), the ensemble model for predict-

ing resilience or vulnerability to sleep loss would also include features

from channels on the right hemisphere (C4 and O2). Nevertheless, the

overall result is encouraging and warrants further investigation into

hemisphere asymmetry in predicting sleep-loss phenotype.

The performance results of our models were comparable to those

reported in previous studies. Model accuracy (0.72 for the resilient

versus not-resilient and 0.78 for the vulnerable versus not-vulnerable)

was similar to that of PVT-based models (0.69–0.71) (Chua

et al., 2019; Patanaik et al., 2014, 2015; St. Hilaire et al., 2019) and

MRI-based models (0.60–0.85) (Xu et al., 2021; Yeo et al., 2015). Only

a subset of previous modelling studies (Patanaik et al., 2014, 2015; Xu

et al., 2021) reported the AUC values of their models. Nevertheless,

the AUC values of our models (0.68 for the resilient versus not-

resilient and 0.72 for the vulnerable versus not-vulnerable) were simi-

lar to those based on PVTs (0.74) (Patanaik et al., 2014, 2015), but not

as high as that based on brain imaging (0.94) (Xu et al., 2021). How-

ever, some of these studies (Chua et al., 2019; Patanaik et al., 2014;

Xu et al., 2021) did not use independent datasets for model assess-

ment, which likely biased their performance results.

While our model-performance values were comparable to those

of previous efforts, the overall performance was still moderate. In an

attempt to improve the results, we fitted more complex models, such

as support vector machines with both linear and non-linear kernels,

however, the performance did not improve. Another potentially bene-

ficial approach, which we could not investigate due to limitations in

our data, is to evaluate a broader range of EEG channels located on

other areas of the scalp. Specifically, given that resilient and vulnera-

ble individuals likely differ in accumulated sleep pressure

(Subramaniyan et al., 2023), one possibility is to include SWA features

from frontal EEG channels, which are known to reflect sleep pressure

more reliably than other EEG recording locations (Cajochen

et al., 1999; Finelli et al., 2001; Munch et al., 2004).

An unexpected observation in our study was that the most infor-

mative EEG features were largely associated with EEG channels

located over the left cerebral hemisphere, suggesting that the ability

to discriminate between resilient and vulnerable individuals primarily

resides in the left hemisphere of the brain. Interestingly, a few studies

have shown that sleep pressure results in higher spectral power in the

low frequency range (overlapping with the SWA frequency band) in

the left hemisphere as compared with the right hemisphere

(Achermann et al., 2001; Ferrara et al., 2002; Vyazovskiy et al., 2002).

Given that the two features used in our study, SWA power and its rise

rate, are markers of sleep pressure (Brunner et al., 1993; Dijk

et al., 1990), these observations suggest that sleep-loss phenotypes

differ in their accumulated sleep pressure under baseline conditions,

and that this difference is more pronounced in the left hemisphere.

Furthermore, our results are in line with those of brain imaging studies

involving working memory tasks which find that, under rested wake-

fulness, task-related activation (Chee et al., 2006; Cui et al., 2015; Mu

et al., 2005) and microarchitecture characteristics (Cui et al., 2015)

measured in the left hemisphere are more discriminative of an individ-

ual's sleep-loss phenotype than those measured in the right hemi-

sphere. However, our findings are intriguing because we obtained the

same hemisphere asymmetry in discriminatory power based on sleep

EEG features (i.e., without involving the subjects in specific tasks). We

speculate that, during wakefulness, resilient and vulnerable individuals

differ in the extent to which they engage their left hemispheres,

resulting in a corresponding difference in the recuperative slow-wave

activity during sleep, potentially explaining the higher discriminatory

power of the left hemisphere. In addition, the right handedness that

was predominant in our study population (94% in Studies 1, 4, and

5 combined; we did not have this information for Studies 2 and 3)

could have led to the preferential engagement of the left hemisphere,

further augmenting the observed asymmetry in the discriminative

power. However, future studies involving a sufficient number of left-

handed subjects are required to assess the contribution of handed-

ness to sleep-loss phenotype discrimination.

5 | REAL-WORLD USE AND
APPLICABILITY CONSIDERATIONS

A typical real-world use of our models would involve the screening of

civilian and military personnel to determine whether they are suitable

for shift work, which requires sustained vigilance and attention. In this

context, the following points should be considered. First, EEG signals

should be recorded for at least two nights from the central (C3 and

C4) and occipital (O1 and O2) channels until the end of the first sleep

cycle. Although the median duration of the first sleep cycle is only

1.6 h, a relatively longer duration (�4 h) would be advisable so as to

include most individuals, unless sleep cycles are detected in real time.

Second, the quality of the recordings should be such that all sleep

stages (N1, N2, N3, and REM) can be determined and be free of arte-

facts for at least �80% of the time. Third, EEG-measuring devices

often differ in the absolute magnitude of the recorded signals. This

device-to-device variability by itself does not pose a problem when

using our models because the EEG features are z-scored across indi-

viduals (which discards absolute signal magnitude information) before

being used as inputs to the models. However, when testing a group of

individuals, it is essential to use the same type of EEG device for all

individuals to avoid potential device-dependent characteristics that

could affect the signal magnitude used to discriminate sleep-loss phe-

notypes. Finally, due to z-scoring of the EEG features, the models’
predictions should be treated as a relative ranking of individuals

within a group with regard to vulnerability or resilience to sleep loss,

rather than an absolute sleep-loss phenotypic labelling. For example,

the vulnerable versus not-vulnerable model will rank an individual

more or less vulnerable depending on the EEG feature values of the

remaining individuals in the group.
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With the rapid progress in the development of consumer-level

wireless EEG systems, collecting EEG data at home is becoming more

practical and accessible (Chinoy et al., 2021; Wood et al., 2023).

Therefore, an important question becomes whether the models devel-

oped here using data collected with laboratory-grade EEG devices

would be different if we used data collected with at-home, consumer-

level EEG devices. Laboratory EEG data could be different from at-

home-collected EEG data because sleep in an unfamiliar laboratory

environment is known to affect sleep architecture (Iber et al., 2004)

and SWA power (Mayeli et al., 2022). However, such effects are

removed by z-scoring of the EEG features. Moreover, the effects of a

novel laboratory environment on SWA power (on which our EEG fea-

tures are based) should be minimal, if any, because such effects are

restricted to the frontal regions of the brain and are not observed in

the central and occipital regions (Mayeli et al., 2022) from which we

obtained our features. Therefore, at-home and laboratory EEG data

should give rise to similar model predictions.

There are practical advantages to using sleep EEG to predict

sleep-loss phenotypes as compared with brain imaging- or PVT-based

methods. Brain-imaging methods (Xu et al., 2021; Yeo et al., 2015) are

not practical due to their low accessibility and high cost. In contrast,

PVT-based methods, which use one (Chua et al., 2019; St. Hilaire

et al., 2019) or two (Patanaik et al., 2015) 10 min PVTs, offer the

advantage of quick and simple data collection. However, PVTs are

highly dependent on the individual's level of effort (Brewer

et al., 2017; Massar et al., 2016; Robison et al., 2021), which makes

them a less-desirable method for the assessment of sleep-loss pheno-

type. Furthermore, the predictive ability of PVT-based models

changes depending on the time of day of test administration (Chua

et al., 2019), necessitating the additional constraint of testing all indi-

viduals at the same time. While high-quality sleep EEG data collection

is less practical than PVTs, it does not disrupt an individual's daytime

activities and is not influenced by subjective factors. Moreover, the

increasing availability of easy-to-use EEG recording systems will make

EEG-based predictions practical, reliable, and accessible.

6 | LIMITATIONS

Our study has limitations. First, for the majority of the subjects, we

combined baseline EEG features from two nights. Therefore, we do

not know whether our results generalise to single-night

measurements. Second, our datasets originated from studies that used

different sleep-loss protocols (TSD and CSR), making it unclear if the

sleep-loss phenotypic groups of the different studies are equivalent.

However, it is well documented that sleep-loss phenotype is trait-like,

irrespective of the sleep-loss challenge (Rupp et al., 2012). Third, given

that we needed to perform within-study z-scoring, our model is lim-

ited to identifying the sleep-loss phenotype of an individual within a

group. However, in most real-world settings, such as in selecting resil-

ient individuals in the Armed Forces, individuals will often need to be

selected from a group. Therefore, our models are applicable in those

settings. Finally, we evaluated a limited number of EEG channels to

build our classifiers. Hence, we do not know if other EEG channels are

more discriminatory and therefore more suitable for building sleep-

loss phenotype classifiers. Nevertheless, the EEG features from the

channels we used had sufficient discriminatory information to classify

individuals with reasonable accuracy, motivating further investigations

to identify additional discriminative features.

7 | CONCLUSIONS

In this work, we developed two sets of classifiers based on EEG fea-

tures obtained from routine night sleep and predicted the probability

of an individual being resilient or vulnerable to sleep loss. We built

these classifiers using a nested cross-validation procedure that

allowed us to simultaneously minimise model overfitting and to obtain

performance results that are representative of the models’ perfor-

mance in real-world usage. Our results indicate that the ability to dis-

criminate phenotypic responses to sleep loss only requires data

collection during the first sleep cycle, potentially simplifying the

data collection process. In addition to being more practical and scal-

able, our model-building approach provides a framework to investi-

gate additional features that could further improve the ability to

predict an individual's sleep-loss phenotype.
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