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ABSTRACT 

It is essential to protect Service Members from toxic and hazardous chemicals and materials across the 

entire range of deployment missions, from humanitarian to theater-level combat. Tools that rapidly and 

accurately quantify exposure-induced health effects would enable Commanders to make informed decisions 

on return-to-duty and allow service members to thrive in environments of uncertainty and danger. Currently, 

U.S. Forces lack a suitable method to rapidly screen and assess risk of toxic end organ injury following 

chemical exposures in the field. Markers of end-organ injury and toxicity and other health effects markers, 

particularly those used in a clinical setting, could be integrated into a "lab-on-a-chip" fieldable detection 

cartridge for molecular indicators of injury following chemical exposure or for routine surveillance when 

operating in dangerous environments. We utilized large public repositories of drug toxicity data to infer 

biomarkers of toxic industrial chemicals exposure. Using a computational and relational approach we 

prioritized militarily relevant toxic industrial chemicals and their anticipated adverse health effects, to 

include potential threats related to megacities. Initially, we focused on liver and kidney toxicity because 

these organs are particularly susceptible to toxic injury, often used in drug toxicity studies with large 

amounts of publically available data, and in some cases have established FDA-qualified biomarker panels 

or clinical assays. We mined the literature and databases (e.g., DrugMatrix® and the Comparative 

Toxicogenomics Database) for candidate gene targets to make predictions about biomarkers related to toxic 

industrial chemicals that cause the same adverse health effects. We identified 78 and 244 gene modules 

associated with liver and kidney injury, respectively, and qualified some of these targets in independent 

animal studies. In particular, we developed panels of genes (25-50 genes per panel) detecting liver fibrosis 

with 70-95% sensitivity and specificity. Using this success as an exemplar, we are currently evaluating drug 

induced liver injury and kidney injury panels within an adverse outcome pathway framework in order to 

develop a multiplexed panel useful in the diagnosis of the most highly prioritized health effects caused by 

industrial chemicals. Integration of such efforts with physiologically based models will enhance prediction 

capability and contribute data to sophisticated tools for health and risk assessment and surveillance. Large 

drug toxicity data repositories have proven useful in making predictions about biomarkers of health effects 

in a manner that is useful and applicable to military-relevant threats. In doing so, we plan to integrate 

physiologically based models, high content screening data, and adverse outcome pathways into a new 

generation of improved health risk assessment and screening capabilities. 
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1.0 INTRODUCTION  

Service members are occupationally exposed to chemicals and environmental hazards, elevating their risk for 

developing adverse health effects [1]. Military personnel are exposed to environmental health hazards during 

training exercises, deployments, and national defense. Physiological response to chemical threats varies 

among individuals, and is influenced by individual behavior, medical history, individual response to 

physiological and psychological stressors, and genetic susceptibility. In many cases, assessment of adverse 

health risks and effects must be made on a case-by-case basis [2-6].  

During Operations Iraqi Freedom and Enduring Freedom (2001-2011), there were 585 hospitalizations and 

medical evacuations due to toxic substance exposure, resulting in decreased force strength and operational 

readiness [7]. However, it is likely that these data do not accurately reflect the real risks of exposure to 

service members. Acute, high-level exposures resolved onsite in field hospitals are frequently not adequately 

documented for inclusion in epidemiological studies, suggesting that the actual risk to deployed soldier is far 

greater than current estimates. Limited epidemiological data are available to adequately formulate risk 

assessment models for chemical and environmental exposures in theater. In most cases, quantifiable and 

verifiable exposure data are absent [7].   

In future operations, military deployments and conflicts will likely occur in urban, industrialized megacities 

of greater than 10 million inhabitants. Military personnel will be at heightened risk of exposure to toxic 

industrial chemicals and materials (TICs/TIMs) associated with routine manufacturing and industry 

operations in a megacity environment [8]. Inaccurate chemical inventories and inadequate regulation by 

centralized regulatory agencies further increase risk to deployed personnel. Recent years have also seen an 

exponential advance in the development, distribution, and use of engineered nanomaterials without a 

commensurate assessment of potential toxicological hazard. Rapidly and accurately quantifying exposure-

induced health effects will allow commanders to make informed decisions on return-to-duty, medical 

surveillance, or evacuation after a chemical exposure.  

Currently, the military lacks standard concepts of operations for making command decisions to move 

personnel exposed to TICs/TIMs between medical roles I-IV. The reasons for this deficiency are 

multifactorial: (1) the number of potential chemical threats increases exponentially when considering 

mixtures in a megacity environment, making it logistically impractical to develop operational plans for every 

possible scenario; (2) most chemicals have no available toxicity data or standard countermeasures to guide 

medical decision-making; (3) sophisticated screening tools are lacking for potential occupational hazards; 

and (4) many chemicals including endocrine disruptors and engineered nanomaterials cause toxicity at low 

doses and do not have a predictable dose response relationship [9].   

Ethical, financial, regulatory, and logistical considerations add to the complexity of the problem. Conducting 

a full battery of toxicology assessment tests would require thousands of exposure-based assays and a 

logistically impractical number of experimental animals, manpower hours, and resources. New approaches, 

applications, and technologies will be needed to provide personalized, preventative health risk assessments in 

the megacity operational environment. Further, detection techniques must be versatile enough to detect 

metabolites, nucleic acids, proteins, and other biomolecules within a single, durable platform with compact 

footprint. 

The ideal biomarker candidate(s) will be mechanistically linked to the pathology in question. The 

Organization for Economic Cooperation and Development (OECD) recently launched a program to develop 

adverse outcome pathways (AOPs) for presenting causal relationships necessary for pathogenesis at the 

molecular, cellular, tissue, and organ levels. AOPs communicate and organize knowledge in a manner that is 

relevant for risk assessment in the regulatory arena [10]. In the AOP framework, a single molecular initiating 

event (MIE) triggers a cascade of key event (KE) relationships at the cellular, tissue, and finally organ levels 

to result in organ dysfunction and/or lethality (Figure 1) [11]. Quantitative AOP-based assessments are 
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gaining regulatory acceptance with the EPA [12]. Predictive algorithms that associate changes in 

biomolecular activity with KEs triggering adverse outcomes could be anchored to physiologically based 

models. For example, co-regulated gene modules and gene/protein signatures in circulating biomarkers can 

be correlated with KEs to provide a systems toxicology interpretation of adverse biological outcomes [13]. 

Further, existing databases of toxicokinetic, toxicodynamic, and toxicopathologic endpoints can be 

integrated into physiologically based models of intoxication, potentially providing a new powerful tool to 

improve health risk assessments.  

This paper summarizes the current progress of the United States Army Center for Environmental Health 

Research (USACEHR) in (1) prioritizing militarily relevant toxicants and (2) developing appropriate 

computational tools to assess health effects of a wide range of TICs/TIMs in order to support medical 

decision-making by commanders and medical personnel in exposure scenarios. We bioinformatically mined 

large publically available data repositories to identify candidate biomarkers of liver fibrosis as an exemplar. 

We experimentally qualified these candidate biomarkers within the liver fibrosis adverse outcome pathway 

(AOP) framework.  

      

Figure 1: Strategic vision of developing materiel solutions for biomarkers of adverse health 
effects using the AOP framework. Developing molecular indicators linked to specific AOPs 

effectively broadens the tools applicable to chemical exposure scenarios. BHSAI,  
Biotechnology HPC Software Applications Institute. 

2.0 METHODS 

2.1 Prioritized list of toxic industrial chemicals and adverse health effects 

To prioritize the more than 80,000 toxic industrial chemical threats, we accessed the Industrial Chemical 

Analysis (ICA) database compiled by the Joint Protection Manager for Individual Protection (JPM-IP) and 

the Naval Research Laboratories (NRL). The ICA database was prioritized in 2010 to take into account 
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chemical properties such as geographical abundance, reactivity, stability, and toxicity. Probability scores 

were calculated based on the toxic (operational) hazard scores, comprising toxicity, stability, and physical 

state scores. Critical and high priority sub-lists were developed based on additional scoring algorithms 

factoring in global geographical distribution and production and class-based, reactivity, and physical 

property analyses. Where possible, the Merck Index and published literature were consulted to fill in gaps in 

the original International Task Force (ITF) 40 ICA scoring method [14].   

A relational database was constructed in a mySQL environment in order to integrate target organs of adverse 

health effects, chemicals of interest, and potential biomarkers of toxic chemical injury. End organ target 

toxicities were obtained from multiple publicly available sources. The most comprehensive, readily parsable 

data repository was the Comparative Toxicogenomics Database (CTD). Data from both curated and 

relational associations were included. 

2.2 Mining DrugMatrix® and the Comparative Toxicogenomics Databases  

Data for predicting gene changes associated with military threat chemicals were obtained from two public 

data repositories: the DrugMatrix® database and the CTD [15, 16]. Using an iterative signature algorithm 

(ISA) approach, we identified gene modules predicted to be associated with liver and kidney pathology. We 

developed a computational algorithm based on transcriptomic signatures of gene sets predictive for hepatic 

fibrosis, steatosis, and peroxisome proliferator activation [15, 17, 18].  

Based on these predictions, prototype genomic biomarker panels were developed for experimental 

verification. Two computational approaches were used to down-select gene candidates from co-expression 

modules. First, ISA were used to group genes into co-expression modules based on similarity in expression 

patterns across compound-dose conditions [17, 19]. Genes in modules anchored to the liver fibrosis 

histopathology were further analyzed to identify genes with expression patterns closest to the average 

absolute activation value (i.e., z-score). These centroid genes were selected for the multiplexed panel. In the 

second approach, liver fibrosis-associated genes were mapped to pathways and high-confidence human 

protein-protein interaction networks. Rank product and hierarchical clustering determined differential 

expression and co-expression patterns to identify genes relevant to liver fibrosis, and the resulting genes 

were mapped to high confidence human protein-protein interaction networks [20-22]. Network modules 

representing genes with predicted common function and/or expression in a given network were extracted by 

Cytoscape tools (i.e., KeyPathwayMiner and Clusterviz [23]). Module genes differentially expressed in 

DrugMatrix® liver microarray analysis were selected for inclusion in the multiplex panel [19]. 

2.3 Experimental verification of biomarker panel candidates 

The resulting exploratory panel of genes was tested experimentally in rodents using chemicals from both the 

military threat list and the DrugMatrix® database (Figure 2). Allyl alcohol and 4,4’-methylenedianiline are 

associated with fibrotic injury in the DrugMatrix® database after five days of daily administration. Carbon 

tetrachloride is a delayed-onset fibrogenic compound, resulting in fibrotic injury at 14-28 days. 

Dexamethasone and bromobenzene cause liver pathology but not fibrotic injury (glycogen accumulation and 

steatosis, respectively) [24, 25]. Male Sprague-Dawley rats were orally administered these chemicals at 

escalating doses for 5 days. Bioplex® technology was used to quantitatively assess changes in gene 

expression in liver tissue. Liver sections stained with hematoxylin and eosin and Masson’s trichrome were 

scored for pathological changes by a certified veterinary pathologist. 

Histological results were evaluated and scored for severity. Results were determined by a nonparametric 

Kruskal-Wallis analysis of variance by ranks with post hoc Dunnett’s multiple comparison test among dose 

groups using GraphPad Prism (GraphPad Software, Inc.; LaJolla, CA). A p-value <0.05 was considered 

statistically significant. Sensitivity and specificity were determined by comparing the diagnosis predicted by 

the gene panel with the diagnosis made by histopathology assessment with Masson’s trichrome.  
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3.0 RESULTS 

3.1 Prioritized list of toxic industrial chemicals and adverse health effects  

The NRL-JPM-IP ICA database was used as the starting point to develop a prioritized list of the 

physical/chemical properties and toxicology data associated with toxic industrial chemical exposure. Clinical 

data on acute symptoms and related biochemical mechanisms of action were incorporated into the new 

database. High priority industrial chemical hazard lists for ingestion, inhalation, and percutaneous exposure 

routes were developed and linked to basic toxicity, time-to-onset of clinical symptoms, likelihood of a 

chemical to manifest a toxic hazard in the operational environment, and acute onset (time to manifestation of 

symptoms). Merging the ingestion, percutaneous, ocular, and inhalation hazard lists resulted in a down-

selected list of approximately 570 chemicals. Global distribution and production data were used to assess the 

prevalence and hazard posed by industrial chemicals. The top 30 megacities chemical threats were identified 

based on these data. The resulting list comprises a military threat list of toxic industrial chemicals and was 

recently submitted to the Defense Technical Information Center [26].  

A relational database was constructed in a mySQL environment integrating target organs of adverse health 

effects, chemicals of interest, and potential biomarkers of toxic chemical injury. End organ target toxicities 

were obtained from the CTD, the most comprehensive, readily parsable public data repository available. 

Data from both curated and relational associations were parsed into the database. Approximately 54% of the 

chemicals on the threat list had associated CTD data. Time-to-onset was determined by manual curation. 

Chronic and hereditary conditions were removed and only subacute and subchronic endpoints were retained. 

For the remaining 46% of the chemicals, entries were manually inputted into an Excel database based on 

keyword searches by chemical name and/or CAS number in the TOXNET suite of toxicology databases, 

including the Hazardous Substances Databank [HSDB], TOXLINE, Haz-Map, and Integrated Risk 

Information System [IRIS] (http://toxnet.nlm.nih.gov). Data mining was supplemented with a PubMed 

literature review by chemical and/or CAS number. Target organs tallies from both search strategies 

identified the number of chemicals associated with each pathology. Toxicology data were unavailable for 87 

chemicals. Of the remaining 483 chemicals, the frequencies of target organ toxicities were as follows: kidney 

(226), liver (275), heart (183), central nervous system (CNS) (215), lung (232), and other (60). Incidences of 

specific lesions were expressed as a percent of general organ injury (Figure 2).  

3.2 Computational approaches identifying candidate biomarker panels 

The relational database was used to identify chemicals and key health effects on the military threat list for 

further testing. Chemicals on the military threat list were cross-referenced with data available in publically 

available toxicology data repositories. Repositories accessed were (1) the National Toxicology Program’s 

DrugMatrix® database and (2) the CTD [15, 27]. DrugMatrix® is a compilation of more than 3,200 drug 

and toxicant exposures in rats with accompanying clinical chemistry, histopathology, and microarray data 

[15-19]. CTD is a relational database associating chemical exposures with diseases and gene expression 

changes [16]. Militarily relevant chemicals causing liver fibrosis and change in abundance of genes in the 

fibrogenic co-expression modules were selected for experimental verification (see next section; [28]).  

The relational database was then used to prioritize military threat chemicals with liver histopathology and 

differential expression of genes mechanistically linked to liver fibrosis pathogenesis (Figure 3). Using this 

approach, we identified gene co-expression modules anchored to periportal fibrosis.  

Bioinformatics mining of DrugMatrix® and CTD identified 78 gene modules associated with liver injury 

and 244 gene modules associated with kidney injury. Liver fibrosis was identified as the pathology most 

closely correlated with predictive gene signature patterns. From the 78 gene modules associated with liver 

injury, we identified a 67-plex panel of presumptive fibrogenic indicator genes hypothesized to predict liver 

fibrosis. To experimentally test the accuracy of fibrosis prediction by gene expression alone, we conducted 
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rodent oral exposure studies with fibrogenic chemicals. Histopathology confirmed fibrotic injury for allyl 

alcohol and 4,4’-methylenedianiline. Both chemicals also caused a qualitative increase in cytoplasmic 

alteration, subacute inflammation, and bile duct hyperplasia, as illustrated by representative images for 4,4-

methylenedianiline (Figures 3A). Severity of injury increased with dose in all categories of pathology, as 

illustrated by the exemplar images for 4,4’-methylenedianiline (Figure 3B). 

 

Figure 2: Target organ injury associated with 570 prioritized TICs/TIMs. Adverse health effects 
were determined by rank order for (A) liver, (B) kidney, (C) heart, (D) lung, and (E) CNS.  

The first bar in each graph represents the number of chemicals associated with  
generalized injury to the target organ. Subsequent bars indicate specific pathologies  

as a percent of total chemicals affecting each organ. Some chemicals affect  
multiple organs and/or induce multiple pathologies in a single organ. 
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Figure 3: Liver pathology induced by 4,4’-methylenedianiline (exemplar). (A) 4,4’-
methylenedianiline increased (i) cytoplasmic alteration, (i-ii) subacute inflammation,  
and (i-ii) bile duct hyperplasia. Comparable results were observed after allyl alcohol 
administration. (B) 4,4’-methylenedianiline administration caused a dose-dependent  

increase in liver pathology based on histopathological scoring (tissue affected:  
minimal, <30%; mild, >30-60%; moderate, 60-80%; marked, >80%). 

Of the 67 presumptive fibrogenic genes in the test panel, 51 (76%) of the genes were ± 1.5-fold control 

expression in the animals with histopathological evidence of fibrosis (Figure 3). Only 33 (49%) were 

differentially regulated in animals without evidence of fibrosis, and 12 of the 33 differentially expressed 

genes showed an expression pattern which was anti-correlated with expression pattern in the fibrosis-positive 

cohorts. Assay sensitivity was 70-95% for detecting the progression of fibrosis. 

 

Figure 4: Dose dependent increase in liver fibrosis signature genes associated with  
mechanistic changes in fibrosis pathogenesis (upper panel). Gene expression  

data for three exemplar genes indicates fibrosis specificity (lower panel). 
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Differentially expressed genes were classified into mechanistic groups: hyperplasia, inflammatory 

signaling/chemotaxis, and fibroplasia and/or extracellular matrix remodeling (Figure 4). Termed bridging 

biomarkers, these markers have a literature-based association with a specific mechanism for fibrotic injury. 

Some of the observed differential expression patterns were previously associated with more advanced 

fibrotic injury. These genes may be early indicators of fibrogenesis [28].  

4.0 DISCUSSION 

4.1 Industrial chemical analysis 

Protecting military personnel from toxic and hazardous chemicals is essential in all operational environments 

across the entire range of deployment missions, from humanitarian missions to combat in theater. Reducing 

and limiting such exposures to acceptable levels requires significant integration of environmental 

monitoring, biomonitoring, and biomarker assessment. The missing and/or inaccurate information in the 

existing ITF-40 database prompted the development of a revised threat list based on re-evaluation of the 

physical properties of each chemical, with emphasis placed on the potential for harm in the operational 

environment. USACEHR and NRL jointly integrated adverse health effects and global distribution into the 

database, resulting in a list of chemical threats in a megacity environment [26].  

Developing independent assays for all possible military threat chemicals is neither logistically nor financially 

practical. However, developing assays for the top 20-25 AOPs is a more viable alternative to assess 

individual susceptibility and sensitivity to toxic chemical injury. AOPs could be rank ordered by the number 

of chemicals causing a given pathology. Our ongoing efforts aim to refine the prioritization process required 

for generating a toxic (operational) hazard score, incorporating additional metrics including stability scores, 

physical state scores, and relative probability scores derived from acute toxicology found in the material 

safety data sheet (MSDS), global production, and distribution data. Target organ health effects and time-to-

onset metrics are integrated to evaluate health effects in time frames relevant to making return-to-duty 

decisions by field commanders and medics. Although oral, inhalation, and percutaneous scores were 

collapsed into a single score for each chemical in the initial iteration of the tool, future efforts will delineate 

exposure route. A computational approach will be used to assign priority scores for different field operations 

scenarios. A second probability scoring system will incorporate geographical distribution. Finally, time-to-

onset and health effects in the subacute and subchronic range will be used to both eliminate chronic 

endpoints outside the concept of field operations and acute effects requiring immediate, palliative care. 

4.2 Bioinfomatics mining of public data repositories for candidate liver fibrosis 

biomarkers 

The liver and kidneys are particularly susceptible to toxic chemical injury. The liver plays a primary role in 

xenobiotic metabolism [29-31], while the kidney concentrates xenobiotics for excretion, increasing local 

concentrations at the glomeruli and renal tubules [32]. To improve sensitivity of the existing biomarker 

panels, publically available databases (e.g., DrugMatrix® and CTD) are routinely mined for candidate gene 

targets [15, 27]. Hierarchical clustering and integrated systems toxicogenomics have been used to mine the 

DrugMatrix® database and develop panels of candidate genes for further analysis and verification.  

Clinically used biomarker panels for both liver and kidney injury have been established in the context of 

preclinical adverse drug reactions. Current clinical tests used routinely to diagnose liver injury and impaired 

liver function include laboratory tests such as ELISA (enzyme-linked immunosorbant assays) for specific 

biomolecules. The standard technology for measuring biomarkers of liver injury is iSTAT technology 

assessing clinical chemistry endpoints (e.g.,  alanine aminotransferase, aspartate aminotransferase, alkaline 

phosphate, transaminase, lactate dehydrogenase, gamma glutamyl transpeptidease, bile acids, clotting time, 

and protein level) [33, 34]. 
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Late-stage liver fibrosis can be predicted by clinically used tests and biomarker panels, including hyaluronic 

acid and type III collagen propeptide [34]. A number of early indicators replacing the standard liver biopsy 

are being used in the clinic or pre-clinical trials. (1) Fibrotest incorporates age and clinical parameters with 

the following molecular indicators: α2-macroglobulin, haptoglobin, γ-glutamyl transpeptidase, bilirubin, 

alanine transaminase, and apolipoprotein A1. (2) Fibrospect includes hyaluronic acid, tissue inhibitor of 

metalloproteinase 1 (TIMP-1), and α2-macroglobulin. (3) Fibroscan is a transient elastography device. (4) 

Actitest is a component of Fibrotest, but lacks the clinical parameter components included in its parent test. 

(5) APRI is the aspartate aminotransferase/ platelet ratio and has been used in standard clinical batteries. (6) 

αGST/Arginase-1/ALT assay is an ELISA-based platform currently in preclinical stages of testing and 

includes an animal component for use in preclinical studies and is available in the MSD (Mesoscale 

Discovery) platform. Although all biomarker panels have been published extensively, and/or have been 

approved by the European regulatory agencies (e.g., ICH [International Congress on Harmonization]), there 

is little or no impetus for approval by the standard regulatory agencies in the United States. Fibrotest, for 

instance, does not require FDA approval for use in the clinic [35]. 

Biomarker panels for drug-induced kidney injury have already been established, validated, and approved by 

the ICH regulatory authorities, including the following biomolecules:  blood urea nitrogen (BUN), KIM-1, 

albumin, total protein, β2-microglobulin, cystatin C, clusterin, and trefoil factor-3 [36].  These biomarker 

panels can be optimized and adapted into fieldable tests for toxic kidney injury. We are currently developing 

a computational approach to evaluating the 244 gene modules identified for kidney injury to develop 

predictive biomarker panels specific for kidney injury (AbdulHameed, in preparation). 

4.3 Computational framework: biomarkers of toxic effect 

Computational approaches can be used to identify biomarkers of liver and kidney injury and integrate 

quantitative gene and protein expression data into models bridging differential biomolecule data with 

histopathology for making predictions about end organ injury by sampling accessible biofluids (e.g., blood 

and/or urine). AOPs are a current framework for integrating biomarkers with histopathological endpoints 

[11]. An AOP for chemical-induced liver fibrosis has been described [11]. Briefly, the molecular initiating 

events of protein alkylation and covalent protein binding in the liver trigger apoptosis and other cellular 

hepatic injury. Activated Kupffer cells and increasing transforming growth factor β1 transition the pathology 

from the cellular to the tissue level (Figure 5). Stellate cells are activated, leading to inflammation and 

oxidative stress. The cumulative result of these changes is the accumulation of collagen and changes in 

extracellular matrix composition, which are the physical manifestations of the fibrosis pathology [11]. 

Collectively, our gene expression modules provide quantitative expression patterns of gene networks linked 

to mechanistic changes in the cellular events leading to the tissue pathology characteristic of fibrotic injury. 

The gene co-expression modules can be integrated into an adverse outcome framework. One limitation in the 

field of AOP development is currently the inability to incorporate network information into the current linear 

framework of the existing AOP structure. Our gene module approach has the potential to bridge this critical 

gap in the AOP field. The gene modules intrinsically incorporate network information into the cellular events 

anchored to the liver histopathology (Figure 5). Expression patterns of a panel of genes linked to discrete 

pathologies can be used to establish threshold values for predicting progression from injury to frank fibrosis. 

This systems-level integration of multi-omics data at the cellular and tissue level can be extended to the 

individual by physiologically based pharmacokinetic (PBPK) models to make biological predictions based 

on integrated multi-omics expression data [11-12].  
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Figure 5: Basis for a computational framework to integrate differential gene expression  
analysis into the liver fibrosis adverse outcome pathway (AOP). 

4.4 Computationally anchoring molecular responses to absorption, metabolism, 

distribution, and toxicity (ADME-T) parameters 

Recent advancements in technology for characterizing the gene, protein, and metabolic networks underlying 

cellular and tissue perturbation have revolutionized toxicological science. Large-scale molecular signatures 

can inform dose- and time-dependent changes in cellular networks aided by computational systems biology 

pathway models. Different modeling approaches have been proposed for mapping biomolecular 

perturbations to pathological and/or physiological changes in target-organ function as a result of chemical 

exposure. Causal transcriptional network inference analysis identified canonical alterations of gene 

expression in liver parenchymal cells after activation of peroxisome proliferation activation receptors 

(PPAR), a class of chemicals which regulate lipid metabolism and adipogenesis in liver tissue, leading to 

histopathological evidence of lipid accumulation (i.e., steatosis). Multi-scale, quantitative spatial models of 

the human liver integrate cellular and tissue-level mechanisms. These models create a “virtual tissue” by 

mapping regulatory networks and dose response relationships schematically, then overlaying the network 

response onto a three-dimensional representation of the tissue [37]. Ongoing efforts in our laboratory are 

developing comparable models to bridge exposure to military threat chemicals with adverse health effects 

and clinical outcomes to improve diagnostic potential after exposure to toxic industrial chemicals and 

materials. Our laboratory recently described the first in vivo thermoregulation model of heat stress and 

integrated multi-omics data into a model predicting physiological changes after heat exposure [38-41]. 

Similar methods are underway for integrating physiologically based pharmacokinetic models with multi-

omics molecular mechanisms and/or indicators of clinical injury after chemical exposure [42]. 

5.0 CONCLUSION  

In conclusion, computational approaches for biomarker discovery represent a powerful tool for identifying 

and characterizing novel gene and protein interaction networks which can anchor gene and protein 

expression patterns to histopathology. Integrating biomarker panels with predictive algorithms and anchoring 
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the molecular responses to AOPs and physiologically-based computational models will improve hazard 

assessment for return-to-duty decisions in the field. 
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