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ABSTRACT: As novel and drug-resistant bacterial strains
continue to present an emerging health threat, the develop-
ment of new antibacterial agents is critical. This includes
making improvements to existing antibacterial scaffolds as well
as identifying novel ones. The aim of this study is to apply a
Bayesian classification QSAR approach to rapidly screen
chemical libraries for compounds predicted to have anti-
bacterial activity. Toward this end we assembled a data set of
317 known antibacterial compounds as well as a second data
set of diverse, well-validated, non-antibacterial compounds
from 215 PubChem Bioassays against various bacterial species. We constructed a Bayesian classification model using structural
fingerprints and physicochemical property descriptors and achieved an accuracy of 84% and precision of 86% on an independent
test set in identifying antibacterial compounds. To demonstrate the practical applicability of the model in virtual screening, we
screened an independent data set of ∼200k compounds. The results show that the model can screen top hits of PubChem
Bioassay actives with accuracy up to ∼76%, representing a 1.5−2-fold enrichment. The top screened hits represented a mixture of
both known antibacterial scaffolds as well as novel scaffolds. Our study suggests that a well-validated Bayesian classification QSAR
approach could compliment other screening approaches in identifying novel and promising hits. The data sets used in
constructing and validating this model have been made publicly available.

■ INTRODUCTION

It is impossible to determine the number of bacterial infections
treated each year worldwide. According to World Health
Organization (WHO), the top five infectious diseases with
highest death rates are lower respiratory tract infections (3.9
million), diarrhea (1.8 million), tuberculosis (1.6 million),
pertussis (290 000), and tetanus (210 000).1 Considering this
staggering number of deaths, there should be a lucrative market
for drug therapies for these diseases. Indeed, this was true up
until the early 1990s when around 20 pharmaceutical
companies were involved in antibacterial research. Today
only two are active.2 In the last 25 years, not a single novel
antibacterial drug class has been discovered. Though many
scientists consider the last three major classes discovered to be
novel. oxazolidinones (2000), lipopeptides (2003), and pleuro-
mutilins (2007), they were, in fact, patented in 1978,3 1987,4

and 1952,5 respectively.
Multiple reasons have been cited for this drift from the

“golden age” (1945−1965) to the “innovation gap” (1987 and
onward) of discovering novel antibacterial compounds. Among
many, there are three main hurdles to success in this area. First
is “scientific difficulties” due to (i) rapid evolution of resistant
strains that renders even the newly developed antibacterials
ineffective, (ii) lack of novel screening libraries and compounds,
for new drug discovery, and (iii) difficult to manage side-effects

due to high dose requirements in order to achieve blood levels
necessary for efficacy. Second, is “pharmaceutical company
disinterest” due to (i) lack of financial gains because of the
short-duration treatment regimen typically prescribed for
antibacterials, (ii) difficulties in licensing, and (iii) the uncertain
future of drugs due to resistance. Last, but not the least, is
“regulatory hurdles” due to (i) The Food and Drug
Administration’s delay in issuing guidance documents regarding
acceptable study designs and acceptable efficacy outcomes and
(ii) requirements for studies to sufficiently demonstrate the
superiority over current treatment regimens of drugs, which
leads to costly and difficult clinical trials. Many excellent
reviews and articles exist in the literature that highlight these
problems in detail.6−9

Despite all these difficulties, both scientific and otherwise,
there is a perpetual need for new antibacterials, as a result, the
antibacterial product pipeline has never been totally empty.
Many new antibacterials have been approved since 1970, and
almost all of them are improved versions of the previously
known scaffold classes. Many of these improvements, some
very substantial, have yielded analogues with broader
antibacterial spectra to avoid resistance, lesser toxicity, and
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low dose regimens. A good example of such antibacterial
evolution is cephalosporins. This class is one of the most
commonly prescribed class of antibacterials.10 Over the years,
they have constantly evolved and each new generation (from I
to V), while retaining the cephem scaffold, is designed to have
added spectrum of activity and/or to be active against those
bacteria that have become resistant to the previous gen-
eration.11 Additional examples of new antibacterials, approved
since 2000, based on known scaffolds include doripenem and
ertapenem (carbapenems); tigecycline (tetracyclines); telithro-
mycin and fidaxomicin (macrolides); telavancin (glycopep-
tides); gemifloxacin (quinolones); linezolid (oxazolidinones);
dapromycin (lipopeptides); and retapamulin (pleuromutilin).
Such modifications and incremental tailoring are not only
necessary to fight the resistant pathogens but they can also be
used to maximize the therapeutic potential of each scaffold to
the fullest. This shows, that, along with research efforts to
discover novel scaffolds we also need to devise ways to further
explore the known scaffold properties of current antibacterials.
This is especially true, since it is well-known that the currently
known small molecule space is sparsely inhabited by
antibacterial-like compounds. Hence, strategies that explore
the available chemical space would help in finding new
antibacterials.
Structurally, antibacterials differ significantly from other drug

classes, such as drugs targeting human proteins.12 Most of these
differences are attributed to their need of penetrating and
persisting in bacterial cells while avoiding human cells.13 The
differences, such as higher molecular weight and polarity, and
other physicochemical properties, have been exploited in a few
previous studies that utilize binary quantitative structure−
activity relationship (QSAR) classification models to distin-
guish between antibacterials and non-antibacterial com-
pounds.14−20 These attempts include the use of techniques
such as linear discriminant analysis, binary logistic regression,
and artificial neural networks. In all these studies, the training
data sets of antibacterials and non-antibacterial compounds
range from 24 to 249 and 35 to 731, respectively, where all the
non-antibacterials were collected from the Merck Index of
compounds.21 Additionally, many QSAR models for “class
specific” antibacterials, such as fluoroquinolones,22 β-lactams,23

and aminoglycosides24 have also been developed and appear to
be useful in screening potential hits.
In the current study, we have used a previously unused

Bayesian classification approach to build a QSAR model that
can distinguish between antibacterial and non-antibacterial
compounds. Bayesian modeling is a well-known classification
approach, and many examples of its utility as a tool in drug
discovery and structure−activity analysis exists. Previously, it
has been used successfully in finding inhibitors of kinases,25 G-
protein-coupled receptors (GPCRs),26 γ amino butyric acid
type A (GABAA) ionotropic receptor,27 Mycobacterium tuber-
culosis,28 and in identifying important structural features/
fragments for microsomal stability29 and human ether-a-go-go
related gene (hERG) protein blockers.30 Along with being
deceptively simple and robust, another major strength of
Bayesian approach is its ability to rank the molecules according
to their probability of being active. This ranking of molecules is
important when prioritizing molecules for screening, i.e.,
making focused libraries, or for further development.
In our study, we utilized structural fingerprints and selected

physiochemical properties of 317 known antibacterials to build
a Bayesian model. Unlike previous antibacterial classification

studies, our collection of antibacterials is significantly larger.
Using a novel strategy, an equal number of non-antibacterials
were also collected using inactive compounds from 215
bacterial bioassays deposited in the freely available PubChem
repository and provided by the National Center for
Biotechnology Information (NCBI).31 This is different from
collecting non-antibacterials from the Merck Index of
compounds, which is not open source and where most of the
compounds are actually drugs targeting human proteins.
Ultimately, since the goal of this model will be to enrich for
antibacterial compounds from compound libraries typically
used for antibacterial screening, we curated a representative set
of well-validated non-antibacterials from data from actual
antibacterial screening studies available through PubChem.
The developed Bayesian models were validated using
independent test set molecules that were not used to train
the models. This allowed us to more accurately estimate the
prediction power of the models. As mentioned above, since a
model would be more useful if the model results could be
translated into practical virtual screening strategies, we further
validated our approach by successfully filtering out active hits
from ∼200 000 screening molecules that were used to find
inhibitors for various bacterial pathogens and deposited in
PubChem Bioassays. Ultimately, the main purpose of this
model is to make predictions, based on known antibacterial and
non-antibacterials, for unknown screening compounds in order
to identify the analogues that contain the most antibacterial like
structural features and properties.

■ METHODS AND MATERIALS
Workflow. The workflow followed for our classification

QSAR model building, its validation, and its use in virtual
screening is shown in Figure 1. All the data sets were collected
from DrugBank,32 PubChem, and literature. Our Bayesian
model was built using training set molecules, whereas validation
was done on separate test set molecules. Finally, virtual
screening was done on the collected set of actives and inactives
from PubChem Bioassays for pathogens. Each step of this
workflow is described in detail in the following subsections.

Data Set Collection. We collected a total of 317 known
antibacterials from the literature and the DrugBank database of
compounds. Structurally, these can be divided into nine classes
as shown in Figure 2. The biggest class is β-lactam antibacterials
that constitute roughly 1/3 of all the antibacterials and include
subclasses such as cephalosporin, penicillin, carbapenem,
monobactem, and oxacephem. After the β-lactams, quinolones,
sulfonamides, and macrolides constitute the next three largest
compound classes. Unlike antibacterials, collecting non-
antibacterial compounds, compounds that are inactive in a
broad panel of bacterial species, is difficult and no
straightforward approach or database is readily available for
this task. In our study, to collect a database of non-antibacterial
compounds we used publically available PubChem Bioassay
results as provided by the NCBI. A total of 215 different
bacterial bioassays were available in PubChem at the time of
this study. Out of these, only 30 bioassays screened 10 or more
compounds. From this subset of 30 bioassays, we selected all
350 000 unique inactive compounds. We further selected only
those, a total of 190 477, compounds that were found to be
inactive in at least 7 or more different bacterial bioassays. This
is still a huge collection of compounds compared to our
antibacterial data set of 317 compounds. Because a QSAR
classification model works best if the data set compounds are as
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diverse as possible, we did a clustering analysis, and based on
Tanimoto coefficient values, selected the top 10 000 most
diverse compounds from the pool of 190 477 non-antibacte-
rials. In this clustering task, molecular similarity was done based
on the Tanimoto distance between molecules using the
ECFP_6 fingerprint property (atom type-based extended
connectivity fingerprint).33 The maximum dissimilarity of
center selections were picked from the diverse outer edges of
the clusters. Additionally, for better classification models, the
two data sets, the antibacterials and the diverse set of inactives,
should be as closely matched as possible so that only the best
discriminating features between the two sets can be collected.
To do this, we structure-matched the 10 000 compounds with
the 317 antibacterials and selected the same number of most
closely matched inactives to keep a ratio of 1:1 between the two
sets. We labeled this inactive set of 317 compounds as the non-
antibacterial data set.
Model Building. On the collected data sets of antibacterials

and non-antibacterials, we applied the Bayesian classification

approach which is based on a learn-by-example protocol, as
implemented in Pipeline Pilot, version 8.0.34 The Bayesian
approach is a robust classification approach that can distinguish
between active and inactive compound sets. Complete details
of the Bayesian method are described elsewhere,25 but in short
the technique is based on the frequency of occurrence of
various descriptors that are found in two or more sets of
molecules that discriminate best between these sets. The model
learning process starts by generating a large set of binary (yes/
no) features from the input set of descriptors, structural and/or
physicochemical, and then collects the frequency of occurrence
of each feature in the “good (active)” subset and among the “all
data set” compounds. To apply the model to a particular
sample, the features of the sample are generated, and a
Laplacian adjusted weight is calculated for each feature based
on a probability estimate. Finally, the weights are added to
create a weight sum which provides a relative predictor of the
likelihood of that sample being from the “good (active)” subset.
In our approach, we selected both the structural descriptors,

molecular function class fingerprints of maximum diameter 6
(FCFP_6),33 and the physiochemical descriptors SlogP,
molecular weight, number of rotatable bonds, number of
rings, number of aromatic rings, number of hydrogen bond
acceptors, number of hydrogen bond donors, and molecular
polar surface area. All the physicochemical descriptors were
precalculated with Chemical Computing Group’s Molecular
Operating Environment (MOE), v. 2010.10.35 The compounds
were divided into the training and test sets by randomly
selecting 80% of the antibacterials and non-antibacterials for
training and the remaining for testing. To test whether the
random selection of compounds for training and testing created
a bias, we repeated the selection 10 times and applied the
algorithm to each set. We did not detect any significant
difference between the various data set results. Finally, the
model was built using the training data set of compounds.

Model Validation. The model validation was done using
leave-one-out cross-validation. In this technique, each com-
pound is left out one at a time, and the model built form the
remaining compounds is used to predict the left out compound.
Once all the compounds pass through this cycle of prediction, a
Receiver Operator Characteristic (ROC) plot is generated and
the area under the curve (AUC) is measured. Predictions were
made for both the training set and test set compounds. Table 1
gives the definition and relationship of the statistical parameters
calculated to determine the quality of the model, i.e., accuracy,
sensitivity, specificity, precision, and kappa.
For classification models, the kappa value is considered as

true accuracy, because the agreement by chance is corrected for
and, hence, it is a better statistical parameter than accuracy to
estimate the prediction power of the model. A model is often
considered useful if its kappa value is ≥0.4.29

Virtual Screening. To test how well the model performs in
a real virtual screening experiment, we prepared two data sets.
In one data set, we mixed 20 984 PubChem active compounds
and an equal number of inactive compounds randomly selected
from the pool of 190 477 inactive compounds collected from
PubChem Bioassays. This gives a ratio of 1:1 for actives versus
inactive. In another set, we mixed 20 984 actives with all the
190 477 compounds that were inactives in seven or more
PubChem Bioassays. This gives a ratio of ∼1:9 for actives
versus inactives. It is fairly easy to collect and prepare other
ratio data sets also, but we feel these two ratios, 1:1 and 1:9 of
actives versus inactives, are sufficient to give an indication of the

Figure 1.Workflow for QSAR classification model building, validation,
and virtual screening (VS) as applied to antibacterial and non-
antibacterial data sets. The number of compounds is also shown for
some of the steps, in parentheses.
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quality of the model performance in virtual screening
experiments. Moreover the ratio of 1:1 reflects the similarity
with a data sets ratio used for training, while the ratio of 1:9 is
more reflective of real case virtual screening cases where active
and inactive ratio is highly imbalanced, in favor of inactives.
The model was tested on both data sets and the number of
active compounds found in the top 10, 50, 100, 500, and 1 000
predicted compounds were calculated. A comparison of
Bayesian model screening was also performed with a
similarity-based screening method on the same two data sets.
The 2D similarity screening was carried out using Tanimoto
coefficients computed based on the structural fingerprint
FCFP_6. In both the data sets, a 1:1 and 1:9 ratio of
PubChem actives versus inactives was screened for similarity
with the 317 antibacterials. Similar to the Bayesian model
assessment, from both the data sets we extracted the top 10, 50,
100, 500, and 1 000 most similar hits (most similar to any of
the 317 antibacterials). Finally, the numbers of PubChem

actives in those sets, i.e., in top 10, 50, 100, 500, and 1000, were
calculated. The numbers of PubChem actives (enrichment) in
these sets were compared with the number of PubChem actives
obtained from Bayesian screening sets.

■ RESULTS AND DISCUSSION

The data set collection, model development, and validation
procedure described in this study provided a robust and
straightforward approach for estimating the antibacterial-like
probabilities of a small molecule. This includes an estimate of
the accuracy and the predictive power of the developed
Bayesian classification model. The data sets required for
building such a model requires one active antibacterial data
set and one inactive non-antibacterial data set.

Antibacterials and Nonantibacterials. Antibacterials
constitutes a very heterogeneous set of compounds. They
occupy a unique physicochemical property space, as compared
to drugs targeting human proteins and compared with
compounds that are commonly found in screening libraries.12

In Table 2, we provide the mean values of nine physicochemical
descriptors, molecular weight (Wt), hydrogen bond acceptors
(HBA) and donors (HBD), number of nitrogen (nN) and
oxygen atoms (nO), number of rings (Rings), log of the
octanol/water partition coefficient (SlogP), topological polar
surface area (TPSA), number of rotatable bonds (RB), and two
violation counts using Lipinski (LV)36 and Oprea (OV)37 rules,
for the three sets of compounds classified as antibacterials, non-
antibacterials, and drugs targeting human proteins. These mean
values amply demonstrate the substantial differences between
these three compound categories.
Overall, antibacterials have, roughly, 50% higher weight, 60−

130% more acceptors and donors, 30−90% more nitrogen and
120% more oxygen atoms, 40% higher flexibility (RB), 150%
lower solubility, 90−120% higher polarity (TPSA), and 30%
more ring structures, compared to the non-antibacterial and

Figure 2. Pie chart of 317 antibacterials from 9 different classes collected from DrugBank and literature. Percentage of total number of compounds
for each class is shown.

Table 1. Definition of Classification Model Performance
Measures between Predicted and Observed Parameters for
Two Data Sets, Antibacterial and Non-Antibacteriala

predicted

antibacterial non-antibacterial

observed
antibacterial true positive (TP) false negative (FN)
non-antibacterial false positive (FP) true negative (TN)

aVarious statistical parameters can be calculated based on this
relationship. N (total) = TP + FP + FN + TN. Accuracy (proportion
of true prediction in the entire population) = (TP + TN)/N.
Sensitivity (ability to correctly predict positive results) = TP/(TP +
FN). Specificity (ability to correctly predict negative results) = TN/
(FP + TN). Precision (proportion of true prediction against all true
results) = TP/(TP + FP). Kappa = ((TP + TN) − (((TP + FN)(TP +
FP) + (FP + TN) (FN + TN))/N))/(N − (((TP + FN)(TP + FP) +
(FP + TN)(FN + TN))/N)).
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drugs targeting human proteins. The antibacterial compounds,
on average, also violate at least one Lipinski’s rule-of-5 and two
Oprea’s lead-like criteria of small molecules. Among the
antibacterials, most nondrug like classes are aminoglycosides,
peptides, and macrolides, each showing Lipinski violation
counts of 4.8, 4.5, and 3.3, respectively. On other hand, the

most druglike are sulfonamides and quinolones, each showing
Lipinski violation counts of only 0.1 and 0.3, respectively.

Bayesian Model Development and Validation. To
exploit the differences in both structural properties and
physiochemical properties and between antibacterial and non-
antibacterial compounds, we a used Bayesian classification
technique as implemented in Pipeline Pilot. In this classification
scheme, 317 antibacterial compounds are classified as “good”
samples and 317 non-antibacterial compounds as “bad”
samples. Here the “good” and “bad” are arbitrary labels to
distinguish the two sets of compounds. The combined data sets
were further divided into a 80:20 ratio to make a training set
(506 compounds) and a test set (128 compounds). The
Bayesian model was built from the training set compounds,
using both the structural and the physicochemical property
parameters. The model was validated using a leave-one-out
cross-validation method where one compound is removed from
the data set and its class, good or bad, is predicted using the
model derived from the rest of the data set compounds. An
accuracy of 91% was obtained with this the model. The same
model was also used to predict the test data set of 128
compounds. For the test data set, an accuracy of 84% was
obtained. The rest of the statistical parameters are shown in

Table 2. Comparison of Average (Mean) Compound Property Values of Three Data Sets Representing Antibacterials, Non-
Antibacterials, and Drugs Targeting Human Proteinsa

average descriptor value

DB class N Wt HBA HBD RB SlogP TPSA Rings nN nO LV OV

AB

AG 24 511 9.9 5.5 7.3 −9.3 271 3.2 4.8 9.9 2.5 4.8
BL 104 450 4.3 1.7 7.8 −1.5 154 3.5 4.6 5.8 0.8 1.4
ML 26 726 10.5 3.4 8.8 1.4 184 3.5 1.8 12.0 2.1 3.3
OX 6 412 4.0 1.5 6.8 1.2 108 3.7 4.5 4.7 0.2 1.2
PE 24 1225 14.1 12.0 25.7 −4.7 460 5.0 12.6 16.1 2.7 4.5
QL 41 362 1.9 0.1 3.1 −0.3 88 3.9 3.0 3.5 0.0 0.3
SL 27 289 3.2 1.9 3.9 1.4 103 2.1 3.6 2.9 0.1 0.1
TC 17 503 4.3 4.1 4.2 −1.9 195 4.2 2.4 8.6 1.8 3.1
MS 48 563 6.9 3.3 8.4 2.2 153 3.7 2.6 8.0 1.2 2.4
all 317 530 6.0 3.1 8.1 −1.1 177 3.6 4.3 7.3 1.1 2.0

NAB 317 354 3.8 1.8 5.9 2.7 92 2.7 3.3 3.3 0.3 0.6
DHP 527 353 2.8 1.3 5.9 1.7 78 2.8 2.2 3.3 0.3 0.7

aAntibacterials are further divided into nine classes and their comparison is also shown. [Abbreviations: database (DB), antibacterials (AB), non-
antibacterials (NAB), drugs for human proteins (DHP), aminoglycosides (AG), β-lactams (BL), macrolides (ML), oxazolidinones (OX), peptides
(PE), quinolones (QL), sulfonamides (SL), tetracyclines (TC), and miscellaneous (MS)].

Table 3. statistical Outcome of the Performance of the
Bayesian Classifiers for the Training and Test Sets Molecules

parameters training test

N 506 128
good (antibacterials) 253 64
bad (non-antibacterials) 253 64
TP 226 51
TN 236 57
FP 17 8
FN 27 12
accuracy 0.91 0.84
precision 0.93 0.86
sensitivity 0.89 0.81
specificity 0.93 0.88
kappa 0.83 0.69

Figure 3. ROC plot (left) showing area under the curve and enrichment plot (right) showing the percentage of top retrieved actives for test set
molecules.
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Table 3. The ROC plot and the enrichment plot for the test set
are shown in Figure 3. As expected, the model behaved better
for the training set, but the outcome was still very good for the
independent test set compound classification with a precision
of 86% and a kappa value of 0.69 for the classification of the
compounds. Sensitivity and specificity were 81% and 88% for
the test set compounds.
Antibacterials: Good and Bad Fragments. One of the

advantages of using a Bayesian classifier based on structural
fingerprints, such as FCFP_6, is that it can identify important
fragments or fingerprint features frequently found in two
classifying groups. From a total of 7 232 FCFP_6 features that
we used in making the model, the top 15 good and top 15 bad

diverse fragments, favorable and unfavorable for the anti-
bacterial classification, are shown in Figure 4. [It is important to
note that these 30 fragments by no means represent all the
antibacterial structural information, since it is a very small
percentage (<0.5%) of the total number of features used in
building the model].
As expected, many of the top good features contain −NH3

+/
−NH2

+/−NH+, thiazole, penem, cephem, or quinolone frag-
ments that are common fragmental features of aminoglycosides,
peptides, β-lactams, and quinolones, which constitute a
majority of known antibacterials. Interestingly, in the top bad
fragments, many OS(−N)O containing fragments were
found, even though these are part of one of the most populated

Figure 4. Examples of the top 15 good (top) and bad (bottom) fragments estimated by Bayesian modeling. The Bayesian score (Score) is given for
each fragment.
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class (sulfa) of antibacterials. The reason that the sulfonamide
moiety was selected as a bad fragment is because of its common
occurrence in many non-antibacterial compounds. For example,
other than antibacterials, sulfa compounds are also used in
diuretic, anticonvulsants, and many dermatological drugs.
Hence, because of their wide occurrence in both antibacterials,
non-antibacterials, and in general screening libraries, these
fragments are given a bad Bayesian score as they cannot be used
as distinguishing features between the antibacterials and non-

antibacterial compounds. [To provide an estimate of
sulfonamide scaffold popularity, we calculated that out of
∼62 million compounds available in the ChemNavigator
database38 of purchasable compounds, 7.6 million or 12.5%
of all compounds were sulfonamides].
In model development, if we exclude the whole sulfa class of

antibacterials from the training set compounds and follow
exactly the same steps as in the previous model building, the
resulting model behaves almost like a perfect model. The ROC-
AUC value of such a model is 0.99. Other statistical validation
parameters of the sulfa-excluding Bayesian model gives an
accuracy of 95%, a precision of 92%, a sensitivity of 98%, and a
specificity of 92% in the classification of the training set
compounds. For the test set, the accuracy and precision of this
model were 85% and 82%, while the sensitivity and specificity
were 86% and 83%. The complete set of parameters are
provided in Table 4.

Antibacterial Bayesian Model in Virtual Screening. In
a study like this, the primary objective of the in silico screen is to
determine whether the model can distinguish and classify
unknown structures as good or bad. This is a common situation
in drug discovery where one wants to retrieve active analogues
from screening databases based on initial leads. Therefore, to
validate the predictive power of our Bayesian model in a real
test case scenario, we again used compounds from the
PubChem collection of bacterial bioassays. A total of 215
different bacterial assays were selected from PubChem. Any
bioassay that screened less than 10 compounds was excluded.
From the remaining 30 bioassays, we collected 350 000
screened compounds. From this data set, we further selected
a total of 190 477 compounds that were found to be inactive in
at least 7 or more different bacterial assays. From this set, the
317 compounds that were used in developing the model as
inactives (non-antibacterials) were removed. Finally, we had
190 159 compounds as inactives. From the same 215 assays, we
also collected all the compounds that were flagged as active.
Any known antibacterial tested in this set was also removed.
This gives us 20 974 active compounds. This data set of inactive
and active molecules represents a completely independent data
set from the one used to build or test the Bayesian model. This
data set was further divided into two subsets before model
evaluation. This is done because the outcome of high
throughput screening assays are highly imbalanced between

Table 4. Statistical Outcome of the Performance of the
Bayesian Classifiers for the Training and Test Sets Molecules
That Do Not Include Sulfa Compounds

parameters training test

(no sulfa compounds)
total 485 124
good (antibacterials) 232 59
bad (non-antibacterials) 253 65
true positives 228 51
true negatives 232 54
false positives 21 11
false negatives 4 8
accuracy 0.95 0.85
precision 0.92 0.82
sensitivity 0.98 0.86
specificity 0.92 0.83
kappa 0.83 0.69

Table 5. Enrichment Results of Two Data Sets, For Two
Screening Methodsa

screening data set number of actives in

screening
method

no. of
actives

no. of
inactives

top
10

top
50

top
100

top
500

top 1
000

Bayesian model
screening

20 974 20 974 9 43 85 405 758
20 974 190 159 9 26 45 155 276

similarity-based
screening

20 974 20 974 10 33 55 231 439
20 974 190 159 9 27 30 70 115

aIn one data set, the ratio of actives versus inactives is 1:1 (20 974
actives and equal number of inactives), and in another it is 1:9 (20 974
actives and 190 159 inactives). The number of actives retrieved by
both the methods in top 10, 50, 100, 500, and 1 000 compounds is
shown.

Figure 5. Enrichment plot showing the percentage of top retrieved actives in 0.5% of screened database for two virtual screening data sets selected
from PubChem Bioassays for various bacterial species.
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active and inactives, in favor of inactives. For example, among
PubChem Bioassays, in most cases, the experimental hit rate
does not exceed 0.5%.39 This imbalance poses a significant
problem for classification models because models that correctly
predict the same fraction of objects in each class will have
different objective function values. Hence, we developed two
independent data sets where in first we kept the ratio of actives
versus inactive 1:1 and second where we kept the ratio 1:9 for
actives versus inactives.

Next, we performed another test to compare how good our
model results were as compared to 2D similarity-based
screening. Among the ligand-based screening methods, the
2D similarity-based screening is one of the most popular
methods of choice. This is not only because of the 2D method’s
computational efficiency but also because of its demonstrated
effectiveness in multiple studies.1,40−46 The 2D similarity
screening was carried out using Tanimoto coefficients
computed from structural fingerprint (FCFP_6). Both the
data sets, of 1:1 and 1:9 ratio of PubChem actives versus

Figure 6. Structures of some of the top retrieved hits by the Bayesian model in virtual screening of the PubChem database. Each of these was
experimentally found to be active in different PubChem bioassays. The PubChem identity number (CID), bioassay identity number (AID), species
screened, and classification of antibacterial scaffold are provided for each hit.
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inactives, were screened for similarity with 317 antibacterials.
The top 1 000 most similar hits for both the data sets were
extracted and the number of actives in those sets were
calculated.
The results of both the Bayesian model screening and the 2D

similarity-based screening, for both the data sets, are shown in
Table 5. Since the hit rate in actual high-throughput screening
does not exceed 0.5%, we only show the actives extracted from
the top 1 000 hits. In the first virtual screen of equal actives and
inactives (1:1), the compounds extracted using the Bayesian
model contained 90%, 85%, and ∼76% actives from the top 10,
100, and 1 000 hits, respectively. For the 1:9 ratio of actives and
inactives of the second set, compounds extracted using the
Bayesian model contained 90%, 45%, and 27.6% actives from
the top 10, 100, and 1 000 hits, respectively. Compared to the
actual high-throughput screen outcome for actives in PubChem
Bioassays, there is a significant improvement in extracted hits in
Bayesian model screening. For the model, the top 0.5% results
are also shown as enrichment plots for both the subsets of 1:1
and 1:9 ratios of active versus inactive (Figure 5). In
comparison, the early enrichment of the 2D similarity method
was comparable to the Bayesian method. In the top 10 and 50
hits, the similarity method screened 100% to 66% actives in the
1:1 data set of actives and inactives and 90% to 54% actives in
the 1:9 data set of actives and inactives. In later enrichment
when all the antibacterial-like structures were exhausted in the
similarity screen, the method performed no better than random
sampling of hits, i.e., the actives screened in top 100 to top 1
000 hits (Table 5).
Another significant advantage of the Bayesian model was

evident from the nature of the hits themselves. The model
output was not just limited to finding only the existing scaffolds,
i.e., similar to the molecules that were used in training of the
model, but also included novel scaffolds. Figure 6 shows the
structures of some of the top screening hits of Bayesian model
that are experimentally active in PubChem Bioassays. The
ability to discover novel antibacterial scaffolds is inherent in the
Bayesian model formulation and should represent an attractive
way to discover novel drug designs. In comparison, the 2D
similarity search output is only limited to finding molecules that
are similar to known antibacterial scaffolds.

■ CONCLUSIONS
Despite significant advances both in understanding the biology
and the techniques available, antibacterial drug discovery is still
an arduous task. In the last couple of years, several in silico
methods have emerged as important drug-discovery tools.
Currently, few studies exist that have described the use of
property-based in silico classification models for antibacterial
activity. Most of these published models show good to
acceptable discrimination between antibacterial and non-
antibacterial classification.
Our study differs from these previous studies in a number of

ways. First, our collection of antibacterials is vast. In previous in
silico studies, the antibacterial collection range from 24 to 249
compounds. We have collected 317 antibacterials of nine
different classes from DrugBank and extensive literature
searches and have made them publically available (Supporting
Information). This is one of the largest reported and
characterized data set of antibacterials. Such a collection is
important since the performance of in silico classification
models, such as Bayesian, heavily depends on the number and
diversity of input training molecules. Second, no previous study

has ever attempted to effectively describe “how to collect non-
antibacterial” compounds. This is mainly because most of the
studies tend to describe only the positive results, i.e., the
compounds that turned out to be active in bacterial assays.
More importantly, even if the data is published concerning
inactive compounds, it remains focused only on one or few
selected species of bacteria. For a non-antibacterial data set of
compounds, the ideal compounds would be those that show
inactivity against a panel of different species of bacteria. Our
study is unique since we have collected the inactive compounds
from 215 PubChem Bioassays results that were screened for a
wide panel of bacterial species. Third, the Bayesian classification
model described in this study has performed exceptionally well.
The model correctly classified 51 of the 64 actives in an
independent test set data, showing an overall accuracy of 84%
and precision of 86%. Fourth, the model was subjected to an
actual virtual screen test case of extracting high-throughput
actives from PubChem bacterial bioassays. A comparison of
such a virtual screening test case was also made with a 2D
similarity search method. The Bayesian model extracted 75.8%
of the actives from the top 1 000 extracted hits in a scenario
where actives and inactives were mixed in a 1:1 ratio. In a more
stringent test case, where actives and inactives were mixed in a
1:9 ratio, the model extracted 27.6% actives from the top 1 000
screened compounds. In comparison, the 2D similarity search
only extracted 43.9% (in 1:1 ratio of actives and inactive) and
11.5% (in 1:9 ratio of actives and inactive) of the actives from
the top 1 000 screened compounds, which is no better than
random sampling. Moreover, while the top actives retrieved by
2D similarity search were all from previously known scaffold
classes, Bayesian model screening hits were well populated with
both the novel scaffolds as well as previously known scaffolds.
Overall, the Bayesian classification model is a robust method

that permits a quick in silico discovery of novel antibacterials
candidates making use of a minimum of resources, and it may
be used as an efficient alternative to high-throughput screening
of antibacterial agents.
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