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Consumers are exposed to thousands of chemicals with potentially adverse health 
effects. However, these chemicals will never be tested for toxicity because of the immense 
resources needed for animal-based (in vivo) toxicological studies. Today, there are no viable 
in vitro alternatives to these types of animal studies. To develop an in vitro approach, we 
investigated whether we could predict in vivo organ injuries in rats with the use of RNA-seq 
data acquired from tissues early in the development of toxicant-induced injury, by comparing 
gene expression data from RNA isolated from these rat tissues with those obtained from in 
vitro exposure of primary liver and kidney cells. We collected RNA-seq data from the liver 
and kidney tissues of Sprague-Dawley rats 8 or 24 h after exposing them to vehicle (control), 
low (25 mg/kg), or high (100 mg/kg) doses of thioacetamide, a known liver toxicant that 
promotes fibrosis; we used these doses and exposure times to cause only mild toxicant-
induced injury. For the in vitro study, we treated two cell types from Sprague-Dawley rats, 
primary hepatocytes (vehicle; low, 0.025 mM; or high, 0.125 mM dose), and renal tube 
epithelial cells (vehicle; low, 0.125 mM; or high, 0.500 mM) dose) with the thioacetamide 
metabolite, thioacetamide-S-oxide, selecting in vitro doses and exposure times to recreate 
the early-stage toxicant-induced injury model that we achieved in vivo. RNA-seq data were 
collected 9 or 24 h after application of vehicle or thioacetamide-S-oxide. We found that 
our modular approach for the analysis of gene expression data derived from in vivo RNA-
seq strongly correlated (R2 > 0.6) with the in vitro results at two different dose levels of 
thioacetamide/thioacetamide-S-oxide after 24 h of exposure. The top-ranked liver injury 
modules in vitro correctly identified the ensuing development of liver fibrosis.
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INTRODUCTION
Thioacetamide was developed as an effective pesticide to control 
the decay of citrus fruits (Childs and Siegler, 1945), but was soon 
found to cause liver diseases (fibrosis and cirrhosis) and liver 
tumors (Fitzhugh and Nelson, 1948). It has been used extensively 
in animal studies (Ledda-Columbano et al., 1991; Li et al., 
2002; Yeh et al., 2004; Okuyama et al., 2005; Dwivedi and Jena, 
2018), largely for its ability to cause acute liver damage (Li et al., 
2002; Okuyama et al., 2005). As consumers, we are exposed to 
thousands of chemicals with potentially adverse health effects. 
Yet, many of these chemicals will never be tested for toxicity as 
extensively as thioacetamide because of the immense resources 
needed for animal-based (in vivo) toxicological studies. There 
is also an ethical aspect to conducting large-scale animal 
experiments, which must meet legal and regulatory requirements, 
as directed by the Animal Welfare Act (AWA) in the U.S. and 
the European Directive 2010/63/EU to implement the principles 
of replacement, reduction, and refinement of the use of animals 
in research. Consequently, major efforts are currently under 
way to develop non-animal–based testing methods, such as 
high-throughput cell-based (in vitro) assays (Dix et al., 2007; 
Adeleye et al., 2015; Goh et al., 2015; Wetmore, 2015). However, 
these platforms are unlikely to meet the requirements for safety 
assessment and replace animal testing until reliable in vivo-in 
vitro correlations are achieved (Wetmore, 2015). Therefore, we 
need an effective approach to link in vitro results to meaningful 
in vivo injury endpoints, such as liver fibrosis.

Here, we present our efforts to use a systems toxicology 
approach to address the discrepancies commonly found between 
in vitro and in vivo results. We focus on toxicogenomics, a subfield 
of toxicology, which assumes that toxicity is accompanied by a 
change in the expression of either a single gene or a set of genes 
(Hamadeh et al., 2002; Sutherland et al., 2017), and that chemical 
exposures leading to the same injury endpoint cause similar 
changes in gene expression. Toxicogenomics has advanced the 
understanding of toxicological effects and improved predictions 
of responses to chemicals (Steiner et al., 2004; Sutherland et al., 
2017). Several toxicogenomic approaches use single genes 
or coexpressed genes to study stress responses. For example, 
when specific genes are associated with an injury (e.g., cancer, 
cholestasis, steatosis), gene signatures are often used to classify 
chemicals in terms of their toxicity endpoints (Segal et al., 2004; 
Sahini et al., 2014; Parmentier et al., 2017). When sets of genes 
are differentially activated in response to an injury condition, 
such gene sets are often referred to as toxicity pathways or 
coexpressed genes. Furthermore, data mining techniques, such 
as bi-clustering (Pontes et al., 2015), are used to create sets of 
coexpressed genes, which consist of genes whose expression 
pattern is correlated across a set of chemical exposures with a 
common injury endpoint (Sutherland et al., 2017).

Previously, we developed an unbiased protocol to assign sets of 
coexpressed genes (modules) associated with molecular toxicity 
and linked them to specific injuries in the liver and kidney, using 
the Iterative Signature Algorithm (Bergmann et al., 2003; Tawa 
et al., 2014; AbdulHameed et al., 2016; Te et al., 2016). Compared to 
gene signatures, coexpressed gene modules can make more robust 

predictions for specific pathologies because they rely on groups of 
genes rather than individual genes. Gene expression data are prone 
to inherent noise, owing to limitations in experimental techniques 
and the complexity of biological systems. A limitation of the gene 
module approach is that the modules do not contain the same 
mechanistic information as do biological pathways, where genes 
can be linked by their function. Using gene expression data from 
the Open Toxicogenomics Project-Genomics Assisted Toxicity 
Evaluation System (TG-GATEs) database, which contains data 
from Sprague-Dawley rats exposed to different chemicals for 4 to 29 
days (Igarashi et al., 2015), we derived 8 and 11 chemical-induced 
injury modules for the liver and kidney, respectively, associated 
with the relevant histopathological injury phenotypes from the 
TG-GATEs database (Te et al., 2016). Recently, we validated our 
injury modules in vivo by exposing Sprague-Dawley rats to a low 
(25 mg/kg) or high (100 mg/kg) dose of thioacetamide for 8 or 24 
h (Schyman et al., 2018). The most activated injury modules were 
those associated with cellular infiltration and fibrosis, consistent 
with previous studies on thioacetamide toxicity and suggested by 
our own histological analyses.

Our aim in this study was to test the hypothesis that injury 
modules identified from in vitro transcriptomic responses 
can correlate with injury modules from in vivo to assist in the 
prediction of in vivo injury endpoints. For the in vitro-in vivo 
comparison, we selected thioacetamide as a toxicant for its ability 
to cause acute liver damage (Li et al., 2002; Okuyama et al., 2005). 
Thioacetamide is highly toxic to the liver in vivo because it is 
rapidly metabolized by cytochrome P450 and flavin-containing 
monooxygenases into its reactive metabolites (thioacetamide-S-
oxide and reactive oxygen species) (Hajovsky et al., 2012). In our 
in vitro studies, we used the metabolized form of the compound, 
thioacetamide-S-oxide (Hajovsky et al., 2012), to simulate the 
level of toxicity achieved in vivo after exposure to thioacetamide. 
To compare liver- and kidney-specific responses, we treated two 
types of primary cells from Sprague-Dawley rats, hepatocytes, and 
renal tube epithelial cells, with vehicle (control) or two different 
doses of thioacetamide-S-oxide (designated low and high), and 
collected RNA samples at two different time points to ensure 
a match to an in vivo early-stage injury model. For the in vivo 
comparisons, we used data from our published thioacetamide 
toxicity study (Schyman et al., 2018) of 30 Sprague-Dawley rats 
treated with either vehicle (control) or one of two doses (low; 
25 mg/kg or high; 100 mg/kg) of thioacetamide to produce 
different degrees of early injury. We collected RNA samples for 
gene expression analysis from the liver and kidney 8 and 24 h 
following injection of vehicle or thioacetamide.

MATERIALs AND METhODs

Experimental Procedures
Thioacetamide In Vivo
Male Sprague-Dawley rats at 10 weeks of age were purchased 
from Charles River Laboratories (Wilmington, MA). Rats 
were fed with Formulab Diet 5001 (Purina LabDiet; Purina 
Miles, Richmond, IN) and given water ad libitum in an 
environmentally controlled room at a temperature of 23°C with 
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a 12:12-h light-dark cycle. All experiments were conducted in 
accordance with the Guide for the Care and Use of laboratory 
Animals of the U.S. Department of Agriculture, the Vanderbilt 
University Institutional Animal Care and Use Committee, and 
USAMRDC Animal Care and Use Review Office. Animals (30 
rats) were administered either vehicle (saline; 3 ml/kg; n = 5 
each at two time points) or thioacetamide (25 or 100 mg/kg; 
n = 5 each at two time points for each dose) intraperitoneally at 
9 am, and the liver and kidney from each animal were harvested 
8 or 24 h after the administration of vehicle or thioacetamide. 
Rats were anesthetized by intravenous injection of sodium 
pentobarbital through a jugular vein catheter and then the liver 
and kidney were dissected and frozen using Wollenberger tongs 
precooled in liquid nitrogen. The collected plasma, urine, and 
organs were kept at -80°C until used for analyses. Frozen whole 
kidneys were powdered in liquid nitrogen, since this organ is 
histologically heterogeneous. Total RNA was isolated from the 
liver and powered kidney, using TRIzol Reagent (Thermo Fisher 
Scientific, Waltham, MA) and the direct-zol RNA MiniPrep kit 
(Zymo Research, Irvine, CA). We refer the reader to our original 
publication for further details (Schyman et al., 2018).

Thioacetamide In Vitro
Cryopreserved rat (Sprague-Dawley) hepatocytes and renal 
proximal tubular epithelial cells were purchased from Triangle 
Research Labs (Research Triangle Park, NC) and Sciencell 
Research Laboratories (Carlsbad, CA), respectively. Hepatocytes 
were thawed and suspended in thawing medium (MCRT50; 
Triangle Research Labs) at 6–7 million cells/50 ml. The suspension 
was centrifuged at 50 ×g, and cells were resuspended in plating 
medium (MP100; Triangle Research Labs). Hepatocytes were 
plated on collagen 1-coated 96-well plates at a density of 2 × 
104 cells/well for measurement of cell viability and on collagen 
1-coated 6-well plates at a density of 4.5 × 105 cells/well for RNA 
sequence analysis. Cells were cultured under 5% CO2 in a 37°C 
incubator. After 4 h of culture to allow cell attachment, the medium 
was replaced with hepatocyte maintenance medium (CC-3198, 
Triangle Research Labs). Rat renal tubular epithelial cells were 
thawed and suspended in “Epithelial Cell Medium-animal” 
(EpiCM-a, Sciencell Research Laboratories) and plated into poly-
L-lysine-coated 96-well plates at a density of 2 × 104 cells/well for 
measurement of cell viability and on poly-L-lysine-coated 6-well 
plates at a density of 3 × 105 cells/well for RNA collection. Cells 
were cultured under 5% CO2 in a 37°C incubator. After 4 h of 
culture to allow cell attachment, the medium was replaced by the 
same medium. Both rat hepatocytes and renal cells were cultured 
for an additional 18 h before addition of thioacetamide-S-oxide 
or vehicle (maintenance medium; CC-3198 for hepatocytes and 
EpiCM-a for renal cells).

Preliminary studies were performed on rat hepatocytes and 
renal cells to identify a dose (range: 0.025 to 4 mM for hepatocytes, 
0.125 to 4 mM for renal cells) of thioacetamide-S-oxide and 
length of exposure (range: 3 to 24 h for both hepatocytes and 
renal cells) that would result in mild toxicity without substantial 
loss of cell viability. Two cell viability assays were performed. 
First, to measure cellular loss of lactate dehydrogenase (LDH), 
cells were collected and cellular LDH activity remaining after 

each treatment was measured using the Lactate Dehydrogenase 
Activity Assay Kit (Sigma-Aldrich, St. Louis, MO). Second, 
cellular adenosine triphosphate (ATP) levels were measured 
using the CellTier-Glo 2.0 Assay kit (Promega Co., Madison, 
WI) according to the manufacturer’s protocol. The time-course 
profiles of cell viablity in these prelimiary studies are illustrated in 
Figures S1–S4 (Supplemental Material). Based on these studies, 
two time points, 9 and 24 h, and two doses of thioacetamide-
S-oxide, designated low and high, were chosen to induce early-
stage toxicant-nduced injury with no or little loss in cell viability. 
Hepatocytes and renal cells were thus exposed for 9 or 24 h to 
either vehicle or thioacetamide-S-oxide (0.025 or 0.125 mM for 
hepatocytes, and 0.125 or 0.5 mM for renal cells). Table 1 shows 
the viability of hepatocytes and renal proximal tubular epithelial 
cells exposed to thioacetamide for 9 or 24 h compared to vehicle-
exposed cells.

Total RNA was isolated from culture cells using TRIzol 
Reagent (Thermo Fisher Scientific) and the direct-zol RNA 
MiniPrep kit (Zymo Research). The isolated RNA samples were 
then submitted to the Vanderbilt University Medical Center 
VANTAGE Core (Nashville, TN) for RNA quality determination 
and sequencing. Total RNA quality was assessed using a 2100 
Bioanalyzer (Agilent, Santa Clara, CA). At least 200 ng of DNase-
treated total RNA with high RNA integrity was used to generate 
poly-A-enriched mRNA libraries, using KAPA Stranded mRNA 
sample kits with indexed adaptors (New England BioLabs, 
Ipswich, MA). Library quality was assessed using the 2100 
Bioanalyzer (Agilent), and libraries were quantitated using 
KAPA library Quantification kits (KAPA Biosystems). Pooled 
libraries were subjected to 150-bp double-end sequencing 
using an Illumina NovaSeq6000 (San Diego, CA) according to 
the manufacturer’s protocol. Bcl2fastq2 Conversion Software 
(Illumina) was used to generate de-multiplexed Fastq files.

Analysis of RNA-seq Data
We used the RNA-seq data analysis tool Kallisto for read 
alignment and quantification (Bray et al., 2016). Kallisto pseudo-
aligns the reads to a reference, producing a list of transcripts 
that are compatible with each read while avoiding alignment 
of individual bases. In this study, we pseudo-aligned the reads 
to the Rattus norvegicus transcriptome (Rnor_6.0) downloaded 

TABLE 1 | Viability of hepatocytes and renal proximal tubular epithelial cells 
exposed to thioacetamide-S-oxide compared to vehicle-exposed cells at 9 or 24 h. 
The vehicle-exposed reference values for adenosine triphosphate (ATP) and 
lactate dehydrogenase (LDH) are relative values at each time point.

9 h exposure 24 h exposure

ATP LDh ATP LDh

Type of cells Dose (mM) % % % %
Hepatocytes 0 (vehicle) 100 ± 3 100 ± 4 100 ± 3 100 ± 3

0.025 99 ± 9 103 ± 6 84 ± 3 98 ± 7
0.125 90 ± 5 99 ± 5 75 ± 6 95 ± 5

Epithelial Cells 0 (vehicle) 100 ± 2 100 ± 9 100 ± 1 100 ± 8
0.125 99 ± 1 103 ± 11 91 ± 2 99 ± 6
0.5 87 ± 6 95 ± 11 65 ± 5 90 ± 9
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from the Ensembl website (Zerbino et al., 2018). Kallisto achieves 
a level of accuracy similar to that of other competing methods, 
but is orders of magnitude faster than alternative methods. Its 
speed allows for the use of a bootstrapping technique to calculate 
uncertainties of transcript abundance estimates by repeating 
the analyses after resampling with replacement. In this study, 
we employed this technique to repeat the analysis 100 times. 
The files from RNA-seq analysis were deposited in NCBI’s Gene 
Expression Omnibus (GEO) database under series accession 
numbers GSE120195 and GSE134569.

To identify differentially expressed genes (DEGs) from 
transcript abundance data, we used Kallisto’s companion analysis 
tool Sleuth, which uses the results of the bootstrap analysis during 
transcript quantification to directly estimate the technical gene 
variance for each sample (Pimentel et al., 2017). DEGs were 
defined by using a false discovery rate adjusted p-value (q-value) 
of no more than 0.05 and a minimum gene expression β-value of 
0.41 as the criteria for differential expression, which corresponds 
to a fold-change (FC) value of 1.5. Note that the β-value is defined 
as the natural logarithm of the effect size, and that the effect size 
and FC value of a gene are not equivalent. Nonetheless, the ranking 
and the directionality of change in gene expression (i.e., if a gene is 
up- or down-regulated) should be the same. In the Supplemental 
Material, we provide the q-values of all genes and the DEGs.

KEGG Pathway Analysis
To understand the biological significance of the alterations in 
gene expression levels induced by thioacetamide, we used the 
aggregated FC (AFC) method (Ackermann and Strimmer, 2009; Yu 
et al., 2017) to calculate significantly activated Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways (Kanehisa and Goto, 
2000). We downloaded the KEGG pathways from the Molecular 
Signatures Database (MsigDB) (c2.cp.kegg.v6.1.entrez.gmt) 
(Liberzon et al., 2011), provided by the Broad Institute, Cambridge, 
MA [http://software.broadinstitute.org/gsea/msigdb], in February 
2018. This database contains pathway information curated from 
multiple online databases. Detailed descriptions and performance 
characteristics of the AFC method can be found in the original 
literature (Ackermann and Strimmer, 2009; Yu et al., 2017). In the 
AFC method, we first calculate the FC value for each gene (i.e., 
the difference between the mean log-transformed gene expression 
values for treatment and control conditions) and define the KEGG 
pathway score as the total FC value of all genes in the pathway. We 
then use the pathway scores to perform null hypothesis tests and 
estimate each pathway’s significance by its p-value, defined as the 
probability that the pathway score for a random data set is greater 
than the score from the actual pathway. The sign of the pathway 
score represents the direction of regulation: the pathway is defined 
as up-regulated if the gene expression level after a treatment 
condition is increased relative to the control condition, and down-
regulated if it is instead reduced.

Module Activation score
We developed the aggregate absolute FC (AAFC) method to 
calculate the activation score of a gene set (Schyman et al., 
2018). This method identifies gene sets (e.g., modules) that are 

significantly changed. The AAFC method first calculates the FC 
value for each gene, i.e., the difference between the mean log-
transformed gene expression values for samples in the treatment 
and control cohorts. We assessed the significance of this FC value 
by Student’s t-test (n = 5 for both treatment and control cohorts). 
We updated the procedure from that in our previous study 
(Schyman et al., 2018), in which we used “qualified” genes that 
passed Student’s t-test (p-value < 0.05). In the updated version, 
we included all genes, but calculated a combined p-value for 
each gene set (module) using Fisher’s method as an indicator of 
robustness of the reliability of the genes in the module (Fisher, 
1932). (See the Fisher values for all module calculations in Tables 
S2–S5 of the Supplemental Material.) The AAFC method then 
calculated the absolute value of each gene’s log-transformed FC 
value, and for each gene set (e.g., module or pathway) calculated 
the total FC value of the absolute values. We then used the gene set 
scores to perform null hypothesis tests and estimated each gene 
set’s significance by its p-value, defined as the probability that the 
score for randomly selected FC values (10,000 times) is greater 
than the score from the actual gene set. A small p-value implies 
that the gene set value is significant. The z-score is the number 
of standard deviations by which the actual gene set value differs 
from the mean of the randomly selected FC values (10,000 times).

Data Collection and Processing of high- 
and Low-Risk Liver Toxicants
For the in vitro assessment of high- and low-risk liver toxicity, 
we used data from TG-GATEs (Igarashi et al., 2015), a publicly 
available database that contains data associating chemical 
exposures with transcriptomic changes in the liver of male 
Sprague-Dawley rats. We processed the data according 
to our previous protocol (Tawa et al., 2014), using the 
ArrayQualityMetrics-Bioconductor package (Kauffmann et al., 
2008) to assess the quality of the Robust Multiarray Averaged 
(RMA) preprocessed data (Irizarry et al., 2003). In this process, 
we removed outlier arrays and renormalized the remaining data.

For the in vivo data, we used DrugMatrix, a publically 
available toxicogenomics database. This database contains a 
large collection of gene expression data obtained from Sprague-
Dawley rats after exposure to a range of chemicals (Ganter 
et al., 2005). This dataset utilizes the Affymetrix GeneChip Rat 
Genome 230 2.0 Array. We used the same protocol as described 
in our previous publication (AbdulHameed et al., 2014).

REsULTs

Differentially Expressed Genes (DEGs) 
Activated In Vitro and In Vivo
Table 2 summarizes the number of DEGs identified in vivo from 
liver and kidney exposed to thioacetamide treatment for 8 or 
24 h and in vitro from primary hepatocytes and renal proximal 
tubular epithelial cells exposed to the thioacetamide metabolite, 
thiacetamide-S-oxide, for 9 or 24 h. The two time points and 
two doses of thioacetamide-S-oxide (see Table 1) produced 
minimal cytotoxicity, as indicated by two different cell viability 
assays. Thus, we attempted to mimic the level of toxicity induced 
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by thioacetamide and its metabolites in vivo without attempting 
to match toxicant levels or time points exactly with those used 
previously for in vitro studies. The goal was to identify genes whose 
expression changes in vivo are associated with early injury induced 
by thioacetamide and/or its metabolites, which may also be altered 
similarly in rat primary liver and kidney cells following in vitro 
exposure to thioacetamide-S-oxide. In most cases, the number 
of DEGs identified in the liver and kidney depended on the dose 
(Table 2) with two exceptions: in vitro hepatocytes showed 4,292 
DEGs 24 h after low-dose treatment compared to 3,178 DEGs 
24 h after high-dose treatment, and in vivo kidneys showed 257 
DEGs 8 h after low-dose treatment compared to 172 DEGs 8 h 
after high-dose treatment. Another notable trend in the in vivo 
study was that all kidney samples showed fewer DEGs than liver 
samples, consistent with the notion that the liver is responsible for 
metabolizing the majority of thioacetamide to reactive metabolites 
like thioacetamide-S-oxide. Thus, the liver was likely exposed to 
higher concentrations of this toxic thioacetamide metabolite, even 
though the in vivo dose of thioacetamide administered to the rats 
was the same for the liver and kidney. In contrast, rat liver and 
kidney primary cells were exposed in vitro directly to a high- and 
low-dose of the thioacetamide metabolite, thioacetamide-S-oxide. 
A high and low dose of thioacetamide-S-oxide was selected for each 
cell type to provide a similar level of cytotoxicity between each cell 
type (see Table 1). This led to a higher in vitro dose for renal tube 
epithelial cells than for hepatocytes, which might explain the liver 
and kidney discrepancy between the in vivo and in vitro results.

Figure 1 shows the number of DEGs overlapping between 
those observed in vivo and in vitro for the liver and kidney 24 
h after high-dose exposure to thioacetamide/thioacetamide-S-
oxide. The overlap as a proportion of the total number of DEGs 

is small for the liver and kidney, covering approximately 20% and 
10%, respectively. The overlapping genes might still be useful as 
predictors if they were correlated. However, an analysis of the 
relative gene expression changes in vivo and in vitro revealed no 
correlation for either the liver or kidney (Figure 2).

KEGG Pathway Activation In Vitro and In Vivo
For our analysis, we used the KEGG pathway database (Kanehisa 
and Goto, 2000). To identify activated pathways we used the AFC 
method (Ackermann and Strimmer, 2009), which performs well 
compared to other popular pathway analysis methods (Yu et al., 
2017). The AFC procedure uses all genes in a pathway to calculate 
the FC value and determine the significance by calculating 
the p-value using randomly selected genes (see Materials and 
Methods section).

Table 3 summarizes the KEGG pathways that were significantly 
activated, with a p-value of < 0.05, both in vivo and in vitro for 
the liver and kidney 24 h after high-dose exposure to a form of 
thioacetamide. The in vivo and in vitro results showed overlap for 
12 pathways in the liver and 13 pathways in the kidney. Changing 
the significance threshold to p < 0.01 resulted in only two 
overlapping pathways (cardiac muscle contraction and oxidative 
phosphorylation), which appeared both in the liver and the kidney. 
However, there were no overlapping pathways in the liver when we 
considered the directionality, whether a pathway was significantly 
overexpressed or suppressed (up- or down-regulated). Table S1 in 
the Supplemental Material shows the KEGG pathways with their 
calculated p-values, 24 h after high-dose treatment in vivo and in 
vitro for both the liver and kidney.

Injury Module Activation Analysis
We previously identified and evaluated 8 kidney and 11 liver 
injury modules (Te et al., 2016; Schyman et al., 2018). In those 
studies, we calculated the average absolute log2 FC value of all 
genes in a module to determine the activation score for each 
injury module. Here, we modified the procedure from our 
previous study (Schyman et al., 2018), where we only used genes 
that passed the t-test criteria, and instead included all genes. 
Tables 4–7 show, in bold, the z-score values of significantly 
activated injury modules, for which the p-value was less than 
0.01. Tables S2–S5 in the Supplemental Material include the 
calculated p-values. For practical purposes, one should identify 
the top-ranking modules with the highest z-score values as 
the most likely injury phenotypes. However, several injury 
phenotypes may coexist, such as necrosis and cellular infiltration, 
which are early inflammatory responses.

Liver Module Activation In Vivo
In rats, thioacetamide exposure significantly activated (p-value 
< 0.01) several injury modules in the liver (Table 4). For each 
condition, the injury modules were ranked by the z-score 
from the most to the least likely injury endpoint. 8 h after 
thioacetamide exposure, all liver injury modules significantly 
activated at the low dose were also activated at the high dose, 
albeit with different ranking orders. Similarly, 24 h after low-
dose exposure, all significantly activated injury modules were 

TABLE 2 | Differentially expressed genes after exposure in vivo to thioacetamide 
and in vitro to thioacetamide-S-oxide.

In vivo In vitro

Low dose high dose Low dose high dose

8 h 24 h 8 h 24 h 9 h 24 h 9 h 24 h
Liver 3027 1999 4443 4307 259 4292 2159 3178
Kidney 257 746 172 1571 890 71 2575 3529

FIGURE 1 | Overlap between differentially expressed genes in in vivo and in 
vitro 24 h after thioacetamide/thioacetamide-S-oxide exposure.
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also activated after high-dose exposure. There was a significant 
overlap between the top-ranked liver injury modules at 24 h after 
low- and high-dose exposures. The difference in z-scores of the 
injury modules between 8 and 24 h were more pronounced than 
between low- and high-dose treatments.

Kidney Module Activation In Vivo
Thioacetamide exposures significantly activated (p-value < 0.01) 
only a few injury modules in the kidney (Table 5). Necrosis was 
consistently the top-ranked kidney injury module in all kidney 
samples after thioacetamide exposure. At 24 h after high-dose 
exposure, several kidney injury modules were significantly 
activated, but necrosis was still the top-ranked injury phenotype.

Liver Module Activation In Vitro
Table 6 shows the liver injury modules activated by thioacetamide-
S-oxide (the reactive metabolite of thioacetamide) in hepatocytes. 
9 h after low- and high-dose treatments, no liver injury modules 
were significantly activated (p-value < 0.01). However, after 24 h, 
fibrosis was among the two highest-ranked injury modules for 
both low- and high-dose treatments. All five injury modules that 
were significantly activated 24 h after the low-dose treatment 
were also significantly activated after the high-dose treatment.

Kidney Module Activation In Vitro
Table 7 shows the kidney injury module activation scores for 
thioacetamide-S-oxide in renal proximal tubular epithelial cells. 
None of the high-dose treatments significantly activated any 
injury modules, but 9 h after exposure to the low-dose treatment 
the kidney injury module, fibrosis, was slightly activated. 
However, this injury module was not significantly (p-value < 
0.01) activated at 24 h after treatment.

In Vitro-In Vivo Correlation
At 24 h after the high-dose treatment, three of the four liver 
injury modules that were ranked highest in vitro could be found 
among the four highest-ranked modules in vivo (Tables 4 and 6). 
Fibrosis was the second-highest ranked injury module in vitro 
and in vivo. These results are in agreement with fibrosis being the 
primary injury endpoint of thioacetamide exposure.

Figure 3 shows the correlation between in vivo and in vitro 
experiments for different liver and kidney samples. The injury 
modules activated in the liver 24 h after high- and low-dose 
treatment were strongly correlated (R2 > 0.6). However, those 
activated in the kidney 24 h after high-dose and low-dose 
treatment showed no correlation. There was no positive in vivo-in 
vitro correlation at the shorter time points, regardless of the dose.

In Vitro Predictions of high- and Low-Risk 
Liver Toxicants
In this section, we extend our validation to identify key injury 
phenotypes and to differentiate high-risk liver toxicants from 
low-risk toxicants. To this end, we identified four compounds 

FIGURE 2 | Correlation between differentially expressed genes (DEGs) in in vitro and in vivo 24 h after thioacetamide/thioacetamide-S-oxide exposure.

TABLE 3 | Overlap of Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways significantly activated (p-value < 0.05) in vivo and in vitro, 24 h after 
high-dose thioacetamide/thioacetamide-S-oxide exposure.

KEGG pathway
(p-value < 0.05; bold p-value < 0.01)

In vivo-In vitro 
overlap

Function

Liver Kidney

Limonene and pinene degradation √ Metabolism
PPAR signaling pathway √ Endocrine system
Ascorbate and aldarate metabolism √ Metabolism
Butanoate metabolism √ Metabolism
Tyrosine metabolism √ Metabolism
Cardiac muscle contractiona √ √ Circulatory 

system
Antigen processing and presentation √ √ Immune system
Oxidative phosphorylation √ √ Metabolism
Glutathione metabolism √ √ Metabolism
Linoleic acid metabolism √ √ Metabolism
Metabolism of xenobiotics by cytochrome 
P450

√ √ Metabolism

Drug metabolism cytochrome P450 √ √ Metabolism
Pentose and glucuronate interconversions √ Metabolism
Arginine and proline metabolism √ Metabolism
Taurine and hypotaurine metabolism √ Metabolism
Selenoamino acid metabolism √ Metabolism
Porphyrin and chlorophyll metabolism √ Metabolism
Nitrogen metabolism √ Metabolism

aBold text indicates significantly activated pathway with a p-value < 0.01.
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with in vitro data from TG-GATEs and corresponding in vivo 
data from DrugMatrix. We selected carbon tetrachloride and 
lomustine as high-risk toxicants, which are known to promote 
fibrosis in rats after 29 days of exposure to 300 mg/kg of carbon 

tetrachloride and after 29 days of exposure to 6 mg/kg of 
lomustine (Igarashi et al., 2015). The doses used in DrugMatrix 
were similar: 400 mg/kg for carbon tetrachloride and 4.20 and 
8.75 mg/kg for lomustine (Ganter et al., 2005). We classified 

TABLE 4 | Activation of liver injury modules in vivo from rat liver tissue after exposure to thioacetamide.

Low dose high dose

8 h 24 h 8 h 24 h

Module z-score Module z-score Module z-score Module z-score

Oval cell 
proliferationa

8.5 Anisonucleosis 14.7 Cellular infiltration 6.8 Cellular infiltration 14.9

single cell necrosis 6.7 Cellular infiltration 14.2 single cell necrosis 6.0 Fibrosis 12.0
Nuclear alteration 5.6 Fibrosis 11.1 Oval cell proliferation 4.6 Cellular foci 10.0
Cellular infiltration 5.2 Oval cell proliferation 9.6 Cellular foci 3.8 Anisonucleosis 9.1
Anisonucleosis 3.4 Cellular foci 9.0 Anisonucleosis 3.7 Oval cell proliferation 8.0
Bile duct proliferation 3.2 single cell necrosis 4.6 Fibrosis 3.1 single cell necrosis 6.5
Cellular foci 1.8 Nuclear alteration 4.1 Bile duct proliferation 3.1 Nuclear alteration 5.0
Hematopoiesis 1.5 Bile duct proliferation 3.6 Nuclear alteration 2.4 Bile duct proliferation 4.8
Fibrosis 1.1 hematopoiesis 2.9 hematopoiesis 2.3 hematopoiesis 3.4
Cytoplasmic alteration 0.8 Granular degeneration 1.4 Cytoplasmic alteration 1.1 Cytoplasmic alteration -0.5
Granular degeneration -0.8 Cytoplasmic alteration 0.2 Granular degeneration 0.2 Granular degeneration -0.9

aBold text indicates significantly activated module (p-value < 0.01).

TABLE 5 | Activation of kidney injury modules in vivo from rat kidney tissue after exposure to thioacetamide.

Low dose high dose

8 h 24 h 8 h 24 h

Module z-score Module z-score Module z-score Module z-score

Necrosisa 5.2 Necrosis 2.6 Necrosis 7.3 Necrosis 15.3
Dilatation 0.6 Dilatation 1.6 Cellular infiltration 1.7 Cellular infiltration 11.2
Degeneration 0.2 Degeneration 0.9 Degeneration 1.5 Degeneration 11.2
Cellular infiltration -1.8 Cellular infiltration 0.7 Hyaline cast 0.6 hyaline cast 6.4
Hyaline cast -2.0 Hyaline cast -0.5 Hypertrophy 0.2 Dilatation 6.4
Hypertrophy -2.1 Hypertrophy -1.0 Intracytoplasmic inclusion body -0.3 Fibrosis 1.5
Intracytoplasmic 
inclusion body

-2.4 Intracytoplasmic inclusion 
body

-2.7 Dilatation -0.7 Intracytoplasmic inclusion 
body

-0.1

Fibrosis -3.7 Fibrosis -3.0 Fibrosis -0.9 Hypertrophy -1.7

aBold text indicates significantly activated module (p-value < 0.01).

TABLE 6 | Activation of liver injury modules in vitro from rat hepatocytes after exposure to the thioacetamide metabolite, thioacetamide-S-oxide.

Low dose high dose

9 h 24 h 9 h 24 h

Module z-score Module z-score Module z-score Module z-score

Hematopoiesis -0.4 Fibrosisa 6.4 Hematopoiesis 1.0 Anisonucleosis 6.9
Anisonucleosis -1.3 Anisonucleosis 5.6 Anisonucleosis 0.3 Fibrosis 6.5
Granular degeneration -1.5 Cellular foci 5.2 Single cell necrosis 0.1 Cellular foci 6.1
Fibrosis -1.8 Bile duct proliferation 3.4 Granular degeneration -0.7 Bile duct proliferation 3.7
Bile duct proliferation -1.8 Cellular infiltration 3.3 Fibrosis -0.9 Cellular infiltration 3.6
Cytoplasmic alteration -2.2 Single cell necrosis 2.4 Nuclear alteration -0.9 Oval cell proliferation 1.2
Cellular infiltration -2.2 Oval cell proliferation 2.2 Cellular foci -1.1 Single cell necrosis 1.0
Cellular foci -2.3 Nuclear alteration 0.2 Oval cell proliferation -1.4 Nuclear alteration 0.1
Single cell necrosis -2.4 Hematopoiesis 0.0 Bile duct proliferation -2.1 Hematopoiesis -0.2
Oval cell proliferation -3.8 Granular degeneration -1.6 Cellular infiltration -2.1 Cytoplasmic alteration -1.6
Nuclear alteration -4.5 Cytoplasmic alteration -1.6 Cytoplasmic alteration -2.2 Granular degeneration -1.9

aBold text indicates significantly activated module (p-value < 0.01).
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naproxen and tamoxifen as low-risk toxicants, based on the 
LiverTox website (Hoofnagle et al., 2013), as liver fibrosis was not 
detected in the histology reports from TG-GATEs.

The in vitro data from TG-GATEs contain repeated-dose 
exposure to chemicals at low, medium, and high doses at three 
different time-points (2, 8, and 24 h). For this analysis, we 
calculated a module activation score for each condition and 
selected the maximum score. We provide all activation scores in 
Table S6 (Supplemental Material).

Table 8 shows the maximum injury module activation scores 
from in vitro and in vivo expression data for the four compounds. 
The fibrosis module was significantly activated for the two high-
risk compounds in both in vitro and in vivo, but not for the low-
risk compounds.

DIsCUssION
We used different approaches to assess the correlation between 
in vitro and in vivo toxicogenomic experiments. No positive 
correlations were observed for liver or kidney injury modules 
8 or 9 h after thioacetamide/thioacetamide-S-oxide exposure. 
However, our injury module approach did indicate a strong 
correlation (R2 > 0.60) at 24 h after high-dose treatment of 
thioacetamide/thioacetamide-S-oxide between liver injury 
modules activated in vitro (in hepatocytes) and those activated in 
vivo (in rats), but no correlation (R2 < 0.10) between kidney injury 
modules activated in vitro (in renal cells) and those activated in 
vivo (in rats). Interestingly, there was also a strong in vitro-in vivo 
correlation (R2 = 0.66) for liver injury modules activated 24 h 
after low-dose treatment, which further indicates the sensitivity 
of the injury module approach to identifying specific injury 
phenotypes even after a low-dose exposure.

A noteworthy observation for the activation of liver injury 
modules in vivo and in vitro was the increase in activation score 
and rank of the fibrosis module over time (8 to 24 h) for both 
low- and high-dose treatments (see Tables 4 and 6). The opposite 
trend was observed for the single cell necrosis module in vivo, 
which was the top-ranked module 8 h after exposure but a mid-
ranked module after 24 h (see Table 4). These observations are 
reasonable, given that fibrosis requires more time to develop than 
single cell necrosis with regard to an early immune response.

DEGs in vitro showed little overlap with DEGs in vivo 
(Figure  1), and gene FC values among the overlapping genes 
were uncorrelated (Figure 2). These data suggest that any in 
vitro-in vivo correlation based solely on individual genes are 
likely to be coincidental.

The KEGG pathway analysis of in vivo gene expression data 
from rats exposed to thioacetamide identified multiple biologically 
relevant pathways in the liver, as discussed previously (Schyman 
et al., 2018). In the in vitro hepatocyte experiment, 17 pathways 
(excluding human disease pathways) were significantly activated 
with a p-value of less than 0.05, which included 13 metabolic 
pathways, as well as cardiac muscle contraction, antigen processing 
and isoleucine biosynthesis, PPAR signaling, and complement 
and coagulation cascades pathways (see Supplemental Material 
for all activated KEGG pathways). Among the 17 pathways 
activated in vitro, 13 overlapped with the pathways activated in 
liver (in vivo) (Table 3). Nine of these pathways were related to 
metabolism (e.g., xenobiotic biodegradation and metabolism, 
carbohydrate metabolism, amino acid metabolism) and three 
others were related to the circulatory, immune, and endocrine 
systems (i.e., cardiac muscle contraction, antigen processing and 
isoleucine biosynthesis, and PPAR signaling pathways). Similarly, 
the majority of the significantly activated KEGG pathways in 
the kidney that showed in vitro-in vivo overlap were involved in 
metabolism (Table 3), and also circulatory and immune systems 
(i.e., cardiac muscle contraction and antigen processing and 
isoleucine biosynthesis). Table 3 shows that more than half of 
the in vitro-in vivo overlapped pathways in liver or kidney also 
overlapped between liver and kidney samples. Some of these 
pathways were expected, such as metabolism of xenobiotics by 
cytochrome P450 and drug metabolism cytochrome p450, but 
also cardiac muscle contraction, antigen processing and isoleucine 
biosynthesis were common across organs. It is interesting to note 
that the glutathione metabolism pathway was also common, 
which is important in antioxidant defense and cellular function 
(e.g., cell proliferation, apoptosis, immune response) (Wu et al., 
2004). However, these pathways, which are involved in general 
biological responses and are not injury specific, showed low 
specificity between the liver and kidney.

Previous in vitro-in vivo research has often focused on 
identifying correlated genes, pathways, or gene ontology terms 
(Zhang et al., 2013; De Abrew et al., 2015; Sutherland et al., 2016; 

TABLE 7 | Activation of kidney injury modules in vitro from renal tube epithelial cells after exposure to thioacetamide metabolite, thiacetamide-S-oxide.

Low dose high dose

9 h 24 h 9 h 24 h

Module z-score Module z-score Module z-score Module z-score

Fibrosisa 3.3 Hypertrophy 1.6 Hypertrophy 1.8 Cellular infiltration 1.9
Hypertrophy 1.7 Intracytoplasmic inclusion body -0.2 Necrosis 1.3 Fibrosis 1.1
Cellular infiltration 1.3 Fibrosis -0.3 Degeneration 1.2 Intracytoplasmic inclusion body 1.1
Degeneration 1.0 Cellular infiltration -1.1 Dilatation 1.1 Hypertrophy 1.0
Dilatation 0.8 Dilatation -1.1 Fibrosis 1.1 Necrosis 0.5
Intracytoplasmic inclusion body 0.0 Necrosis -1.2 Cellular infiltration 0.4 Dilatation 0.1
Hyaline cast -0.2 Hyaline cast -1.3 Intracytoplasmic inclusion body 0.2 Hyaline cast -0.5
Necrosis -0.6 Degeneration -1.8 Hyaline cast -0.6 Degeneration -1.2

aBold text indicates significantly activated module (p-value < 0.01).
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Van den Hof et al., 2017; Taškova et al., 2018). We have shown 
that DEGs do not show satisfactory in vitro-in vivo correlations, 
which makes selection of individual genes indicative of injury 
unreliable. Furthermore, our KEGG pathway analysis identified 
several overlapping pathways between in vivo and in vitro 
conditions, but no clear link to fibrosis, the liver injury most 
associated with thioacetamide exposure.

Here, we show that our modular approach to identify gene 
sets specific to injury phenotypes performed well in assessing in 
vivo results from in vitro gene expression data after exposure to a 
thioacetamide metabolite, thioacetamide-S-oxide. An important 
factor in our modular approach is the use of absolute FC values to 
identify activated injury modules. Although this has been shown 
to be important in pathway analysis (Ackermann and Strimmer, 

FIGURE 3 | Correlation between injury modules activated in vivo and in vitro.
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2009), it leads to loss of information about the directionality of 
change in the activated pathway. However, our results showed 
weak in vivo-in vitro correlations for the directionality of the 
FC (Figure 2), suggesting that the use of absolute FC values is 
critical to the success of the injury module approach.

Previous studies have typically focused on identifying gene 
signatures for a single injury phenotype (e.g., cancer, steatosis, 
cholestasis) (Segal et al., 2004; Sahini et al., 2014; Parmentier et al., 
2017). Although this approach is adequate for understanding 
the underlying biological mechanisms of toxicity, a key aspect 
of predicting a specific organ injury phenotype is the ability to 
test and rank different injury phenotypes to identify the most 
likely injury. The prediction should also be organ-specific, which 
requires different sets of injury modules for different organs. Other 
studies have used similar multi-injury-gene set approaches to focus 
on liver injuries (De Abrew et al., 2015; Sutherland et al., 2017; 
Sutherland et al., 2019) or kidney injuries (Minowa et al., 2012).

A major limitation of our injury module approach is that 
we can only predict injuries for the injury modules we have 
identified. There are many more injury phenotypes for which 
we have not yet been able to assign a gene set, because publicly 
available data are still limited. Other limitations of our approach 
are that injury phenotypes are not necessarily indistinguishable, 
and that some injuries respond at different time scales (e.g., 

cellular infiltration is often an early response, whereas fibrosis 
is more pronounced later when the injury is more advanced). 
Additionally, our approach does not yet consider injury modules 
for other organs, such as the heart and brain.

To further validate the ability of our injury modules to 
predict in vivo injury endpoints, we selected four compounds 
with in vitro data from TG-GATEs and corresponding in vivo 
data in DrugMatrix. We did not expect perfect in vitro-in 
vivo concordance because the doses and time points were not 
necessarily determined in the same way (i.e., the highest dose with 
the least toxic response). However, our aim was to test whether we 
could identify a key injury phenotype and differentiate high-risk 
liver toxicants known to cause fibrosis from low-risk toxicants. 
Figure 4 shows the significantly activated injury modules based 
on the activation scores in Table 8. For easy comparison we 
highlighted the fibrosis module in pink and the radius indicate 
the significance. We found that the injury module approach 
differentiated toxicants from non-toxicants based on activation 
scores and identified fibrosis as one of the injury phenotypes 
among the high-risk toxicants. Nontoxicants, when presented 
alone, only activated a few benign injury modules significantly.

In summary, our results support the hypothesis that coexpressed 
gene sets specific to an injury phenotype (injury modules) may be 
useful to predict in vivo injury endpoints, using RNA-seq data from 

TABLE 8 | Activation of liver injury modules in vitro and in vivo in rat hepatocytes after exposure to high- and low-risk liver toxicants. Bold text indicates significant 
activation of the Fibrosis module (p-value < 0.01).

high-risk liver toxicants

Carbon tetrachloride Lomustine

In vivo (DrugMatrix)a In vivo (TG-GATEs)b In vivo (DrugMatrix)c In vitro (TG-GATEs)d

Anisonucleosis 12.0 Fibrosis 4.5 Fibrosis 10.2 Fibrosis 2.9
Fibrosis 11.1 Anisonucleosis 4.4 Cellular infiltration 8.3 Anisonucleosis 2.4
Cellular infiltration 10.5 Hematopoiesis 3.7 Cellular foci 7.7 Cellular infiltration 2.2
Cellular foci 8.2 Cellular foci 2.8 Single cell necrosis 4.8 Granular degeneration 2.0
Single cell necrosis 5.9 Cellular infiltration 1.8 Hematopoiesis 4.5 Oval cell proliferation 1.9
Nuclear alteration 3.4 Nuclear alteration 1.7 Anisonucleosis 2.4 Bile duct proliferation 1.9
Hematopoiesis 2.2 Granular degeneration 1.7 Bile duct proliferation 2.2 Hematopoiesis 1.7
Oval cell proliferation 1.6 Single cell necrosis 1.3 Oval cell proliferation 2.0 Cellular foci 1.6
Granular degeneration 0.3 Cytoplasmic alteration 1.0 Cytoplasmic alteration 1.3 Cytoplasmic alteration 0.7
Cytoplasmic alteration -0.1 Oval cell proliferation 0.8 Granular degeneration 0.9 Nuclear alteration 0.1
Bile duct proliferation -0.3 Bile duct proliferation 0.7 Nuclear alteration 0.4 Single cell necrosis -0.2

Low-risk liver toxicants

Naproxen Tamoxifen

In vivo (DrugMatrix)e In vivo (TG-GATEs)f In vivo (DrugMatrix)g In vitro (TG-GATEs)h

Nuclear alteration 0.3 Granular degeneration 4.5 Anisonucleosis 3.4 Anisonucleosis 4.6
Cytoplasmic alteration 0.0 Hematopoiesis 2.4 Granular degeneration 1.8 Hematopoiesis 2.7
Single cell necrosis -0.3 Cytoplasmic alteration 1.9 Cytoplasmic alteration 1.1 Fibrosis 1.8
Oval cell proliferation -0.5 Nuclear alteration 1.9 Nuclear alteration 0.2 Cytoplasmic alteration 1.7
Bile duct proliferation -1.7 Bile duct proliferation 1.7 Single cell necrosis 0.1 Granular degeneration 1.6
Anisonucleosis -2.1 Anisonucleosis 1.5 Fibrosis -0.4 Oval cell proliferation 1.4
Cellular foci -2.4 Oval cell proliferation 1.2 Cellular foci -0.5 Nuclear alteration 1.4
Cellular infiltration -2.6 Fibrosis 1.1 Cellular infiltration -0.7 Cellular infiltration 1.0
Granular degeneration -2.6 Single cell necrosis 0.9 Bile duct proliferation -0.9 Cellular foci 0.8
Fibrosis -2.9 Cellular foci 0.8 Hematopoiesis -1.0 Single cell necrosis 0.1
Hematopoiesis -3.9 Cellular infiltration 0.1 Oval cell proliferation -1.0 Bile duct proliferation -0.1

aDose: 400 mg/kg; Time: 1, 3, 7, and 25 d. bDose: 1,000, 3,000, and 10,000 μM; Time: 2, 8, and 24 h. cDose: 4.2 and 8.75 mg/kg; Time: 1, 3, 5, and 25 d. dDose: 4.8, 24, and 120 μM; 
Time: 2, 8, and 24 h. eDose: 10 mg/kg; Time: 3 d. fDose: 80, 400, and 2000 μM; Time: 2, 8, and 24 h. gDose: 2.5 and 64 mg/kg; Time: 3 and 5 d. hDose: 0.12, 0.60, and 3.0 μM.
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in vitro cell studies. Although this method may never replace animal 
studies, in conjunction with other in vitro assays, it could facilitate 
the screening of large numbers of chemicals in order to predict liver 
and kidney injuries in vivo. Consequently, the approach can reduce 
the number of animals needed in experiments and improve the 
efficiency of toxicity assessments.
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