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ABSTRACT: Permeability glycoprotein (Pgp) is an essential
membrane-bound transporter that efficiently extracts com-
pounds from a cell. As such, it is a critical determinant of the
pharmacokinetic properties of drugs. Multidrug resistance in
cancer is often associated with overexpression of Pgp, which
increases the efflux of chemotherapeutic agents from the cell.
This, in turn, may prevent an effective treatment by reducing
the effective intracellular concentrations of such agents.
Consequently, identifying compounds that can either be
transported out of the cell by Pgp (substrates) or impair Pgp function (inhibitors) is of great interest. Herein, using publically
available data, we developed quantitative structure−activity relationship (QSAR) models of Pgp substrates and inhibitors. These
models employed a variable-nearest neighbor (v-NN) method that calculated the structural similarity between molecules and
hence possessed an applicability domain, that is, they used all nearest neighbors that met a minimum similarity constraint. The
performance characteristics of these v-NN-based models were comparable or at times superior to those of other model
constructs. The best v-NN models for identifying either Pgp substrates or inhibitors showed overall accuracies of >80% and κ
values of >0.60 when tested on external data sets with candidate Pgp substrates and inhibitors. The v-NN prediction model with
a well-defined applicability domain gave accurate and reliable results. The v-NN method is computationally efficient and requires
no retraining of the prediction model when new assay information becomes availablean important feature when keeping
QSAR models up-to-date and maintaining their performance at high levels.

■ INTRODUCTION

Permeability glycoprotein (Pgp), a member of the ATP-binding
cassette (ABC) transporter family, is an important cell-
membrane protein that regulates the efflux of foreign
substances out of the cell.1−3 Pgp primarily exports hydro-
phobic compounds via an ATP-dependent process3 (Scheme
1). Compounds that interact with Pgp can be classified into
three categories: substrates, inhibitors, and modulators.4 Pgp
causes substrates to undergo efflux from the cell. By contrast,
modulators and inhibitors both impair Pgp function; hence,
these terms are often used synonymously. As shown in Scheme
1,the three most common ways to reduce Pgp function are (i)
to block or competitively antagonize the substrate from
attaching to the binding site (square), (ii) to inhibit the ATP
binding site (triangle), and (iii) to interfere with the hydrolysis
of ATP to ADP + Pi (star).
In cultured cancer cell lines and tumor models, over-

expression of Pgp generates drug-resistant phenotypes.2 Pgp
overexpression is a major factor that contributes to multidrug
resistance (MDR), a phenomenon in which cells develop
tolerance to drugs even at lethal doses by pumping them out,
thereby reducing their cytotoxic effect.3 MDR is of great
concern because it is one of the major reasons for the failure of
cancer chemotherapy treatments, of which paclitaxel admin-
istration is perhaps one of the best-known examples.

Considerable effort is also being devoted to identifying Pgp
inhibitors that reduce drug resistance and improve drug
effectiveness.6,7 Several experimental assays, including the
monolayer efflux, calcein-AM, and ATPase assays,8,9 are
available for assessing the compound transport across cellular
membranes. These assays, however, are resource intensive. In
this context, in silico models that identify inhibitors and
substrates offer a valuable alternative for early prescreening
efforts to guide the selection of compounds for experimental
evaluation.
Several computational models have been proposed to predict

the likelihood that a compound is a Pgp inhibitor10−15 or a
substrate.15−17 Most of these models were developed using
relatively small data sets, with concomitant limitations in their
reliability. As such, the predictions of the models developed
thus far are often difficult to validate. One aim of this study was
to address this issue. We defined an applicability domain based
on the premise that similar molecules have similar activities. In
this way, we attempted to ensure that the models made a
prediction only when a test molecule was similar to any of the
molecules in the set of training compounds.
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We also sought to test the utility of models that use an
applicability domain in predicting Pgp substrates. As noted
above, Pgp substrates are likely to be crucial for MDR because
drugs that are Pgp substrates will accumulate less in cells than
those that are not. This is why identifying Pgp substrates is
often part of the early drug discovery screening process.18 Yet,
despite the efforts that have been devoted to predicting Pgp
inhibitors, the prediction of Pgp substrates themselves has
received little attention. Predicting Pgp substrates is more
challenging than predicting Pgp inhibitors because their

structural variability is likely to be high, given the crucial role
of Pgp in removing foreign substances from cells.
Here, we used our versatile variable-nearest neighbor (v-NN)

method19 to develop the Pgp substrate and inhibitor
identification models and compared how they performed in
relation to previously published model constructs. We also
combined the data sets from Chen et al.12 and Broccatelli et
al.10 to develop a v-NN Pgp inhibitor model and analyzed its
performance. Our results show that these v-NN models
perform well and suggest that reliable predictions can easily
be made with the use of an applicability domain.

■ RESULTS AND DISCUSSION

Prediction of Pgp Substrates. We applied our v-NN
method to construct a Pgp substrate model, using exper-
imentally determined substrates and nonsubstrates. The v-NN
model predicts whether a test molecule is a substrate or a
nonsubstrate on the premise that similar molecules have similar
biological activities. If a test molecule is highly similar to a
reference substrate molecule, it will be classified as a substrate.
To increase the level of confidence in our predictions, we
defined an applicability domain for the v-NN model by
introducing a similarity threshold value (Tanimoto-distance
threshold d0) that had to be met to make a prediction. We
selected the two v-NN parameters in eq 1 (smoothing factor h
and Tanimoto-distance threshold d0), according to the
performance on the training set with respect to the κ value
and overall coverage. We evaluated the performance of the
model using the 10-fold cross validation, in which we randomly
grouped the data set into ten equally sized groups and then
used nine of the groups to construct the model and one to
validate it. Subsequently, this process was repeated ten times so

Scheme 1. Illustration of the Drug Efflux Mediated by ATP-
Driven Pgp Transporta

a(i) Drug binds to the substrate binding site (■),5 (ii) ATP binds to
the ATP-binding site (▲), and (iii) hydrolysis of ATP to ADP + Pi
(★). Although only one binding site is shown for simplicity, multiple
binding sites could contribute to substrate promiscuity.

Figure 1. Performance measures of the v-NN Pgp substrate model as a function of the Tanimoto-distance threshold d0 at a constant smoothing
factor h of 0.6 (a) and as a function of the smoothing factor h at a constant Tanimoto-distance threshold d0 of 1.0 (b), evaluated using the 10-fold
cross validation.
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that all groups were left out once, and the final result was
reported as the average.
Figure 1a shows the performance measures of the model as a

function of the Tanimoto-distance threshold d0 at a constant
smoothing factor h of 0.6. The best model performance, as
measured by the κ value, was achieved at d0 = 0.2, with an
accuracy of 95%, sensitivity of 98%, specificity of 75%, and κ
value of 0.77 (Figure 1a). However, this resulted in low
coverage (9%), wherein the majority of compounds did not
meet the Tanimoto-distance threshold.
A set of high-accuracy (HA) parameters (h = 0.6 and d0 =

0.6; Figure 1a, arrow) was selected by adjusting the smoothing
factor and the Tanimoto-distance threshold, which increased
the coverage from 9 to 60%, while maintaining good
performance measures (accuracy of 77%, sensitivity of 78%,
specificity of 75%, and κ value of 0.53). In taking this approach,
we sacrificed some coverage because we could not make
predictions for 40% of the compounds. Although this inability
may appear to be a limitation of our method, in our opinion, it
is preferable not to make any prediction at all if these
compounds are predicted merely by chance. Instead, these
molecules should be tested experimentally. Once the results are
known, the new data should then be included to the training
set, so that the new model can make reliable predictions for
similar compounds, effectively expanding the applicability
domain of the model. Most published quantitative structure−
activity relationship (QSAR) studies have not assessed the
applicability domain of their models. Although this conveys the
impression that these models are universally applicable, we and
others have shown that the performance of a QSAR model
rapidly deteriorates as new studies explore chemical spaces that
differ from the space that was used to build the original
model.20,21 This is one of the great challenges in QSAR
development. In tackling this problem, we consider the use of
an applicability domain as a necessary step to establish reliable
in silico methods.
The coverage of a QSAR model can be increased by the v-

NN approach in a straightforward fashion. Our v-NN Pgp
substrate model achieved nearly 100% coverage when we
increased the Tanimoto-distance threshold to 0.8 (Figure 1a).
This came at the cost of inferior prediction performance, as
indicated by the smaller κ values as well as the slightly lower
accuracy and specificity. To ensure a fair comparison of the
performance of our v-NN Pgp substrate model with that of
previously proposed models, we increased the Tanimoto-

distance threshold to d0 = 1.0 and varied the smoothing factor h
to achieve a set of high-coverage (HC) parameters (h = 0.3 and
d0 = 1.0; Figure 1b, arrow) and enable our model to make
predictions for all compounds.
To test the performance of the v-NN model in predicting

Pgp substrates, we used the data set of Li et al.16 and their
published Bayesian classifier (BC) model, which employs
ECFP10 fingerprints and eight molecular properties (MPs).
Table 1 summarizes the results of our v-NN model and the BC
model. To compare the models directly, the table shows the
model parameters with the 10-fold cross validation, the
performance measures we calculated by using their data sets,
and the BC model parameters reported by Li et al.
The best-performing v-NN model outperformed the BC +

MP model with respect to accuracy, sensitivity, and κ value
(Table 1). Of these three measures, high sensitivity is desirable
because it assures high confidence in positive predictions. Even
when we equated the v-NN model with the BC + MP model in
terms of coverage (by using HC parameters), the sensitivity
remained high in both the training and test sets, 0.78 and 0.80,
respectively, compared with the corresponding sensitivities of
0.65 and 0.66 for the BC + MP model. However, the κ value is
perhaps the most accurate measure for the performance of a
prediction model because it takes into account the agreement
occurring by chance. Although the v-NN model with the HC
parameters performed on par with the BC + MP model on the
training set with respect to the accuracy and the κ value, it
performed better than the BC + MP model on the external test
set. Furthermore, the v-NN model with the HA parameters
showed superior accuracy and κ values on both the training and
test sets.
To test the robustness of our model, we compared its

performance when it was trained on the data set of Li et al. with
that when it was trained on a randomized data set. As the
bottom two rows of Table 1 show, the performance of the
model deteriorated as expected. The accuracy, sensitivity, and
specificity during randomized training were all approximately
0.5, a value much lower than the values during training with
conventional data sets (0.65−0.78, top two rows of Table 1). In
particular, the κ value was approximately zero, indicating that
the model predictions were no better than those expected by
chance. That our model is sensitive to relationships among
compounds in the training data set suggests that it reliably
predicts Pgp substrates.

Table 1. Performance Measures in Predicting Pgp Substrates by Using the Data Set of Li et al.16

method parameters accuracy sensitivity specificity κ coverage

Traininga

v-NN HC (h = 0.3; d0 = 1.0)b 0.71 0.78 0.65 0.42 1.00
v-NN HA (h = 0.6; d0 = 0.6) 0.77 0.78 0.75 0.53 0.60
BC ECFP10 + 8MPc 0.72 0.65 0.79 0.44 1.00

Test
v-NN HC (h = 0.3; d0 = 1.0) 0.76 0.80 0.71 0.51 1.00
v-NN HA (h = 0.6; d0 = 0.6) 0.81 0.82 0.78 0.60 0.70
BC ECFP10 + 8MP 0.73 0.66 0.81 0.47 1.00

Randomized Training Datad

v-NN HC (h = 0.3; d0 = 1.0) 0.50 0.50 0.50 0.01 1.00
v-NN HA (h = 0.6; d0 = 0.6) 0.52 0.50 0.54 0.04 0.65

aPerformance in a 10-fold cross validation. bv-NN parameters (smoothing factor, h, and Tanimoto-distance threshold, d0).
cBayesian classifier that

employs ECFP10 fingerprints and eight molecular properties (MPs). dTraining set compounds for Pgp were randomly assigned as substrates or
nonsubstrates.
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Prediction of Pgp Inhibitors. Following the modeling
procedure we pursued when constructing the Pgp substrate
model, we collected Pgp inhibitor data from the studies of
Broccatelli et al.10 and Chen et al.12 and analyzed them
separately for comparison, before combining them into one
large data set. Broccatelli et al. developed a model by employing
a combination of molecular interaction field-based technologies
and by considering pharmacophore features as well as
physicochemical properties related to membrane partitioning.
They used VolSurf+ descriptors22 to model the physicochem-
ical properties and fingerprints for ligands and proteins
(FLAP)23 to identify the most important pharmacophore
features.
Table 2 shows the results of the v-NN model and the FLAP/

VolSurf+ model of Broccatelli et al. As in the case of predicting
Pgp substrates, we determined two sets of v-NN parameters to
achieve HC and HA via a series of 10-fold cross validations. We
selected the v-NN HA parameters (h = 0.2 and d0 = 0.6) to
establish a limited applicability domain and thereby optimize
the performance. This resulted in an excellent performance on
the training set, with an accuracy of 91%, sensitivity of 93%,
specificity of 88%, κ value of 0.81, and coverage of 67%. The
HC parameters (h = 0.2 and d0 = 1.0) allowed us to make a
prediction for all molecules (100% coverage). The v-NN
models performed well compared with the FLAP/VolSurf+

model on all three data sets (training, internal test, and external
test). The v-NN model with the HA parameters gave the best
performance and the most reliable result on all data sets.
We also compared the performance of our model when it

was trained on the data set of Broccatelli et al. with that when it
was trained on a randomized data set. The performance
deteriorated as expected, and the low κ values indicated that the
model predictions were no better than those expected by
chance (bottom two rows of Table 2).
Table 3 compares the performance of v-NN models that

used either HC parameters (h = 0.1 and d0 = 1.0) or HA
parameters (h = 0.4 and d0 = 0.5) with that of the model
developed by Chen et al.12 using their data set. To directly
compare our results with those of Chen et al., the training set
was evaluated using the leave-one-out (LOO) cross validation
instead of the 10-fold cross validation. Their model, which uses
the BC model and eight molecular descriptors (BC + MP),
performed as well as our v-NN models. The performance of the
v-NN model with HA parameters was comparable to that of the
BC + MP model, with an overall accuracy of 80%, sensitivity of
91%, and coverage of 72% for the test set. The v-NN models
displayed excellent accuracy and sensitivity but showed low
specificity. This may be attributed to our unbalanced data set,
which included more Pgp inhibitors than noninhibitors. This
asymmetry could have led to the low specificity of our models

Table 2. Performance Measures in Predicting Pgp Inhibitors by Using the Data Set of Broccatelli et al10

method parameters accuracy sensitivity specificity κ coverage

Traininga

v-NN HC (h = 0.2; d0 = 1.0)b 0.85 0.86 0.84 0.70 1.00
v-NN HA (h = 0.2; d0 = 0.6) 0.91 0.93 0.88 0.81 0.67
FLAP/VolSurf+ 0.88 0.84 0.91 0.75 1.00

Internal Test
v-NN HC (h = 0.2; d0 = 1.0) 0.84 0.84 0.83 0.67 1.00
v-NN HA (h = 0.2; d0 = 0.6) 0.89 0.88 0.91 0.78 0.66
FLAP/VolSurf+ 0.85 0.82 0.87 0.69 1.00

External Test
v-NN HC (h = 0.2; d0 = 1.0) 0.76 0.81 0.67 0.48 1.00
v-NN HA (h = 0.2; d0 = 0.6) 0.88 0.91 0.80 0.71 0.53
FLAP/VolSurf+ 0.86 0.90 0.80 0.70 1.00

Randomized Training Datac

v-NN HC (h = 0.2; d0 = 1.0) 0.55 0.41 0.67 0.08 1.00
v-NN HA (h = 0.2; d0 = 0.6) 0.53 0.41 0.67 0.08 0.67

aPerformance of 10-fold cross validation. bv-NN parameters (smoothing factor, h, and Tanimoto-distance threshold, d0).
cTraining set compounds

for Pgp were randomly assigned as substrates or nonsubstrates.

Table 3. Performance Measures in Predicting Pgp Inhibitors by Using the Data set of Chen et al.12

method parameters accuracy sensitivity specificity κ coverage

Traininga

v-NN HC (h = 0.1; d0 = 1.0)b 0.76 0.84 0.64 0.49 1.00
v-NN HA (h = 0.4; d0 = 0.5) 0.83 0.91 0.63 0.57 0.68
BC + MP FCFP4 + 8 MPc 0.81 0.80 0.82 0.61 1.00

Test
v-NN HC (h = 0.1; d0 = 1.0)a 0.76 0.87 0.59 0.48 1.00
v-NN HA (h = 0.4; d0 = 0.5) 0.80 0.91 0.50 0.45 0.72
BC + MP FCFP4 + 8 MP 0.79 0.80 0.78 0.57 1.00

Randomized Training Datad

v-NN HC (h = 0.1; d0 = 1.0) 0.53 0.59 0.43 0.02 1.00
v-NN HA (h = 0.4; d0 = 0.5) 0.55 0.59 0.46 0.04 0.67

aPerformance of LOO cross validation. bv-NN parameters (smoothing factor, h, and Tanimoto-distance threshold, d0).
cBayesian classifier that

employs FCFP4 fingerprints and eight MPs. dTraining set compounds for Pgp were randomly assigned as substrates or nonsubstrates.
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by increasing their likelihood of falsely classifying a propor-
tionally greater number of noninhibitors as inhibitors.
As in comparing the v-NN Pgp inhibitor model with a

previous model by Broccatelli et al. (Table 2), we compared the
performance of the former model when it was trained on the
data set of Chen et al. with that when it was trained on a
randomized data set. The performance again deteriorated as
expected, and the low κ values indicated that the model
predictions were no better than those expected by chance
(bottom two rows of Table 3).
Prediction of Pgp Inhibitors in the Combined Data

Set. The v-NN method relies on the diversity of the
compounds used to construct the model. A large set of diverse
molecules will result in a greater applicability domain of the
model. We therefore combined the two inhibitor data sets into
a single data set containing 1319 Pgp inhibitors and 957
noninhibitors. The data set was split into a training set of 1219
inhibitors and 857 noninhibitors and an evaluation set of 100
inhibitors and 100 noninhibitors. Table 4 shows the perform-
ance of the v-NN models in predicting Pgp inhibitors in this
larger data set. The v-NN model with HA parameters (h = 0.3
and d0 = 0.5) performed well on the training set as evaluated by
the 10-fold cross validation, with an overall accuracy of 87%
and a κ value of 0.68 in providing predictions for 75% of the
compounds. The 75% coverage for the combined training set
was greater than that achieved for the models constructed using
only the data set of Broccatelli et al.10 or Chen et al.,12 which
showed coverage values of 67% and 68%, respectively (with the
HA training values in Tables 2 and 3). On the evaluation set,
the v-NN model generated predictions for 162 of the 200
compounds (81%) and correctly predicted 92% of the Pgp
inhibitors. The v-NN model performed well even at 100%
coverage, which was achieved by using the HC parameters (h =
0.1 and d0 = 1.0); overall accuracies for the training and
evaluation sets were 83 and 77%, respectively.
Klepsch et al.11 also combined the data sets from Broccatelli

et al.10 and Chen et al.12 The models that performed best on
their training set were the random forest (RF) and support
vector machine (SVM) models, with overall accuracies of 86%
and 75%, respectively. The corresponding accuracies of the RF
and SVM models on their external test set were 75% and 73%,
respectively. Klepsch et al. also presented a structure-based
approach to predict Pgp inhibitors and noninhibitors by using
the scoring function (ChemScore) in the docking program
GOLD.24 Even when they combined the scoring function with
the logP value, they achieved only a total accuracy of 77%. This
is lower than the accuracy of their ligand-based models.
Although these results are comparable to our HC results, the v-
NN model achieved higher accuracy with the HA parameters.
We note, however, that their findings cannot be directly
compared with our results because they used slightly different
procedures for selecting their training and test sets.

Selectivity of the Pgp Substrate and Inhibitor
Predictions. Previous studies have investigated the MPs of
Pgp substrates and inhibitors. Poongavanam et al.15 analyzed
the occurrence of different functional groups and found that
(1) Pgp substrates are typically amphipathic (i.e., possessing
both hydrophobic and hydrophilic parts) and lipophilic, with
three commonly occurring features: an aromatic system, an
ether moiety, and an amine group; and (2) Pgp inhibitors are
lipophilic and nonpolar, often containing an alkyl aryl ether, an
aromatic amine, and a tertiary aliphatic amine group. Although
Pgp substrates and inhibitors differ in some respects, they also
share the property of being hydrophobic. If our assumption that
similar molecules have similar MPs is correct and if the MPs of
Pgp substrates differ distinctly from those of Pgp inhibitors,
then v-NN models that perform well in predicting Pgp
substrates should be poor at predicting Pgp inhibitors.
Conversely, those predicting Pgp inhibitors should be poor at
predicting Pgp substrates. Therefore, we tested whether the
models developed to predict Pgp substrates would show poor
performance when tested with Pgp inhibitors and vice versa. In
both cases, the accuracy levels were ∼50% and the κ values
were close to zero (Figure 2). These results confirm that both
the v-NN substrate and inhibitor models selectively identify the
two different classes of Pgp compounds.

■ CONCLUSIONS
Our v-NN-based models outperformed current models in
predicting Pgp substrates and performed comparably to
methods such as FLAP/VolSurf+ in predicting Pgp inhibitors.
The advantages of using the v-NN method are as follows: (i)
reliable predictions by using an applicability domain to ensure
that only compounds within the chemical space of the
compounds used to construct the model are selected for

Table 4. Performance Measures in Predicting Pgp Inhibitors by Using All Inhibitor Data

method parameters accuracy sensitivity specificity κ coverage

Traininga

v-NN HC (h = 0.1; d0 = 1.0)b 0.83 0.87 0.77 0.65 1.00
v-NN HA (h = 0.3; d0 = 0.5) 0.87 0.93 0.74 0.68 0.75

Evaluation
v-NN HC (h = 0.1; d0 = 1.0) 0.77 0.88 0.66 0.54 1.00
v-NN HA (h = 0.3; d0 = 0.5) 0.81 0.92 0.69 0.62 0.81

aPerformance of 10-fold cross validation. bv-NN parameters (smoothing factor, h, and Tanimoto-distance threshold, d0).

Figure 2. Prediction of substrates by using the v-NN Pgp inhibitor
model and the prediction of inhibitors by using the v-NN Pgp
substrate model, as evaluated by the 10-fold cross validation.
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prediction and (ii) the absence of any need for retraining when
new compounds are added to the model. We emphasize the
importance of using a prediction model that is easily updated
with new compound information and assay data, given our
previous demonstration that feeding such models with even a
small amount of assay data for truly novel compounds can
greatly enhance their applicability domains.20

■ METHODS
Pgp Data Sets.We used the Pgp substrate data collected by

Hou and co-workers from monolayer efflux, ATPase activity,
and rhodamine-123/calcein-AM fluorescence assays.16 This
data set consists of measurements for a training set of 313
substrates and 309 nonsubstrates and those for a test set of 109
substrates and 91 nonsubstrates.
We extracted the data sets for Pgp inhibitors from Chen et

al.12 and Broccatelli et al.10 The data set from Chen et al.
consists of measurements for a training set of 609 inhibitors
and 393 noninhibitors and those for a test set of 188 inhibitors
and 112 noninhibitors. The data set from Broccatelli et al.
consists of measurements for three sets of compounds: (i) a
training set of 334 inhibitors and 438 noninhibitors, (ii) an
internal test set of 37 inhibitors and 47 noninhibitors, and (iii)
an external test set of 274 inhibitors and 144 noninhibitors.
Combining the Pgp inhibitor data sets from Chen et al. and

Broccatelli et al. and removing duplicates resulted in a
combined data set consisting of a training set of 1219 inhibitors
and 837 noninhibitors and an evaluation set of 100 inhibitors
and 100 noninhibitors. All data sets and corresponding
simplified molecular input line entry specifications (SMILES)
are available in the Supporting Information.
v-NN Method. The k-nearest neighbor (k-NN) method has

been widely used to develop QSAR models.25 This method
rests on the premise that compounds with similar structures
have similar activities. One difficulty with the k-NN method is
that it always gives a prediction for a compound based on a
constant number, k, of nearest neighbors regardless of the
dissimilarity between the query and reference compounds. To
correct for this shortcoming, we proposed a variable-nearest
neighbor (v-NN) method19 that uses all nearest neighbors that
meet a structural similarity criterion. When no nearest neighbor
meets the criterion, the v-NN method makes no prediction.
The predicted biological activity y is a weighted average across
structurally similar neighbors
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where di denotes the Tanimoto distance between a query
molecule for which a prediction is made and a molecule i of the
training set, yi is the experimentally measured activity value of
molecule i, v denotes the total number of molecules in the
training set that satisfy the condition di ≤ d0, h is a smoothing
factor that dampens the distance penalty, and d0 is a Tanimoto-
distance threshold beyond which two molecules are no longer
considered to be sufficiently similar to be included in the
average. The yi values were set to 1 for predicting Pgp
substrates or inhibitors and 0 for predicting nonsubstrates or
noninhibitors. The v-NN method has two adjustable
parameters that influence performance: the Tanimoto-distance
threshold d0 and the smoothing factor h. To identify
structurally similar compounds, we used Accelrys extended-

connectivity fingerprints with a diameter of four chemical
bonds (ECFP4).26 We wish to emphasize that h and d0 are
unique and that they need to be optimized for each set of
fingerprints. In this study, we tested the performance of three
frequently used fingerprints: ECFP, FCFP, and MDL Public
Keys.27 We have included the performance measures of v-NN
models that used different fingerprints in Tables S8 and S9. All
of the tested fingerprints allowed the v-NN model to perform
well on the data sets, with comparable results. For this study,
we chose the ECFP4 fingerprints that have previously been
reported by Duan et al.28 and Hert et al.29 to show the best
overall performance in retrieving the active compounds of
many diverse data sets.

Model Performance Measures. We used the following
metrics to measure the quality of the classification models
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TP TN

TP TN FP FN (4)
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−

−
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e
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where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively. κ is a metric for
assessing the quality of binary classifiers. Pr(e) is an estimate of
the probability of a correct prediction by chance.30 It is
calculated as

= + + + + +
+ + +

ePr( )
(TP FN)(TP FP) (FP TN)(TN FN)

(TP FN FP TN)2

(6)

Sensitivity is a measure of a model’s ability to correctly detect
true positives, whereas specificity measures a model’s ability to
detect true negatives. κ compares the probability of correct
predictions to the probability of correct predictions by chance.
Its value ranges from +1 (perfect agreement between model
prediction and experiment) to −1 (complete disagreement),
with 0 indicating no agreement beyond that expected by
chance.
We also calculated the coverage, which is defined as the

proportion of test molecules with at least one nearest neighbor
that exceeded the similarity criterion. The coverage is a measure
of how many test compounds are within the applicability
domain of a prediction model.
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