
General Purpose 2D and 3D Similarity Approach to Identify hERG
Blockers
Patric Schyman,* Ruifeng Liu, and Anders Wallqvist*

DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology
Research Center, U.S. Army Medical Research and Materiel Command, 2405 Whittier Drive, Frederick, Maryland 21702, United
States

*S Supporting Information

ABSTRACT: Screening compounds for human ether-a-̀go-go-related gene
(hERG) channel inhibition is an important component of early stage drug
development and assessment. In this study, we developed a high-confidence
(p-value < 0.01) hERG prediction model based on a combined two-
dimensional (2D) and three-dimensional (3D) modeling approach. We
developed a 3D similarity conformation approach (SCA) based on
examining a limited fixed number of pairwise 3D similarity scores between
a query molecule and a set of known hERG blockers. By combining 3D
SCA with 2D similarity ensemble approach (SEA) methods, we achieved a
maximum sensitivity in hERG inhibition prediction with an accuracy not
achieved by either method separately. The combined model achieved 69% sensitivity and 95% specificity on an independent
external data set. Further validation showed that the model correctly picked up documented hERG inhibition or interactions
among the Food and Drug Administration- approved drugs with the highest similarity scoreswith 18 of 20 correctly identified.
The combination of ascertaining 2D and 3D similarity of compounds allowed us to synergistically use 2D fingerprint matching
with 3D shape and chemical complementarity matching.

■ INTRODUCTION

Early assessment of absorption, distribution, metabolism,
elimination, and toxicity (ADMET) properties1,2 is an
important stepping stone in drug development. One of the
toxicology screens that compounds must pass during early
preclinical studies involves the human ether-a-̀go-go-related
gene (hERG), a potassium ion channel involved in the normal
cardiac repolarization activity of the heart.3 Drug-induced
blockade of the hERG function can cause long QT syndrome
and can lead to arrhythmia and death.4 Several experimental
techniques are available to assess the hERG function; the most
reliable being patch-clamp electrophysiological recording of the
K+ current.5 The use of these methods is not routinely
implemented in the early stages of drug design, and hence,
computational methods that can assess and accurately predict
hERG liabilities are of considerable interest.
Although the crystal structure of the hERG channel is not yet

known, it shares structural similarities with other voltage-gated
potassium (Kv) ion channel family members. Mutation
experiments have identified crucial residues for binding, e.g.,
two polar residues (Thr623 and Ser624) located in the base of
the channel and two hydrophobic residues (Tyr652 and
Phe656) in the S6 region.6 From the variety of different
molecules that interact with hERG and the different response
to site-directed mutation, it is clear that not all molecules bind
in the same region of the channel. Although structure-based
methods, e.g., molecular dynamics (MD) and docking
calculations using homology modeling of the hERG ion

channel7−9 have been used, it remains a challenge to develop
general and accurate prediction models based on detailed
molecular structure interactions.
Nonetheless, hERG blockers share common molecular

features, e.g., they often have (1) a positive ionizable center,
(2) a hydrophobic group, (3) a V-shaped geometry, (4) a
molecular weight of >250, and (5) a ClogP value of >1.10,11

This has resulted in the development of general purpose ligand-
based computational methods to predict hERG inhibition, e.g.,
quantitative structure activity relationships (QSARs), k nearest
neighbor (k-NN), support vector machine (SVM), random
forest (RF), and naive Bayesian classification (NBC).10,12,13

Although the best methods give accuracies in the range of 70%
to 90%, most of these studies use either small data sets or in-
house data sets that are not publicly available for training and/
or testing, which makes a fair comparison of the performance of
different methods impossible.
In this study, we developed a hERG prediction tool based on

3D similarity scores between multiple molecular conformations,
which we named the similarity conformation approach (SCA).
The SCA shares some resemblance to the 2D similarity
ensemble approach (SEA) introduced by Shoichet and co-
workers,14 which they originally used to relate proteins using
setwise 2D chemical similarity of their ligands. Here, we
compared 3D SCA and 2D SEA and combined them for
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optimal performance to identify hERG blockers. Although we
focused on hERG for this report, the method can easily be
applied to any protein with known inhibitors/substrates. The
aim was to create a robust computational tool that will predict
possible hERG blockers with high confidence and low false-
positive rates to ensure that we do not dismiss otherwise
perfectly acceptable drug candidates. It should be noted that
several drugs currently on the market do inhibit hERG as a
known side effect. The 3D SCA method predicted ∼60% of our
data set of hERG blockers with high confidence (p-value
<0.01), and a specificity of 99%, which in comparison with
other methods in the literature, is one of the highest specificity
values.15−21 The 3D SCA has advantages over 2D SEA as 3D
methods can identify molecules with different scaffolds with
similar shape and bioactivity.22 However, a complete
enumeration and coverage of conformational space is not
practical, and, hence, we combined the 3D SCA with 2D SEA
to achieve a sensitivity of 65% on the set of hERG blockers
used in model-building and 69% sensitivity on an external test
set.15 Furthermore, retraining of the SCA component is simple
and straightforward and does not include a molecular size-
dependent distribution analysis to determine parameters, as is
required by the 2D SEA method.

■ METHODS AND MATERIALS

hERG Data Sets.We retrieved 282 hERG blockers from the
work of Wang et al.,15 which includes data collected by Li et
al.23 and the Wombat-PK data set. Although other hERG data
are available, primarily high-throughput binding and functional
assay data in ChEMBL, we built our model based on hERG
inhibition IC50 values measured in primarily patch-clamp
electrophysiology assay using Chinese hamster ovary (CHO)
and human embryonic kidney (HEK) mammalian cell lines. We
chose an IC50 value of ≤10 μM as a cutoff value for hERG
blockers. This represents a practical and convenient choice for
early stage screening and assessment. In later stages of drug
discovery, one can use the therapeutic window to better select a
tolerable level of hERG inhibition. If a drug candidate is potent
at a low therapeutic dose, hERG inhibition may not be an issue
even if an in vitro assay classifies the active compound as a

hERG channel inhibitor. However, in early stages of drug
discovery, compound potency is typically not optimized, and
no reliable estimate of the therapeutic window exists. Most
published literature studies have adopted the 10 μM IC50 value
as a practical cutoff to use. All data sets are provided as
Supporting Information. In the absence of a large and
experimentally verified set of known non-hERG blockers, we
used 25 000 diverse and randomly chosen molecules obtained
from the National Cancer Institute (NCI). We selected the
diverse set of molecules from the NCI library using the
following procedure: (1) filtering the library contents to only
contain organic compounds, (2) stripping salts and standard-
izing charges and stereo representations, (3) protonating and
deprotonating acids and bases, respectively, (4) removing
duplicate structures, (5) removing structures with >10 rotatable
bonds and a molecular weight of <150 Da, and (6) selecting
25 000 organic molecules by structure dissimilarity based on
extended connectivity footprints (ECFP_4)24 and Tanimoto
similarity. Although this set will contain a small fraction of
hERG blockers, it avoids comingling data from, for example,
congeneric series that are typically provided in the literature
data, which tend to be associated with residual hERG activity
due to structural similarity to the active hERG blockers. If we
restricted the nonblocking data to these smaller data sets, we
could derive an accurate model but with a severely limited
applicability domain.25 Absence of hERG activity was assessed
from 400 known non-hERG blockers obtained from functional
assay data deposited in the ChEMBL database26 with an IC50

value of >10 μM.21

Additional Data Sets. An external test set of 120
molecules from Wang et al.15 was used for evaluation. At an
IC50 delimiter value of 10 μM, the data set consists of 54 hERG
blockers and 66 non-hERG blockers. The 120 hERG activity
data are collected from available IC50 measurements in the
literature using primary mammalian cell line data from HEK
and CHO. However, when mammalian data are not available,
nonmammalian cell lines such as Xenopus laevis oocytes are
included. As a further external validation, we used the known
drugs from Drug Bank,27 which, after removing hERG

Scheme 1. Flowchart of the 2D SEA and 3D SCA Procedure
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molecules included in our training set, yielded 1072 drug
molecules suitable for computational testing.
2D SEA Method. The SEA method is described elsewhere14

and is only briefly outlined here. The 2D SEA method relates a
query molecule with a set of known hERG blockers via 2D
Tanimoto similarity (Schematic 1). A raw score is calculated by
summing all the Tanimoto coefficients (Tcs) between the set of
query molecules and the set of hERG blockers. The raw score is
strongly dependent on the number of molecules in the two sets.
The size-independent z-score is calculated from the raw score
with the mean and standard deviation values that are modeled
as functions of the product of the ligand sets sizes. To
emphasize ligands with high similarity, a similarity cutoff value
is applied below which Tc values do not contribute to the raw
score. Varying the cutoff value and finding which z-score
distribution best fits to an extreme value distribution
determines the optimal cutoff value. In our study, we summed
all Tc values above the optimal cutoff value of 0.57 between a
query molecule and any hERG reference molecules to give a
total Tc (TTc). The higher the TTc value, the more likely it is
that the query is a hERG blocker. As molecular descriptors for
identifying structurally similar compounds, we used Accelrys
extended connectivity fingerprint within a diameter of four
chemical bonds (ECFP_4)24 and a bit size of 2048. The TTc
values are therefore dependent on the data set and the chosen
fingerprints.
3D SCA Method. Our 3D SCA method used the Tanimoto

combo score (TCS), which includes two terms: 3D structure
similarity (shape) and pharmacophore property similarity
(color) to calculate the 3D similarity and a summation of an
optimal fixed number of top TCSs, which gave a sum of TCS
(SumTCS).
By using a fixed number of similarity scores, we could

simplify the procedure to train our model compared with the
more extreme retraining required by the SEA. The primary
reason we did not implement a 3D SEA method is the
requirement of a large enough data set to be able to accurately
fit an extreme value distribution to the size dependent z-score
mean and standard deviation values. The currently available
hERG inhibition data did not allow us to make a reliable fit. In
order to overcome this issue, we instead developed the 3D SCA
method with a fixed number of similarity hits for each query.
We calculated the SCA conformational and similarity

calculations in the following manner: The query molecules
were represented by a set of multiple low-energy (<8 kcal/mol)
conformations and a root-mean-square distance of >0.8 Å to
avoid degenerate conformations. We calculated the similarity
score for all pairs between a set of query molecules and the set
of hERG reference molecules, including their conformations
(Schematic 1). We used OMEGA28,29 (Open Eye Scientific
Software, Santa Fe, New Mexico) to generate molecular
confirmations for both query and reference molecules with
the following parameters: number of maximal conformations
(maxconfs) 200, root-mean-square distance (rms) 0.8 Å,
maximum allowed conformational energy (ewindow) 8 kcal/
mol, maximal rotational bonds (maxrot) 10, and maximum
number of stereo centers ( f lipper_maxcenter) 4. This resulted
in large conformational data sets, e.g., the total number of
conformations for the 282 hERG blockers were 10 377, and
roughly one million for the 25 000 random molecules.
Although we used multiple conformations to represent each
molecule, the number of conformations that we can practically
include imposes a limitation of 3D structure similarity
approaches. As any discretization of conformational space is
limited, we could potentially classify two similar molecules as
dissimilar if their conformations do not match within the
chosen discretization scheme. It should be noted that we did
considered chirality in the 3D SCA method. If chirality of an
input structure was given, only conformers of the specific
chirality were generated. If chirality of an input structure was
not given, conformers of all possible chirality were generated.
We used Rapid Overlay of Chemical Structures (ROCS)30,31

software to perform the 3D alignment based on shape and
chemical similarity. ROCS compares the set of queries with the
hERG reference molecules and returns a TCS value between 0
and 2. If the score is 2, both the molecular shape and the
chemical property match; if the score is 0, there is no shape or
chemical property match. These calculations are very fast for a
few molecules, but for our exhaustive conformational
calculations the number of overlay calculations are substantial,
e.g., approximately 10 billion overlay calculations are needed for
evaluating the diverse set of 25 000 molecules for potential
hERG blockers.
We performed two steps to find the optimal sum. The first

step was to run a 3D similarity test using a diverse set of 25 000
molecules from NCI as query molecules to determine the

Figure 1. 3D similarity score distribution. The distribution of scores was derived from analyzing a large and diverse set of 25000 query molecules
based on similarity to 282 known reference hERG blockers. The p-value 0.01 is marked in the figure where 99% of the queries have a SumTCS value
of < 5.47. NCI, National Cancer Institute; SumTCS, sum of Tanimoto combo score.
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SumTCS value that corresponds to a p-value of 0.01. Figure 1
shows the distribution for a diverse set of randomly selected
molecules with the SumTCS of the four highest similarity
scores. In the second step, we used the SumTCS value to
determine how many correctly identified hERG blockers
(sensitivity) we found using a 5-fold cross-validation on our
set of hERG blockers. Figure 2 shows the sensitivity when we
varied the number of top scores summed ranging from 1 to the
top 50 scores. The corresponding specificity values were 99% if
we considered that all random molecules are non-hERG
blockers, which is an exaggeration, since most likely a small
fraction of the randomly selected molecules are in fact hERG
blockers. The best performance occurred when adding four or
five top similarity scores. In this study, we chose the sum of
four, which corresponds to a SumTCS cutoff value of 5.47. It is
noteworthy that by just including the best similarity score the
sensitivity was still good (0.59), and that after using >5 values
in the summation, the sensitivity declined (<0.59). The
requirement of adding four scores implies that we need a
minimum of four high-scoring conformations for a positive hit.
The procedure maximized the true positive hits by reducing the
average pairwise similarity score required to maintain a p-value
of <0.01.
Model Performance Measures. We used the following

metrics to measure the quality of the classification models:

=
+

sensitivity
TP

TP FN (1)

=
+

specificity
TN

FP TN (2)

= +
+ + +

accuracy
TP TN

TP TN FP FN (3)

=
−

−
kappa

accuracy Pr(e)
1 Pr(e) (4)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. Kappa is a metric for
assessing the quality of binary classifiers,32 and Pr(e) is an
estimate of the probability of a correct prediction by chance. It
is calculated as

= + + + + +
+ + +

Pr(e)
(TP FN)(TP FP) (FP TN)(TN FN)

(TP TN FP TN)2

(5)

The sensitivity is a measure of the model’s ability to correctly
detect true positive and the specificity measures the model’s
ability to detect true negative. Kappa compares the probability
of correct predictions to the probability of correct predictions
by chance. Its values range from +1 (perfect agreement
between model prediction and experiment) to −1 (complete
disagreement), with 0 indicating no agreement beyond that
expected by chance.

■ RESULTS AND DISCUSSION
2D Similarity Ensemble Approach Applied to hERG. In

the 2D SEA method, we summed all similarity coefficients
>0.57 for each query that is similar to any of the hERG
reference molecules (the ensemble). The basic idea is that a
query that shows similarity with several hERG reference
molecules is more likely to be a hERG blocker than a query
with just one similar reference molecule, however, that is not
always necessarily true.
Table 1 shows the 2D results from the data set containing

282 known hERG inhibitors with IC50 values ≤10 μM and a

test set of 400 molecules with IC50 values >10 μM. It should be
noted that several of the inactive molecules are structurally
similar to some of the potent hERG inhibitors, and hence, they
tend to have some IC50 activity and could be classified as weak
hERG inhibitors. As discussed in the Methods and Materials
section, use of the existing small data sets for non-hERG
blockers would severely limit the applicable chemical space for
predicting possible nonblockers.
To evaluate the 2D SEA model performance on the data set,

we used 5-fold cross-validation by randomly dividing the data

Figure 2. Optimizing the sensitivity. The true positive ratio (sensitivity) of hERG blockers based on including increasing numbers of highest
Tanimoto combo scores.

Table 1. Number of Predicted hERG Blockers (Sensitivity)
Compared with a Set of Nonblockers and a Set of 25 000
Diverse Molecules

data set 2D SEA 3D SCA 2D SEA + 3D SCA

blockers 143 (50.7%) 165 (58.5%) 182 (64.5%)
nonblockers 18 (4.5%) 38 (9.5%) 40 (10.0%)
diverse molecules 28 (0.1%) 226 (1.0%) 230 (1.0%)
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set into five equal-sized groups, where four groups were used as
a training set and the fifth group as a test set of hERG blockers.
The process was repeated five times. The goal of our hERG
model was to predict potential hERG blockers with high
confidence.
The 2D SEA method correctly identified 51% of the hERG

blockers (true positives), while only 5% of the nonblockers
were incorrectly identified as blockers (false positives). We also
examined a diverse set of 25 000 molecules, and the 2D SEA
method identified <1% as potential hERG blockers, reaffirming
the high specificity of the model.
3D Similarity Conformation Approach Applied to

hERG. The developed 3D SCA is a variety of the similarity
ensemble approach developed by Shoichet and co-workers.14

While the method shares similarities with other approaches that
use multiple conformations to represent reference and query
molecules, here we combined it with an optimized sum of
similarity scores (Figure 2). Each hERG blocker in the
reference data set was represented by multiple low-energy
(<8 kcal/mol) conformations. In the same manner, a set of
multiple conformations was generated for each query molecule.
The top four TCSs were summed to yield a SumTCS value for
each query and all reference molecules. If the sum exceeded
5.47, the query was classified as a hERG blocker, which
corresponds to a p-value <0.01 (see Methods and Materials).
To test the 3D SCA performance, we used a similar 5-fold

cross-validation procedure on the same data set that we used
for the 2D SEA (Table 1). Figure 3 shows the SumTCS
distributions for a set of hERG blockers (<10 μM) and a set of
400 non-hERG blockers (>10 μM) compared with a set of
random molecules. The hERG distribution can be distinguished
from the random distribution with 59% of the hERG blockers
having a p-value of <0.01. The set of nonblockers overlap more

with the diverse set but have a right tail indicating that there are
some molecules that share similarity with hERG blockers. This
is due to the set of 400 nonblockers containing roughly 10% of
compounds that are structurally similar to the set of hERG
blockers but do not meet the experimental criteria of <10 μM
for being an inhibitor.
To compare the 3D SCA method with the 2D SEA, we used

the set of 400 non-hERG blockers as negatives and the set of
282 hERG blockers as positives. Table 2 shows the overall

accuracy, sensitivity, and kappa value for the 2D and 3D
methods. The accuracy and kappa values are similar for both
methods, showing that 2D SEA and 3D SCA could accurately
predict potential hERG blockers. However, there was a
noticeable difference in the increased sensitivity (true positive)
to 59% for the 3D method, compared with 51% for the 2D
SEA.

Understanding and Analyzing 2D and 3D Differences.
At first glance, it seems as though the 2D and 3D performances
are very similar, but the overall performance hides important
detailed differences. To highlight these differences, we first
created one cluster of all hERG blockers based on maximal
dissimilarity where molecules near the center of the cluster have
high similarity and molecules far away from the center have low
similarity. We then selected 50% of the hERG blockers that are

Figure 3. 3D similarity distribution of a set of random molecules compared with hERG blockers (top) and non-hERG blockers (bottom).

Table 2. Method Performance on a Test Set of 282 hERG
Blockers and 400 Non-hERG Blockers

method accuracy sensitivity specificity kappa

2D SEA 77% 51% 96% 0.49
3D SCA 77% 59% 91% 0.51
2D SEA + 3D SCA 79% 65% 90% 0.56
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structurally most similar to the cluster center as our high-
similarity compounds. We then removed the next 25% most
structurally similar hERG blockers and kept the remaining 25%
as a low-similarity test set. The latter set contained the
structurally most dissimilar molecules compared with the
cluster center. Figure 4 shows the different regions with

molecules with high similarity in the center and low similarity
in the outer region. We then used the two data sets of the
center and outer region to study differences of the 2D versus
3D similarity approaches, as summarized in Table 3.

The predicted sensitivities with the 2D and 3D methods for
the center region were similar, 50% and 52%, respectively,
when using 5-fold cross-validation. However, the 2D and 3D
methods identified different compounds, and by combining the
two results, the sensitivity increased to 60%. Approximately
70% of the high-similarity compounds were predicted by both
methods, indicating that ∼30% of the hERG blockers are
uniquely identified in either the 2D or 3D method.
The difference between the 2D and 3D approaches becomes

more noticeable when predicting the molecules in the outer
region, using the compounds in the center high-similarity
region as reference molecules. The 2D SEA correctly identified
10%, while the 3D SCA identified 23% of the low-similarity
compounds. Eighty-six percent of the compounds detected by
the 2D method were also found by our 3D SCA method. This
shows the strength of using 3D over 2D similarity matching, in
that it can detect compounds that do not necessarily have
similar molecular scaffolds but have similar overall chemical
structures.
Figures 5 and 6 show examples of query molecules that have

high 3D similarity scores but low 2D similarity scores. The

query molecule B103 in Figure 5 had a low 2D fingerprint
similarity score with the best-matching hERG reference
molecule (B219) as their scaffold. Although these were quite
different, the 3D shape matched and gave a high 3D similarity
score, as can be seen in the 3D molecular overlay. Figure 6
shows another example, where the B114 query molecule was
best matched with the reference molecule B98. The major
difference was that B114 had a 1-methylpiperidine group,
whereas the B98 had a trimethylamine. This change resulted in
a low 2D similarity score as the atom types differ, but as can be
seen in the 3D overlay picture the volumes of these two
compounds were almost the same. In these two examples, the
2D similarity score failed to pass the 0.57 Tc cutoff, but the 3D
SCA method identified these as positive hits, which used the
sum of four conformational overlap scores that met the
SumTCS cutoff of 5.47. These examples highlighted differences
between 2D and 3D similarity matching and pointed toward
the possibility of combining the methods.

Combined 2D SEA and 3D SCA Model Applied on
hERG. Based on these results, we combined our 2D and 3D
methods to increase the sensitivity without sacrificing the
overall performance of the 3D SCA method. Tables 1, 2, and 3

Figure 4. Schematic of the 2D similarity distribution relative to the
cluster center (high similarity) and to the outer region with most
dissimilar compounds (low similarity).

Table 3. Calculated Sensitivities in Center and Outer Region
for Different Methods

predicting hERG 2D SEA 3D SCA 2D SEA + 3D SCA

high-similarity compounds
(center region)

50% 52% 60%

low-similarity compounds
(outer region)

10% 23% 24%

Figure 5. Example of 2D versus 3D similarity matching. In spite of low
2D fingerprint similarity between the query (B103) and the reference
molecule (B219) they have high 3D chemical similarity in space and
atom type overlap for certain conformations, as seen from the overlay
picture.

Figure 6. Example of 2D versus 3D similarity matching. The 2D
fingerprint similarity between the query (B114) molecule and
reference molecule (B98) is low with the major difference being
that the B114 had a 1-methylpiperidine group where the B98 had a
trimethylamine. This difference still gave a high 3D similarity score, as
the volumes of these two compounds were almost the same.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.5b00616
J. Chem. Inf. Model. 2016, 56, 213−222

218

http://dx.doi.org/10.1021/acs.jcim.5b00616


show the results from the combined 2D and 3D methods for
identifying hERG blockers and the overall improvement of the
predictions. We observed the greatest improvement in the
calculated sensitivity when combining 2D SEA and 3D SCA,
which increased from 59% to 65%. At the same time, we did
not significantly increase the false positives for the data set of
non-hERG blockers or for the diverse data set. The overall
accuracy, sensitivity, and kappa value for the combined 2D SEA
and 3D SCA method were 79%, 65%, and 0.56, respectively.
These results showed that combining 2D SEA and 3D SCA
approaches improved the prediction of hERG blockers.
External Test Set. It is almost impossible to make an

accurate and impartial comparison between methods as there
are many variables involved, such as which IC50 value was used
to select hERG blockers and nonblockers for the training set. In
an effort to qualitatively compare our 3D SCA method with
another method, we chose a test set from Wang et al.,15 which
they use to assess their Bayesian classifier model based on
molecular properties and the ECFP_8 fingerprints. We
removed any molecules from our set of hERG blockers that
also appeared in this test set. Table 4 shows the comparison of
specificity and sensitivity between the different methods with
an IC50 threshold value for hERG blockers at 10 μM.

The 2D SEA and 3D SCA methods gave lower sensitivity
values of 61% and 64%, respectively, compared to 70% for the
Bayesian classifier model. On the contrary, 2D SEA and 3D
SCA methods gave much higher specificity values of 98% and
97%, respectively, than the corresponding specificity of 88%
reported for the Bayesian classifier model. By combining the
2D SEA and 3D SCA methods, the sensitivity increased in the
same manner as we previously observed−to 69% while
maintaining a high of 95% specificity. The combined 2D SEA
and 3D SCA sensitivity was on par with the result of Bayesian
classifier model, but with an improved specificity.

Test on Known Drugs. In one of our tests, we reviewed
1150 drug molecules that are currently on the market. Although
the majority of drug molecules do not inhibit hERG, there are
several drugs that are known potent hERG blockers, e.g.,
Verapamil and Quinidine, and some of them were included in
our data set as hERG blockers. We therefore removed any
duplicates from the drug set, leaving 1072 drugs. We used the
drug data set as our query molecules to test for potential hERG
blockers. From the 1072 drugs, 73 (6.8%) were identified as
hERG blockers with the 2D SEA, 134 (12.5%) with the 3D
SCA, and 142 (13.2%) for the combined 2D SEA and 3D SCA
method were identified as potential hERG blockers. Figure 7
shows the similarity distribution for the drug molecules
compared with the random distribution. The distribution is
similar to the distribution for the nonblockers with a tail to the
right indicating that there are some molecules that are similar to
the hERG blockers. In fact, many of the 142 drugs predicted to
be hERG blockers are known in the literature to interact with
the hERG ion channel, but with limited toxicity. We performed
a literature search for references regarding hERG inhibition to
evaluate our method and to test if the drugs predicted to be
hERG blockers were correctly identified. Table 5 shows the 20
drugs that are most likely to interact with hERG based on their
2D and 3D similarity scores, for which we found literature
support for 18 of 20 (90%) of them being hERG blockers.
Among the 20 drugs, there are 5 groups with similar structures
with up to 4 members.
Reasons why hERG inhibition might be acceptable in a drug

include the following: (1) the potency of the drug to the
primary target is much higher and therefore will not severely
interfere with hERG at a low level of concentration, (2) there is
evidence that if a drug is interacting with multiple ion channels
the toxic effect of hERG inhibition becomes less pronounced,50

and (3) the benefit of the drug is greater than the potential risk
of incurring long QT syndrome.
It is worthwhile noting that in some cases it is the

metabolites of a drug that are responsible for in vivo hERG
inhibition. Our prediction models were developed using in vitro
cell-based assays that do not include appreciable amounts of
metabolizing enzymes to allow for drug metabolism. For
studies of pro-drugs, i.e., drugs that needs to be metabolized to
become active, or drugs that are extensively metabolized in
vivo, the actual structure of the metabolites are required as an
input to our model to make any assessment of potential hERG

Table 4. Calculated Sensitivities and Specificities on an
External Test Set

method sensitivity specificity

2D SEA 61% 98%
3D SCA 64% 97%
2D SEA + 3D SCA 69% 95%
Bayesian classifier15 70% 88%

Figure 7. 3D similarity distribution of a set of random molecules compared with FDA-approved drug molecules.
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liabilities. This is not a limitation of our method per se and if a
user has inhibition data for any metabolites these can easily be
added to the reference data set.

■ CONCLUSIONS
We have developed a 3D SCA method that classifies an
inhibitor or blocker based on the sum of an optimal number of
the highest 3D similarity scores between conformations of a set
of known reference ligands and a set of query ligands. We
implemented the 3D SCA method for the potassium ion
channel, hERG, as a drug target to predict potential hERG

inhibitors. The benefit of the 3D SCA method over 2D
similarity approaches was that it could make reliable predictions
for compounds that lack 2D fingerprint similarity but share
shape and chemical similarity with the training set, i.e., it can
make predictions for novel chemical scaffolds. Although our 3D
SCA method correctly predicted more hERG blockers than 2D
SEA, combining the two approaches enhanced overall perform-
ance and, in particular, improved the sensitivity of the model.
The 3D SCA method is easily implemented, requiring only a
training set of known ligands that affect the protein target.
Furthermore, the 3D SCA itself requires little training when

Table 5. Top 20 Drugs Predicted to Be hERG Blockers Based on 2D SEA and 3D SCA

aB = blocker. bN = nonblocker.
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new data become available, which is crucial for maintaining a
model with high coverage.51,52

Complex molecular targets such as channels, receptors, and
other multicomponent macromolecular assemblies typically
have multiple binding sites that can affect their function. Given
that we do not have detailed structural information about these
structures, chemical similarity remains the key principle for
developing high-throughput methods to assess chemicals
against these target classes. Because the 3D SCA method
captures both structural shape and chemical similarity, it has the
capabilities to detect similarities not encoded in 2D approaches.
Limitations with using rapid enumeration of conformations
instead of comprehensive sampling techniques imply that
combining 2D and 3D methods provides a practical means to
develop both highly sensitive and specific models for complex
ADMET end points.
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