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Abstract

Quantitatively predicting changes in drug sensitivity associated with residue mutations is a major challenge in structural
biology. By expanding the limits of free energy calculations, we successfully identified mutations in influenza neuraminidase
(NA) that confer drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD)
with Hamiltonian Replica Exchange and calculated binding free energy changes for H274Y, N294S, and Y252H mutants.
Based on experimental data, our calculations achieved high accuracy and precision compared with results from established
computational methods. Analysis of 15 ms of aggregated MD trajectories provided insights into the molecular mechanisms
underlying drug resistance that are at odds with current interpretations of the crystallographic data. Contrary to the notion
that resistance is caused by mutant-induced changes in hydrophobicity of the binding pocket, our simulations showed that
drug resistance mutations in NA led to subtle rearrangements in the protein structure and its dynamics that together alter
the active-site electrostatic environment and modulate inhibitor binding. Importantly, different mutations confer resistance
through different conformational changes, suggesting that a generalized mechanism for NA drug resistance is unlikely.
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Introduction

Current plans for managing future influenza pandemics include

the use of therapeutic and prophylactic drugs, such as zanamivir

[1] and oseltamivir [2], that target the virus surface glycoprotein

neuraminidase (NA) [3]. Inhibition of NA reduces the spread of

the virus in the respiratory tract by interfering with the release of

progeny virions from infected host cells. A handful of drug-

resistant strains have recently emerged due to antigenic drift

[4,5,6]. NA in these strains contains a series of mutations that do

not significantly alter its function, yet render it resistant to

inhibition. These mutations lead to a small (1–3 kcal/mol)

decrease in the high-affinity binding of these inhibitors that is

sufficient to restore in vivo viral propagation. Understanding how

different NA mutations confer drug resistance is a critical step in

discovering new drugs to safeguard against future influenza

pandemics.

NAs from different influenza subtypes exhibit a variety of

resistance mutations and these mutations can affect inhibitors

differently. For example, the R292K mutation in N2 NAs confers

resistance to oseltamivir [7], but in highly similar N1 NAs such

mutation remains drug sensitive [8]. These and other complex

patterns of resistance can only be explained by the interactions

between the binding site and the inhibitors. Previous biochemical

[9] and structural studies [10] have implicated the rearrangement

of certain binding-site residues as the mechanism of drug

resistance in NA. For example, bulky substitutions at H274 result

in a conformational shift of the neighboring E276, which alters a

hydrophobic pocket that specifically disrupts oseltamivir binding.

While such structure-based explanations are plausible, a critical

evaluation of these hypotheses requires atomic-scale models that

accurately reflect the microscopic structural mechanisms guiding

NA-inhibitor interactions.

X-ray crystallography provides high-resolution structures of

NA-inhibitor complexes. Although such structures are vital to our

understanding of NA-inhibitor interactions, the atomic coordi-

nates themselves lend little direct insight into the underlying

thermodynamics of drug resistance. There are numerous examples

of crystal structures of proteins with drug resistance mutations,

such as of HIV-1 protease [11], that show only minor structural

differences when compared to the drug-sensitive wild type (WT)

structure and do not reveal any readily apparent mechanism of

resistance. Numerous drug resistance mutations in NA fall outside

of the immediate binding pocket, and structures of the drug-

resistant H274Y and N294S mutants co-crystallized with oselta-

mivir and zanamivir reveal binding-site conformations that are

virtually identical to WT [10]. Molecular simulations that

rigorously model the microscopic structure and thermodynamics
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[12,13,14] of NA-inhibitor interactions may provide insight into

the mechanisms of drug resistance that elude traditional structure-

based approaches.

Accurately modeling the thermodynamic consequences of

mutations that alter protein function, such as in drug resistance,

is a major challenge in structural biology. The change in binding

free energy associated with a drug resistance mutation is a result of

systemic shifts across the totality of structural conformations that

impact which biochemical interactions are accessible in the wild-

type and the mutant protein systems. Due to the staggering

conformational complexity of a protein-inhibitor complex, direct

and exhaustive modeling of this entire system is computationally

unfeasible. To overcome such difficulties, two types of approaches

for predicting free-energy changes from point mutations have been

developed: empirical approaches, which apply highly trained score

functions that approximate the free energy of a given structure,

and simulation-based approaches, which combine extensive

stochastic sampling with statistical mechanics-based calculations

to estimate free energies. These approaches have been reviewed

extensively elsewhere [15,16,17].

While empirical approaches have been moderately successful at

identifying mutations along interfacial residues that disrupt

binding, they fail to identify the numerous mutations outside of

the interface where the effects are presumably smaller [18]. Even

the most rigorous simulation-based methods currently available,

such as Thermodynamic Integration (TI) and the closely related

Free Energy Perturbation (FEP) [12,13,19,20,21,22], may lack the

accuracy and precision to assess small changes to otherwise large

binding free energies. These methods, which, in theory, should

capture the thermodynamic effects of protein mutations, have

been applied to compute absolute binding free energies of several

small molecules to wild type and mutant enzymes, including T4

lysozyme and NA [23,24,25,26]. However, straightforward

applications of these techniques to large, complex systems are

hampered by significant sampling issues. These issues are

particularly severe in systems with hindered conformational

transitions associated with ligand binding, which often render

the resulting absolute binding free energy calculations unreliable

[27,28,29,30]. Conventional methods for calculating relative

binding free energies across a series of related compounds avoid

many of the sampling issues associated with absolute binding free

energy calculations [31], however, they are typically not directly

applicable to assessing the effects of mutations on binding of the

same compound.

Successful modeling of the thermodynamics of large, complex

systems, such as NA, requires careful selection of both the

conformational sampling strategy and the appropriate reference

states in order to obtain precise and accurate estimates of free

energy changes. We recently described a novel implementation of

the Hamiltonian Replica Exchange (HREX) molecular dynamics

(MD) method [31] that uses an alchemical thermodynamic

pathway to arrive at reliable free energy calculations. Here, we

adapted this approach to incorporate residue mutations into the

thermodynamic cycle. Instead of estimating changes of binding

free energies of different compounds with respect to the same

protein, we estimated free energy changes for mutating a residue

in the bound and unbound wild type protein. We applied this

method to several such pathways to predict the binding free energy

changes (DDG) of a set of mutations in H5N1 NA that have been

experimentally tested for drug resistance. We successfully identi-

fied drug resistance mutations in NA using a judiciously chosen

thermodynamic path within the HREX framework.

For this work, we adapted the criterion introduced by

Kortemme et al. [32] to classify a mutation as drug resistant

when its calculated DDG exceeded +1 kcal/mol. Based on this

criterion, the experimentally observed NA mutations N294S,

H274Y, and Y252H reveal different resistance patterns with

respect to oseltamivir and zanamivir [10]. We explored the

capabilities of our approach and alternate ones, including those

from previously published work [33,34], to produce accurate and

precise DDG estimates consistent with the experimental data [10].

Analysis of over 15 ms of aggregate MD simulation data

revealed that different mutations confer resistance through

different conformational changes in the active site. Unexpectedly,

we found no evidence supporting the previously reported role of

hydrophobic interactions with the oseltamivir tail [10]. Instead, we

hypothesize that drug resistance arises from rearrangements of

several charged residues that alter the electrostatic environment

within the binding site and disrupt inhibitor binding. The

complexity of the observed structural perturbations highlights

the importance of atomic-level structural details and suggests that

identification of a generalized theory of resistance is unlikely.

Results/Discussion

Binding free energy changes
We computed relative instead of absolute binding free energy

changes using Single Reference Thermodynamic Integration

(SRTI) [31]. Computing relative DDGs requires measuring the

free energy change along an alchemical thermodynamic path

linking the WT to the mutant protein for the ligand-bound and

ligand-free states independently, which requires only a partial

‘decoupling’ of the mutating residues and/or ligand along that

alchemical path. In contrast, absolute DDG computations entail

measuring the free energy change along an alchemical thermo-

dynamic path connecting the ligand-bound and ligand-free states,

which requires a complete decoupling of the ligand from the

protein [35]. Previous MD simulations of NA [36,37] revealed

substantial binding-induced conformational changes along a 150-

residue loop. A complete decoupling of the ligand [25] would

necessitate extensive sampling of this large conformational

transition, making reliable free energy predictions practically

Author Summary

The capacity of the influenza virus to rapidly mutate and
render resistance to a handful of FDA approved neuramin-
idase (NA) inhibitors represents a significant human health
concern. To gain an atomic-level understanding of the
mechanisms behind drug resistance, we applied a novel
computational approach to characterize resistant NA
mutations. These results are comparable in accuracy and
precision with the best experimental measurements
presently available. To the best of our knowledge, this is
the first time that a rigorous computational method has
attained the level of certainty needed to predict subtle
changes in binding free energies conferred by mutations.
Analysis of our simulation data provided a thorough
description of the thermodynamics of the binding process
for different NA-inhibitor complexes, with findings that in
some cases challenge current views based on interpreta-
tions of the crystallographic data. While we did not find a
generalized mechanism of NA resistance, we identified key
differences between oseltamivir and zanamivir that
discriminate their responses to the three mutations we
considered, namely H274Y, N294S and Y252H. It is worth
noting that our approach can be broadly applied to
predict resistant mutations to existing and newly devel-
oped drugs in other important drug targets.

Binding Affinity Predictions in Neuraminidases

PLOS Computational Biology | www.ploscompbiol.org 2 August 2012 | Volume 8 | Issue 8 | e1002665



impossible. By avoiding the need to explicitly model this binding-

induced conformational change, the relative SRTI approach is

better suited for DDG calculations for NA.

DDG calculations using SRTI. We estimated differences in

the binding free energies of two ligands with four NA proteins

(three mutants and one WT). To calculate DDGs, we constructed a

set of alchemical thermodynamic paths that pass through a

common unphysical reference state (RS) shared by all four

proteins and both ligands (Fig. 1A). This RS ‘hub’ allowed us to

thermodynamically link the binding free energy changes for all the

protein/ligand combinations simultaneously, yielding the least

computationally expensive set of simulations. In order to minimize

perturbations along the alchemical paths, we constructed a RS

that resulted in decoupling of only the regions of the mutating

residues not shared by both residue types and regions of the ligand

not shared by both inhibitors. This was done by replacing the

mutating residues with unphysical ‘‘pseudo’’ residues in the RS

protein and replacing the inhibitor with an unphysical pseudo-

ligand derived from the shared inhibitor scaffold in the RS ligand

(further details provided in Supporting Information [SI] Section

1e). We refer to these calculations as the single-reference multiple

mutants (SRMM) approach. Table 1 summarizes the computed

DDGs relative to the WT for each inhibitor using SRMM with

standard MD. For all drug/mutant combinations, the results

showed low accuracy and low precision with an overall root mean

squared (RMS) error and RMS standard deviation of 4.2 kcal/

mol and 7.4 kcal/mol, respectively, and failed to reproduce

experimental observations with any certainty. Structural analysis

of these simulations showed that the large standard deviations

resulted from significant perturbations to the ligand pose that were

mainly due to the decoupling of the flexible tail of the ligand in the

RS.

While the SRMM approach minimized the number of

simulations needed to calculate DDGs, the relatively high degree

of decoupling associated with a single common RS undermined its

accuracy. To reduce the uncertainty in DDG predictions, we

constructed a set of alchemical thermodynamic paths that

minimized the degree of decoupling in the unphysical reference

states. This entailed constructing independent thermodynamic

paths that connected mutant and WT proteins through reference

states specific to each mutation and ligand (Fig. 1B). In these

alchemical paths, only the single mutating residue was partially

decoupled by using a reference state in which the mutating residue

was represented by a pseudo-residue while all the other residues

and the ligand remained fully physical. We refer to these

simulations as the single reference single mutant (SRSM)

approach. While this approach minimizes the extent of decoupling

in the respective reference states, it effectively requires 50% more

computational resources than the SRMM approach.

Table 1 lists the DDG estimates from the SRSM calculations

using standard MD, which showed an overall RMS error and

standard deviation of 1.5 kcal/mol and 2.2 kcal/mol, respectively.

This represents a substantial improvement over the SRMM

results. To test whether enhanced sampling with the SRSM

approach would further improve the binding energy predictions,

we augmented the SRSM calculations with HREX MD (SRSM/

HREX). In five out of the six cases, the SRSM/HREX

simulations correctly identified drug resistance mutations using

our pre-defined criterion. Table 1 shows that this approach

substantially improved the overall accuracy and precision of the

predictions despite still being unable to capture the increased

sensitivity of Y252H to oseltamivir.

The SRSM/HREX calculations reached a chemical accuracy

of one kcal/mol and identified drug resistant mutants for both

zanamivir and oseltamivir with high certainty. In agreement with

experiments, SRSM/HREX predicted that Y252H shows no

resistance to both inhibitors, N294S confers resistance to both

inhibitors, and that H274Y confers resistance to oseltamivir.

However, SRSM/HREX incorrectly classified H274Y as resistant

to zanamivir. Overall, our binding free energy calculations

constitute a clear advancement over previously published results

using more approximate and less computationally intensive

approaches [33,34,36].

Comparison with alternate methods for calculating

DDG. In order to directly compare alternate methods with the

more rigorous and computationally expensive SRTI, we calculat-

ed binding free energies changes using the Molecular Mechanics -

Poisson Boltzmann Surface Area (MM-PBSA) and Generalized

Born Surface Area (MM-GBSA) approaches [14,38] (see Materials

and Methods). Table 1 provides a summary of the resulting DDG

calculations. Overall, the predictions from MM-PBSA/GBSA

were significantly less accurate than those from the SRTI

simulations, with an RMS error of 4.8 kcal/mol and 5.0 kcal/

mol for MM-GBSA and MM-PBSA, respectively, and standard

Figure 1. Alchemical thermodynamic paths using SRMM (A) and SRSM (B) in the bound state between wild type (wt) and a mutant
(mut1). The paths (arrows) between end states (squares) going through nonphysical reference states (ovals) are shown. The SRMM uses a common
reference state ‘hub’ for all mutations and ligands (RS1*2*3* L*); SRSM uses a mutation and ligand-specific reference state (RS1* LX). Decoupled residues
and ligands are noted by an ‘*’. Thermodynamic paths in the unbound state have a similar form but without the ligand.
doi:10.1371/journal.pcbi.1002665.g001
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deviations of 4.6 kcal/mol in both cases. Previous studies using

MM-GBSA, MM-PBSA, or Linear Interaction Energy (LIE)

methods for oseltamivir and zanamivir binding to H274Y and

N294S mutants have shown qualitative agreement with experi-

mental data but with relatively low quantitative accuracy

[33,34,39,40].

The Rosetta procedure for estimating DDG (see Materials and

Methods) was the least computationally expensive approach to

predicting binding free energy changes. Our results show that

although the Rosetta predictions had low standard deviations, it

was unable to accurately predict the effect of any of the three

mutations. Previous studies in a benchmark set of protein-protein

interactions [41] have shown that the Rosetta approach is not

well-suited to modeling mutations located beyond the immediate

interface [18].

In summary, we present a series of SRTI simulations that

gradually improved in accuracy and precision, with the SRSM/

HREX simulations producing the best estimates of DDGs. This

was a substantial improvement upon our initial SRMM approach

and underscores the need for careful consideration in the choice of

simulation techniques and thermodynamic paths in order to

achieve the best results. In contrast, both MM-PBSA/GBSA and

Rosetta failed to accurately predict the mutations that confer drug

resistance. Ultimately, the goal of the MD simulations was to

generate a thermodynamically accurate, atomic-scale model of

NA-inhibitor interactions. Our derivation of DDGs using the

SRSM/HREX simulations agreed well with experimental values,

suggesting that we succeeded toward that end. Thus, we

proceeded to carry out structural analyses of the composite

simulation trajectories to identify the microscopic mechanisms

underlying the observed free energy differences.

Identifying key NA-inhibitor interactions. To identify

which residues play a major role in NA-inhibitor interactions,

we separately analyzed the composite WT trajectories of NA

bound to zanamivir and oseltamivir. Since SRTI does not

partition the computed free energy into the contribution from

each residue, we used the average residue energies from the MM-

GBSA calculations to quantify the energetic contribution of the

residues in the binding pocket (Table S1). For residues that showed

significant contribution to the binding energy, we calculated

distance distributions for the inhibitor and neighboring residues to

identify any systematic changes in biochemical interactions at the

binding site. Further discussion is provided in SI Section 2. In

addition, Fig. S3 in Text S1 shows an interaction map derived

from these data for both zanamivir and oseltamivir and Fig. 2

shows representative structures for both inhibitor complexes.

Molecular origins of drug resistance
Determining the molecular mechanisms of NA drug resistance

involves identifying key protein structural features that underlie

the thermodynamic differences in inhibitor binding observed in

the simulation data. Such features may include changes in

biochemical interactions in the NA-inhibitor complex, systematic

shifts in the NA structure, and even subtle differences in the overall

dynamics between WT and drug-resistant NA. A visual compar-

ison between the crystal structures of NA in complex with

zanamivir and oseltamivir revealed few apparent differences in

NA-inhibitor interactions. Therefore, we analyzed the structural

data derived from the SRSM/HREX simulations in order to

identify reliable structural differences between WT and drug-

resistant mutant trajectories.

Fig. 2 illustrates representative structures from the WT and

drug-resistant mutant trajectories for zanamivir and oseltamivir,

confirming the x-ray crystallography findings that the most

prominent binding interactions are preserved. The negatively

charged carboxyl group of both inhibitors maintained interactions

with a basic triad formed by R118, R292, and R371. The

positively charged ammonium and guanidinium groups of

oseltamivir and zanamivir, respectively, maintained salt-bridges

with the acidic E119, D151, and E227 residues (E227 is not

displayed in Fig. 2 for purposes of clarity). Finally, the polar tail of

zanamivir maintained some of the hydrogen bonds with R224,

E276, and E277 in both WT and mutant forms. The long-range

nature of these electrostatic interactions and the highly flexible

nature of the binding site suggest that NA-inhibitor binding is

highly sensitive to subtle, systematic rearrangements of the

electrostatic environment caused by mutations beyond the

immediate binding site. Our analysis identified several such

rearrangements that may be critical to drug resistance.

The H274Y mutant. The SRSM/HREX simulations of the

H274Y mutation yielded a DDG of binding for zanamivir and

oseltamivir of +1.3 kcal/mol and +4.1 kcal/mol, respectively. This

mutation replaces a positively charged histidine with a bulkier,

uncharged tyrosine in the second residue layer around the binding

Table 1. Comparison of experimental DDG in oseltamivir and zanamivir for three NA mutations with estimates obtained using
different computational approaches.

Method H274Y N294S Y252H RMSE

DDG, kcal/mol DDG, kcal/mol DDG, kcal/mol (RMSD), kcal/mol

zanamivir oseltamivir zanamivir oseltamivir zanamivir oseltamivir

Experimentala 0.4 (0.1) 3.3 (0.2)* 1.2 (0.1)* 2.6 (0.2)* 0.1 (0.2) 21.4 (0.1) N/A (0.2)

SRMM 25.8 (7.4) 0.7 (7.0) 8.2 (7.7) 5.8 (6.2) 20.1 (8.7) 20.9 (7.4) 4.2 (7.4)

SRSM 1.7 (2.9) 1.2 (3.0) 0.6 (2.0) 1.7 (1.9) 1.5 (1.7) 0.5 (1.5) 1.5 (2.2)

SRSM/HREX 1.3 (0.8) 4.1 (2.4) 2.3 (0.4) 2.2 (0.9) 0.6 (0.8) 0.7 (1.4) 1.1 (1.1)

MM-GBSA 6.2 (8.1) 0.9 (3.8) 5.7 (6.1) 25.9 (3.6) 2.1 (2.9) 21.9 (3.0) 4.8 (4.6)

MM-PBSA 8.4 (10.1) 3.0 (3.9) 5.8 (4.5) 24.7 (3.2) 2.8 (3.1) 0.2 (2.6) 5.0 (4.6)

Rosetta 20.4 (0.5) 0.8 (0.4) 20.4 (0.3) 0.3 (0.2) 20.1 (0.4) 0.0 (0.0) 1.7 (0.3)

aValues were derived from the data reported by Collins et al [10].
Standard deviations are shown in parentheses. Root mean squared error (RMSE) and the RMS Standard Deviation (RMSD) are provided.
‘*’indicates experimentally determined drug resistant mutation. ‘N/A’ stands for not applicable.
doi:10.1371/journal.pcbi.1002665.t001
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site. We found that the H274Y mutation perturbed a number of

intermolecular and intramolecular interactions within the binding

pocket. These changes were largely localized to the charged

residues E276, E277, and R224, which form the binding pocket

for the inhibitor tail.

In the case of oseltamivir binding, the H274Y mutation shifted

the E276 conformation closer to R292 (Fig. 3A, with represen-

tative structures in Figs. 2D–E) and the carboxyl group of the

inhibitor. In contrast, the E277-R292 distance distribution

remained largely unchanged (Fig. 3C). Despite the observed

strengthening of electrostatic interactions between E276 and

R292, an analysis of the component residue energies calculated

using MM-GBSA (DDGMM-GBSA) between the WT and H274Y

trajectories showed that the mutation leads to destabilizing DDG

contributions of +1.2 kcal/mol and +0.9 kcal/mol for E277 and

E276, respectively (Table S1). While these MM-GBSA calcula-

tions were not quantitatively accurate, they were consistent with

the results from the SRSM/HREX calculations and suggest that

Figure 2. Representative structures for zanamivir (A, B and C) and oseltamivir (D, E and F) bound to WT and mutant NAs from the
SRSM/HREX simulations. Salt-bridges and hydrogen bonds are depicted as magenta and orange dashed lines, respectively. Positively charged,
negatively charged, and uncharged polar groups are noted as blue, red, and purple circles, respectively, and residues of interest are labeled. Mutated
residues are underlined.
doi:10.1371/journal.pcbi.1002665.g002
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these subtle conformational changes among charged residues may

disrupt oseltamivir binding.

In the case of zanamivir binding, the H274Y mutation also led

to strengthening of the E276-R292 interaction (Figs. 3B with

representative structures in Fig. 2A–B). However, this change

occurred concurrently with a weakening of the E277-R292

interaction (Fig. 3D) as well as changes in hydrogen bonding

between the zanamivir tail and R118, E276, and E277.

Specifically, the hydrogen bonds between the hydroxyl groups of

the trihydroxypropyl tail of zanamivir and E277 carboxyl group in

WT were replaced with hydrogen bonds with the neighboring

E276 carboxyl in the mutant, as inferred from the distance

distributions for the oxygen atoms from the above-mentioned

groups (Fig. 4). While the DDGMM-GBSA of E277 was positive at

+1.9 kcal/mol, the formation of inter-molecular hydrogen bonds

at E276 is reflected in a DDGMM-GBSA of E276 that was stabilizing

at 22.4 kcal/mol (Table S1).

Overall, the H274Y mutation led to subtle rearrangements of

the charged residues E276, E277, and R292 within the binding

pocket (see SI Section 3 in Text S1 for details). In the case of

zanamivir binding, there was also a shift in hydrogen bonding

between the glycerol tail and E276 and E277 that appears to, at

least in part, compensate for these rearrangements. The numerous

additional inter-molecular electrostatic interactions with zanami-

vir, such as R118-C4 carboxyl (see Figs. 2A–B and 2D–E), may

also play a role in the differential resistance between oseltamivir

and zanamivir observed for this mutation.

The N294S mutant. SSRM/HREX simulations of the

N294S mutant yielded a DDG of +2.2 kcal/mol and +2.3 kcal/

mol for zanamivir and oseltamivir, respectively. In agreement with

crystal structures of the N294S mutant, we found that the most

prominent differences compared with WT was the formation of a

hydrogen bond between the side chains of S294 and E276 and a

flip of the main chain carbonyl of Y347. In the WT enzyme, the

N294 side chain forms a hydrogen bond with the R292 side chain

(Fig. 5A). In the N294S mutant, the R292 side chain predomi-

nantly interacts with the flipped Y347 carbonyl oxygen, forming a

persistent hydrogen bond (Fig. 5B) that alters R292 dynamics.

In the case of oseltamivir binding, rearrangements in the N294S

mutation were largely limited to the C1 carboxyl binding region

between residues R292 and Y347 (representative structure shown

in Fig. 2F). There were no significant rearrangements in the

binding pocket beyond a slight shift in E276 to accommodate the

formation of the S294-E276 hydrogen bond. MM-GBSA analysis

of the binding site residues showed that R292 had a DDGMM-GBSA

of 22.7 kcal/mol, potentially reflecting the formation of a new

hydrogen bond with the Y347 carbonyl group. The lack of

significant structural or energetic changes among the intermolec-

ular interactions suggests that entropic considerations may play a

major role in the disruption of oseltamivir binding observed in the

N294S simulations.

MM-GBSA calculations for the zanamivir-WT complex sug-

gested that N294 contributed, at least weakly, to inhibitor binding

(Fig. S3 in Text S1), with a residue DGMM-GBSA of 21.4 kcal/mol

Figure 3. Comparison of WT and mutant dynamics. For WT and H274Y, N294S, and Y252H, distance distributions between the atoms Cd of
E276 and Ne of R292 and between the atoms Cd of E277 and Ne of R292 are shown for oseltamivir (A, C) and zanamivir (B, D), respectively.
doi:10.1371/journal.pcbi.1002665.g003

Binding Affinity Predictions in Neuraminidases
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(Table S1). The mutation of N294 to the smaller serine residue

resulted in some rearrangements of the charged residues

interacting with the polar tail, E276 and E277, as well as R292

and Y347, which interact with the C1 carboxyl group. Beyond the

formation of the Y347-R292 hydrogen bond and the loss of the

N294-R292 hydrogen bond, there were subtle shifts in the residue

conformations of E276, E277, and R292. Specifically, the E276-

R292 interaction was stronger, albeit mildly, and the E277-R292

interaction was weaker compared to WT (Figs. 3B and 3D, with

representative structures in Figs. 2D and 2F), as was observed for the

H274Y mutation. Overall, the changes involving S294 interactions

were reflected in a DDGMM-GBSA for S294 of +1.1 kcal/mol (Table

Figure 4. Differences in hydrogen bonding with the zanamivir tail in the H274Y mutant. Distribution of the average distance between the
atoms Oe of E276 and E277 with O21 and O23 in the trihydroxypropyl group of zanamivir in wild type (A) and in the H274Y mutant (B).
doi:10.1371/journal.pcbi.1002665.g004

Figure 5. Comparison of WT and N294S mutant dynamics. (A) Distance distributions between the R292 Ne atom and N294 Od1 and Y347
carbonyl O atoms computed from SRSM/HREX simulations of the WT enzyme in complex with oseltamivir and zanamivir. (B) Distance distributions
between the Ne atom of R292 and S294 Oc and Y347 carbonyl O atoms computed from simulations of the complexes of the N294S mutant with the
two drugs. (C) Distributions of distances between the Y347 Og atom and Ng1 atoms from R292 and R371 computed from SRSM simulations of the WT
enzyme in complexes with the two drugs and (D) for the complexes of the N294S mutant with oseltamivir and zanamivir.
doi:10.1371/journal.pcbi.1002665.g005
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S1), suggesting that part of the weakening in zanamivir binding was

directly attributable to the mutated residue itself.

The Y252H mutant. The Y252H mutation is classified as

neutral with respect to zanamivir and confers increased sensitivity

to oseltamivir. Therefore, it serves as a useful control for

comparing resistant and non-resistant mutations. Our SRSM/

HREX simulations yielded a DDG of +0.6 kcal/mol and

+0.7 kcal/mol for zanamivir and oseltamivir, respectively, with

no significant difference in structure between the Y252H mutant

and WT. The relative positions of E276, E277, and R292 were

largely unchanged (Fig. 3) and the hydrogen bonding between the

glycerol tail of zanamivir and E276 and E277 was maintained.

Likewise, analysis of the MM-GBSA energy revealed no significant

DDGs for binding site residues as a result of this mutation. These

results confirm that the subtle, systematic rearrangements of

charged residues in the inhibitor binding site observed in the

H274Y and N294S trajectories are specific to experimentally

observed drug resistance mutations.

Testing previous hypotheses of drug resistance

mechanisms. Given the thermodynamic accuracy of the

SRSM/HREX simulations, we sought to test previous hypotheses

of NA drug resistance through structural analysis of simulation

trajectories. Prior studies have suggested that a change in the

burial of the inhibitor tail as a result of a drug resistance mutation

is a primary feature of NA drug resistance [10]. Specifically, the

H274Y mutation is thought to confer oseltamivir resistance by

decreasing the size of the binding site cavity that interacts with its

hydrophobic pentoxyl tail. We calculated the change in buried

surface area (BSA) corresponding to the inhibitor tail and the

binding site for each of the NA mutants. Our analysis revealed no

significant changes in BSA (see SI Table S2). Additionally, in the

N294S mutation, the hydrogen bond formed between S294 and

E276 is thought to negatively affect the hydrophobic interactions

with the tail of oseltamivir [10]. While our simulations confirmed

the formation of an S294-E276 hydrogen bond, the mean BSA of

the oseltamivir tail (Table S2) in the mutant was largely unchanged

from WT. Furthermore, no significant differences were observed

in BSA in the Y252H mutation. These results suggest that

systematic changes in the hydrophobic interactions with the

inhibitor tail are not primarily responsible for drug resistance.

Finally, the flip of the Y347 carbonyl in the N294S mutant is

believed to increase the flexibility of the Y347 side chain and

weaken its interactions with the carboxyl group of oseltamivir [10].

While our simulations showed (see Fig. 5C–D) changes in the

conformation of Y347 in the N294S mutant (see SI Section 4 in

Text S1), there was little evidence of any interaction between Y347

and the inhibitor, suggesting that it is not directly responsible for

the oseltamivir resistance observed in the simulation.

Final remarks
We used MD simulations and statistical mechanics to quantify

the effect of drug resistance mutations in NA on the DDG of

oseltamivir and zanamivir binding. We found that implicit solvent-

based methods, such as MM-GBSA, and empirical approaches,

such as Rosetta, were largely unable to predict drug resistance.

However, careful use of thermodynamic-integration-based ap-

proaches successfully predicted binding affinities with chemical

accuracy. Ultimately, the SRSM/HREX approach yielded the

most accurate and precise DDG values compared with those

obtained experimentally. The SRSM approach minimized the

degree of decoupling between the real states and the unphysical

reference states, while HREX significantly enhanced conforma-

tional sampling as a result of exchanges between the TI simulation

windows. Together, the SRSM/HREX approach successfully

sampled a thermodynamic path between WT and mutant NA

which circumvented conformational sampling barriers that signif-

icantly impeded conventional MD simulations to yield highly

reliable free energy calculations. The additional computational

cost associated with using HREX was practically negligible

compared to SRSM because the time required for both types of

runs is roughly equivalent. Finally, we must point out that the

computation of DDGs using SRSM (or SRSM/HREX) is

computationally demanding. To evaluate the six DDG values for

NA with their corresponding standard errors, we were required to

carry out a minimum of 36 runs, each 4ns-long and involving 31

replicas, for an aggregate simulation time of ,4.5 ms. The whole

analysis presented here required over 15 ms of aggregated MD

simulations.

We analyzed trajectories from the SRSM/HREX simulations

in order to identify the structural and energetic mechanisms

underlying the computed DDGs. We identified a number of subtle,

systematic, rearrangements in the extensive hydrogen bonding and

electrostatic interactions in the inhibitor binding site in the drug

resistant H274Y and N294S mutations that were largely absent in

the drug-sensitive Y252H mutation. Although the exact nature of

these electrostatic rearrangements varied for each drug and

mutation, we hypothesize that these rearrangements in the

binding pocket form the basis of drug resistance in NA. This is

in contrast with the previous interpretations of the experimental

structures that suggested changes in the size and hydrophobicity of

the binding pocked as the primary mechanism for resistance [10].

Our study marks the most extensive use to date of molecular

dynamics and thermodynamic integration on a large, pharma-

ceutically relevant system and demonstrates that a rigorous,

computationally intensive approach can be successfully applied to

studying the thermodynamic mechanisms underlying protein

function that can elude traditional structure-based crystallography

approaches.

Materials and Methods

Coordinates of the protein systems were derived from the crystal

structures of NA (PDB codes: 2HTY, 3CL0, 3CL2, and 3CKZ)

[10]. A detailed description of the setup is provided in SI Section

1b in Text S1.

We used SRTI to calculate the relative free energy difference

between a RS and a given end state of a system. Unless stated

otherwise, all the simulation details were the same as described

previously [31]. The end states in our simulations were NA

variants, either free or bound to an inhibitor. To enhance

sampling between the states, we employed HREX.

To run the MD simulations, we employed the GROMACS

program version 4.0.5. Production runs were 4 ns long for each

SRTI window and the coordinates of the system were recorded

every 500 steps for subsequent analyses. SRTI simulations

augmented with HREX were run using m = 31 windows and

replica exchanges were attempted every 500 MD steps. A total of

4,000 attempted exchanges were produced, which resulted in 4 ns-

long simulations per window.

Single reference multiple mutants approach
The SRMM approach (Fig. 1) allows for simultaneous

comparison of binding free energy changes between all pairs of

proteins and ligands. To implement this approach, we designed a

common RS for all proteins and ligands for the bound and

unbound state. Portions of all three mutating residues and the

ligand were decoupled in these simulations. The details are

provided in SI Section 1i and Fig. S2A in Text S1.
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Single reference single mutant approach
The SRSM approach (Fig. 1) computed DDG between WT and

a specific mutant for each ligand. To implement this approach we

constructed specific reference states for each mutant and ligand in

the bound and unbound state. Only a single amino acid was

decoupled in these simulations. The details are available in SI

Section 1j and Fig. S2B in Text S1.

Estimation of binding affinity using the MM-PBSA/GBSA
method

The MM-PBSA/GBSA method [14], as implemented in

Amber10, was used to obtain additional estimates of the changes

in binding free energy based on SRSM trajectories. Additional

details are provided in SI Section 1k in Text S1.

Estimation of the binding affinity using Rosetta
RosettaInterface [32] uses computational mutagenesis to predict

the change in binding free energy of a protein-protein interaction

associated with point mutations. Details on the implementation of

RosettaInterface for protein-ligand interactions are provided in SI

Section 1l in Text S1.

Supporting Information

Table S1 Energy decomposition analysis of WT, and H274Y,

N294S and Y252H mutants.

(PDF)

Table S2 Average buried surface area of the pentoxyl

substituent of oseltamivir.

(PDF)

Text S1 Supplemental information file contains an extended

Materials and Methods section with a detailed description of the

techniques and protocols used in the research. Additional

discussions of the key NA-inhibitor interactions, the H274Y and

N294S mutants are provided. The file contains supplemental

figures S1 to S5 with their respective legends, and five appendices.

(PDF)
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