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Abstract

Knowing how an individual responds to sleep deprivation is a requirement for devel-

oping personalized fatigue management strategies. Here we describe and validate

the 2B‐Alert App, the first mobile application that progressively learns an individual’s
trait‐like response to sleep deprivation in real time, to generate increasingly more

accurate individualized predictions of alertness. We incorporated a Bayesian learning

algorithm within the validated Unified Model of Performance to automatically and

gradually adapt the model parameters to an individual after each psychomotor vigi-

lance test. We implemented the resulting model and the psychomotor vigilance test

as a smartphone application (2B‐Alert App), and prospectively validated its perfor-

mance in a 62‐hr total sleep deprivation study in which 21 participants used the app

to perform psychomotor vigilance tests every 3 hr and obtain real‐time individual-

ized predictions after each test. The temporal profiles of reaction times on the app‐
conducted psychomotor vigilance tests were well correlated with and as sensitive as

those obtained with a previously characterized psychomotor vigilance test device.

The app progressively learned each individual’s trait‐like response to sleep depriva-

tion throughout the study, yielding increasingly more accurate predictions of alert-

ness for the last 24 hr of total sleep deprivation as the number of psychomotor

vigilance tests increased. After only 12 psychomotor vigilance tests, the accuracy of

the model predictions was comparable to the peak accuracy obtained using all psy-

chomotor vigilance tests. With the ability to make real‐time individualized predic-

tions of the effects of sleep deprivation on future alertness, the 2B‐Alert App can be

used to tailor personalized fatigue management strategies, facilitating self‐manage-

ment of alertness and safety in operational and non‐operational settings.

K E YWORD S

alertness, caffeine, individualized predictions, psychomotor vigilance test, sleep, smartphone

app

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society

Received: 25 April 2018 | Revised: 29 May 2018 | Accepted: 29 May 2018

DOI: 10.1111/jsr.12725

J Sleep Res. 2019;28:e12725.

https://doi.org/10.1111/jsr.12725

wileyonlinelibrary.com/journal/jsr | 1 of 8

http://orcid.org/0000-0001-7292-2029
http://orcid.org/0000-0001-7292-2029
http://orcid.org/0000-0001-7292-2029
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1111/jsr.12725
http://www.wileyonlinelibrary.com/journal/JSR


1 | INTRODUCTION

Consumer‐level, personal fitness devices allow us to continually

track sleep time with reasonable accuracy in free‐living conditions

(Ferguson, et al., 2015). Likewise, ubiquitous mobile computing

devices allow us to objectively measure alertness impairment due

to sleep deprivation via a psychomotor vigilance test (PVT; Bru-

net, et al., 2017; Grant, et al., 2017). Although such data provide

the means to quantify longitudinal patterns of sleep and alertness,

the extent to which this knowledge results in actionable informa-

tion is much less clear. Ideally, such devices should provide

customized guidance to allow each sleep‐deprived individual to

maximize alertness at the desired times of the day for the

desired duration.

Achieving this goal requires the ability to “learn” an individual’s
trait‐like response to sleep deprivation, and the ability to accurately

and quantitatively forecast—at an individual level—the effects of

sleep interventions, while considering daily variations in alertness

due to time of day and previous schedules of sleep and caffeine

consumption. To this end, recently, our group developed the Unified

Model of Performance (UMP), a biomathematical model that predicts

PVT performance under sleep‐loss conditions ranging from chronic

sleep restriction (CSR) to total sleep deprivation (TSD), while

accounting for the restorative effects of caffeine (Ramakrishnan

et al., 2014; Ramakrishnan, Wesensten, Balkin, et al., 2016; Ramakr-

ishnan, Wesensten, Kamimori, et al., 2016). The UMP is well vali-

dated: we have assessed its predictions on 442 subjects from 14

different studies, including 24 different sleep/wake conditions (from

3 to 10 hr of sleep per night to 88 hr of TSD) and nine different caf-

feine conditions during sleep deprivation (from single/repeated doses

of 100–600 mg). We have also shown that, when individually cus-

tomized, the UMP captures the individual’s trait‐like response to

sleep deprivation under different sleep‐deprivation challenges

(Ramakrishnan et al., 2015).

More recently, through retrospective computer simulations mim-

icking real‐time operation, we demonstrated that our validated UMP

could automatically and continually learn an individual’s trait‐like
response to TSD and CSR challenges on the fly (Liu, et al., 2017).

We showed that a Bayesian learning algorithm could progressively

adapt the UMP parameters after each PVT, so that model predic-

tions increasingly matched an individual’s sequence of PVT measure-

ments during sleep restriction.

However, until now, these results were all based on retrospec-

tive analyses of simulated real‐time performance, because we

lacked a platform and algorithms for prospective, real‐time opera-

tion. Here we aim to describe and validate the 2B‐Alert App, the

first mobile app that uses the results of each PVT to automatically

and progressively learn an individual’s trait‐like response to sleep

deprivation and to make individualized predictions of alertness in

real time. To validate the app, we used it to collect PVT data

before, during and after TSD in a laboratory‐controlled study, and

to make real‐time prospective predictions of alertness during the

TSD challenge.

2 | MATERIALS AND METHODS

2.1 | The 2B‐Alert App

Figure 1 shows screen‐capture images of the major 2B‐Alert graphi-

cal user interfaces, including those for the main menu, sleep and caf-

feine schedules, sleep input, PVT session, and prediction displays.

2.2 | Inputs and outputs

User inputs to the 2B‐Alert App include: (a) sleep schedule (Figure 1b,

c); (b) caffeine schedule; and (c) PVT data, which are obtained via tests

administered within the app itself (Figure 1d). Sleep and caffeine

schedules can be entered retroactively or proactively to explore the

effects of prior or future interventions on alertness, respectively, and

can be edited at any time. A wrist‐worn device can also be used to

automatically enter sleep data via actigraphy (Supporting Information

Data S1, Section I). PVT data—without which predictions are based on

a group‐average model (Ramakrishnan, Wesensten, Kamimori, et al.,

2016)—are required to individualize the alertness prediction model.

The 2B‐Alert App generates individualized and group‐average
alertness predictions for mean response time (RT) as the PVT statistic.

We chose mean RT because it is one of the most frequently used PVT

statistics (Basner & Dinges, 2011), and because it allows for the most

accurate estimation of individual‐specific predictions of alertness

under both TSD and CSR (Liu et al., 2017; Ramakrishnan et al., 2015).

Nevertheless, the app also stores raw RT data. Figure 1e,f show the

screens accessed by the “Status” and “Prediction” buttons, respec-

tively, in the main menu, which provide individualized or group‐aver-
age alertness predictions for mean RT as a function of time of day.

2.3 | Initial conditions and model individualization

The predictions of alertness by the UMP are based on: (a) sleep/

wake history; (b) caffeine dosage, absorption rate and time of con-

sumption; and (c) time of day (Ramakrishnan, Wesensten, Balkin,

et al., 2016; Ramakrishnan, Wesensten, Kamimori, et al., 2016).

Absent of prior data, the predictions assume that the user slept 8 hr

(23:00–07:00 hr) on the previous night and has no accumulated

sleep debt. In addition, it uses initial model parameters tuned to pro-

vide group‐average predictions based on 10‐min PVTs (Ramakrish-

nan, Wesensten, Kamimori, et al., 2016; Reifman et al., 2016).

Thereafter, the model predictions increasingly reflect the inputs

(sleep and caffeine) entered by the user, but continue to reflect

group‐average alertness until the user performs a PVT.

Immediately after the first PVT session, the app automatically

adapts the UMP parameters on the fly, using a Bayesian learning

algorithm (Liu et al., 2017). At this point, the predictions start to

reflect the user’s trait‐like response to sleep deprivation. Subse-

quently, after each intermittent PVT, the app progressively adapts

the model parameters to match the PVT results. In the process, it

“learns” the user’s response to different sleep and caffeine sched-

ules as a function of time of day.
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2.4 | Supported mobile computing devices

The 2B‐Alert App was implemented in two operating systems, iOS

and Android, supporting iPhone 6s and iPad Air 2 running iOS 9.3+

and Samsung Note 4 running Android 6.0.1+, respectively. Both

implementations provide the same features and a consistent user

experience. Supporting Information Data S1, Section II, provides a

detailed description of the software architecture.

2.5 | PVT settings and latency characterization

Users perform PVTs via the “PVT Session” interface (Figure 1a,d),

where “Settings” allows for the selection of a PVT session duration

of 3, 5 or 10 min and customization of the inter‐stimulus interval

(ISI), with a minimum delay of 1 or 2 s and a maximum delay ranging

from 4 to 10 s. Using the customized minimum and maximum delays,

the app randomizes the ISI for each stimulus presentation. The

reported mean RT accounts for (i.e. it subtracts) the mobile device

and software latency, which we characterized using the same

RTBox apparatus (Li, et al., 2010) used to develop the PC‐PVT and

PC‐PVT 2.0 software (Khitrov et al., 2014; Reifman, et al., 2018) The

hardware–software RT latency for the 2B‐Alert App was 58 and

68 ms for the iPhone 6s and iPad Air 2, respectively, running iOS

10.3.2, and 79 ms for the Samsung Note 4 running Android 6.0.1.

We also assessed whether RT latencies depend on the orientation of

the smartphone (portrait vs. landscape) and the finger used for

responding (index vs. thumb; Arsintescu, Mulligan, & Flynn‐Evans,
2017), but found no significant statistical differences among the con-

figurations. Nonetheless, we recommend that PVTs in the app be

performed consistently, always using the same configuration.

2.6 | Validation study

To assess the PVT and real‐time individualized predictions of alert-

ness in the 2B‐Alert App, we performed a prospective sleep‐loss
study, where we collected and stored all test and prediction data

within the app.

We recruited 21 healthy participants (14 men and seven women;

18 civilians and three active‐duty personnel), ranging in age from 18

to 34 years [mean = 24.6 years and standard deviation (SD) = 4.6

years], who were screened for sleep disorders and mental health

problems. The study was approved by the Walter Reed Army

F IGURE 1 Screen captures of the main
graphical user interfaces of the 2B‐Alert
App, including the main menu (a), overview
of sleep (light blue horizontal bars) and
caffeine schedules (yellow dot) accessed
via the “Sleep/Caffeine Schedule” button
on the main menu (b), sleep input (showing
the duration and start of each sleep
episode) accessed via the “Sleep” link on
the “Schedule” page (c), psychomotor
vigilance test (PVT) stimulus accessed via
the “PVT Session” button on the main
menu (d), individualized (or group‐average)
prediction of mean response time (RT) PVT
performance through a dial and needle
representation accessed via the “Status”
button on the main menu (e), and
individualized (or group‐average) prediction
of mean RT PVT performance as a
function of time of day accessed via the
“Prediction” button on the main menu (f)
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Institute of Research Human Use Committee (Silver Spring, MD,

USA). Written informed consent was obtained from each subject

prior to their participation.

During each of the 13 days prior to the in‐laboratory phase, par-

ticipants completed a sleep/wake and caffeine diary at home using

the app in a Samsung Note 4, and continually wore a Philips

Respironics Actiwatch‐2 wrist actigraphy watch. During this period,

participants slept an average of 7.7 hr per night (SD = 1.7 hr), as

estimated by actigraphy. Participants were allowed to consume no

more than 400 mg of caffeine per day. Each day, they used the app

to perform five to six 5‐min PVTs (ISI: 1–4 s), once every 2–3 hr.

On the 13th day, participants reported to the laboratory at

19:00 hr, went to bed at 23:00 hr, woke up at 07:00 hr the next

morning, and then underwent 62 hr of TSD followed by 1 night of

recovery sleep (12 hr in bed). Participants manually entered the cor-

responding hours of sleep into the app (Figure 1b,c). During this lab-

oratory phase, participants performed three different versions of the

5‐min PVT: PC‐PVT and Gamified PC‐PVT (not reported here) using

a standalone PC, and 2B‐Alert PVT (each once every 3 hr, order

counterbalanced, with a 5‐min break between versions). In all, each

participant performed 23 tests per version (20 during TSD, three

after recovery). All data (raw PVT and predictions) were stored in

the PC and app, and retrieved after the study was completed.

2.7 | Statistical analyses

To assess the reliability of the PVT statistics obtained with the app,

we compared them against those collected by the PC‐PVT (Khitrov

et al., 2014) for each of seven PVT statistics [mean RT, median RT,

slowest 10% RT, speed, lapse 500 ms (number of RTs > 500 ms),

lapse 355 ms (number of RTs > 355 ms), and number of false starts].

We computed: (a) paired differences for three levels of sleep depri-

vation; (b) Pearson’s correlation using data from all 23 PVTs during

the in‐laboratory phase; (c) Spearman’s rank‐order correlation of data

averaged over the 20 tests during TSD; and (d) effect size (Cohen’s
d) between group PVT performance at baseline (0–16 hr of TSD)

and that after extended sleep loss (40–62 hr of TSD; McGrath &

Meyer, 2006).

To assess the app’s ability to learn and accurately predict an

individual’s response to sleep loss in real time, we calculated the

root mean squared errors (RMSEs) between the app‐measured mean

RTs and the real‐time app‐predicted mean RTs. To assess how well

the 2B‐Alert App progressively learned each individual’s trait‐like
response to sleep loss, we compared the RMSEs over the last 24 hr

of TSD as a function of the number of PVTs used for model individ-

ualization. We also computed the “best‐fit” model estimate for each

individual, which we obtained retrospectively by fitting the UMP

while using all available 2B‐Alert PVT data for an individual.

2.8 | Access

The 2B‐Alert App is available for collaborative research on a case‐by‐
case basis.

3 | RESULTS

3.1 | User interface and functionalities

The main menu of the 2B‐Alert App provides access to its various

functionalities (Figure 1a). The “Sleep/Caffeine Schedule” button pro-

vides for the visualization of the user’s sleep/wake and caffeine con-

sumption schedule history (“overview” in Figure 1b), and separate

interfaces for inputting and editing both “sleep” (Figure 1c) and “caf-
feine” schedules (not shown). Figure 1b shows the 8‐day schedule

for subject #11, corresponding to the last 4 nights of the at‐home

phase (10–13 September), the 8 hr of time in bed during the first

night in the laboratory, the 62 hr of TSD, followed by the 12 hr of

time in bed during the recovery night.

The “Status” button in Figure 1a leads to one of the two inter-

face screens for visualizing alertness predictions. The status interface

in Figure 1e shows a horseshoe‐shaped dial, with the needle indicat-

ing mean RT performance (243 ms) on the corresponding date (17

September 2017) and time of day (16:00 hr) associated with the

round blue time marker at the bottom of the screen. By horizontally

moving the marker, users can access predictions up to 96 hr into the

future, or the past. The dial has three colours (green, yellow and

red), indicating increasing levels of alertness vulnerability going from

green to red, with the green‐to‐yellow threshold being equivalent to

a 0.06% blood alcohol concentration (BAC), whereas the yellow‐to‐
red threshold corresponds to a BAC of 0.08% (Dawson & Reid,

1997; Reifman et al., 2016; Williamson, et al., 2001).

The “Prediction” button in Figure 1a provides access to the sec-

ond interface screen for visualizing alertness predictions. Figure 1f

shows the resulting screen, which depicts the predicted mean RT (on

the y‐axis) as a function of the time of day (on the x‐axis). At the

bottom of the screen, the user can choose to visualize “Group Pre-

diction” or “Individualized Prediction” (the one selected here). The

yellow line indicates UMP‐predicted alertness and the dashed yellow

lines denote the associated 95% prediction intervals, whereas the

green dots indicate PVT mean RT data used to individualize the

model parameters and the dark blue vertical bars indicate sleep peri-

ods. The figure shows PVT data and predictions for the 62 hr of

TSD for subject #11 (Figure 1b).

3.2 | Validation results

3.2.1 | 2B‐Alert PVT measurements

To validate the 2B‐Alert PVT against the PC‐PVT, we quantified its

bias, computed their correlations in value and rank, and compared

effect sizes of sleep loss between the two devices on 5‐min tests,

for each of seven PVT statistics. Figure 2 shows the temporal profile

of mean RT for the two devices, while Table 1 shows the means and

SDs of paired differences across three different TSD periods, Pear-

son’s and Spearman’s correlation coefficients, and effect sizes of

sleep loss. The 2B‐Alert PVT generally resulted in lower impairment

scores than the PC‐PVT, yielding statistically significant differences
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for mean RT, median RT and speed for each of three TSD periods

(p < 0.05, Wilcoxon signed rank test). Each statistic was well corre-

lated (p < 0.001) in value and rank across versions, with Pearson’s
coefficient exceeding 0.5 and Spearman’s coefficient exceeding 0.75

for all statistics. Lastly, except for false starts, the effect sizes of

sleep loss on 2B‐Alert PVT‐derived statistics (1.53–1.93) were com-

parable to those on PC‐PVT‐derived statistics (1.49–2.20). Impor-

tantly, the average psychomotor vigilance after extended sleep loss

(40–62 hr) was significantly worse than that at baseline (0–16 hr) for

all statistics in both versions (p < 0.01, Wilcoxon signed rank test;

results not shown in Table 1).

3.2.2 | 2B‐Alert PVT predictions

To validate the ability of the app to learn and predict an individual’s
response to sleep loss in real time, we analysed the predictions of

mean RT over the last 24 hr of TSD as a function of the number of

PVTs used for model individualization. Figure 3 shows the 2B‐Alert

PVT data and best‐fit model estimate for the last day of the at‐home

phase of the study, the 62 hr of TSD, and the recovery day for three

subjects (#7, #9 and #11) representing three broadly different trait‐
like responses to sleep loss. The retrospectively obtained best‐fit
model estimate indicates the upper‐limit accuracy we can expect

from the real‐time app predictions. The figure also shows individual-

ized predictions after the at‐home phase, as well as after 8 and 12

PVTs during TSD. For each subject, as the number of available mea-

surements increased, the predictions progressively converged to

those of the best‐fit estimate.

Figure 4 shows the average RMSE of the individualized predic-

tions over the 21 subjects as a function of the number of PVT mea-

surements available—and used by the app—during TSD for model

customization (Supporting information Table S1 provides RMSEs for

each subject). The accuracy of the predictions gradually increased

with the number of PVT measurements used for model

customization, with the average RMSE falling within ~10 ms of the

best‐fit RMSE after 12 PVTs during TSD.

4 | DISCUSSION

The 2B‐Alert App is the first mobile application that progressively

learns and with increasing accuracy predicts in real time the effects

of sleep/wake schedules, caffeine consumption and time of day on

an individual’s alertness. Here we described its implementation in

two smartphone platforms, and validated its reliability in measuring

and predicting PVT performance during a prospective 62‐hr TSD

study.

The temporal profiles of the 2B‐Alert PVT and the PC‐PVT
showed that TSD induced alertness impairment, increasing mean RTs

and degrading performance on other PVT statistics. We found that

both devices captured circadian effects and yielded well‐correlated
5‐min PVT statistics (Figure 2; Table 1), detecting both within‐ and

between‐subject variations in the temporal profiles of performance

across 62 hr of TSD. Compared with the PC‐PVT, the 2B‐Alert PVT

yielded faster RTs and more false starts, presumably due to device‐
dependent factors (Honn, Riedy, & Grant, 2015). Grant and col-

leagues observed similar results, with 3‐min PVTs on a smartphone

app yielding faster RTs, fewer lapses and more false starts than on a

tablet (Grant et al., 2017). Except for false starts, effect sizes of 2B‐

Alert PVT‐derived statistics were generally slightly lower or similar to

those derived from PC‐PVT, a trend that was comparable to that

observed in Brunet et al. (2017). Interestingly, upon reducing the

lapse threshold from 500 to 355 ms, the effect size of the lapse

statistic decreased from 1.87 to 1.66 for the PC‐PVT, while increas-

ing marginally from 1.91 to 1.93 for the 2B‐Alert PVT, suggesting

that the app is equally sensitive to sleep loss regardless of lapse

threshold. Most importantly, sleep loss had a large effect (Cohen’s
d > 1.00) on all 2B‐Alert PVT‐derived statistics. Together, our results

support the use of the app as a viable tool for measuring alertness

impairment due to sleep loss.

The 2B‐Alert App progressively and automatically learned in real

time each individual’s trait‐like response to sleep loss during TSD,

yielding increasingly more accurate predictions of alertness as the

number of PVT measurements available for model customization

accrued. Reassuringly, the average prediction error at the end of the

62‐hr TSD challenge using the app (46 ms) was equivalent to the

error obtained in a post hoc analysis of a previous 64‐hr TSD study

(45 ms; Liu et al., 2017). Of note, here we presented results com-

puted in real time, using all collected data and all subjects, just as

such an application is intended to work in the real world. This is in

stark contrast to all previously reported model predictions of alert-

ness by us and others, where computations are performed off line

upon completion of a study, often after eliminating outlier data and

anomalous subjects.

Perhaps unsurprisingly, the app could not learn an individual’s
response to sleep loss during the at‐home phase of the study, when

the habitual sleep/wake schedule (which averaged almost 8 hr of

sleep per night) was maintained (Figure 4). It took at least 12 PVT

F IGURE 2 Group‐averaged (n = 21) psychomotor vigilance test
(PVT) mean response time (RT) data (standard errors) from the PC‐
PVT (solid red squares) and the 2B‐Alert PVT (solid blue circles)
during 62 hr of total sleep deprivation (TSD) and following 12 hr of
recovery sleep
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measurements over the first 36 hr of TSD to generate predictions

comparable to those of the best‐fit model. Conceivably, the model

could have learned faster, using fewer measurements, had the origi-

nal model been developed using 5‐min PVTs, as in this study (as

described in Section 2.3, the original model was developed using 10‐
min PVT data). This is because while the app continually individual-

izes the model parameters, model individualization is faster, requiring

fewer measurements, if the original model parameters are similar to

those of the final, individualized model. Nevertheless, in this regard,

we also expect the app to be equally capable of predicting alertness

impairment using 3‐min PVT data. Overall, these results suggest that

the app needs PVT measurements during sleep deprivation to learn

and accurately predict an individual’s trait‐like response to limited

sleep.

The 2B‐Alert App takes as input either actual sleep time or time

in bed. The latter might result in the underestimation of alertness

impairment, especially when sleep efficiency is low because of

exogenous factors, such as ambient lighting and environmental noise,

or endogenous factors, such as unfavourable circadian timing. How-

ever, because the app individualizes the model parameters using

alertness feedback from the user, i.e. through the response to PVTs,

we expect that differences between time in bed and actual sleep

times will be progressively compensated for as PVTs are conducted.

In addition, we performed sensitivity analysis of the prediction model

to assess how sleep‐time errors affected alertness–impairment pre-

dictions, and found that consecutive daily over‐ or under‐estimation

of sleep by as much as 30 min per day led to a maximum alertness

prediction error of no more than 10%. This suggests that the app is

robust to small discrepancies in sleep‐recording times.

In contrast to existing personal sleep‐tracking devices, the 2B‐

Alert App can provide actionable information to help mitigate the

detrimental effects of sleep deprivation on alertness. For example,

40% of US Service members sleep less than 5 hr each night (Luxton

et al., 2011; Mysliwiec et al., 2013), leading to substantial chronic

sleep debt. In addition, certain military occupations only provide

TABLE 1 Comparison of 2B‐Alert PVT against PC‐PVT for seven PVT statistics

PVT statistic

Mean paired difference (SD) (PC‐PVT—2B‐Alert PVT) Correlation coefficient Effect size (Cohen’s d)

0–16 hr
(n = 105)

16–40 hr
(n = 168)

40–62 hr
(n = 147) Pearson (n = 483) Spearman (n = 21) PC‐PVT 2B‐Alert PVT

Mean RT (ms) 9 (21)a 14 (56)a 25 (104)a 0.72 0.86 1.99 1.88

Median RT (ms) 8 (18)a 12 (28)a 18 (60)a 0.61 0.83 1.49 1.53

Slowest 10% RT (ms) 8 (75)a 18 (281)a 55 (499) 0.71 0.77 2.20 1.86

Speed (s−1) −0.2 (0.4)a −0.2 (0.3)a −0.2 (0.5)a 0.79 0.84 1.76 1.66

Lapse 500 ms (#) −0.2 (0.9)a 0.2 (3.2) 0.7 (5.3) 0.76 0.78 1.87 1.91

Lapse 355 ms (#) 1.0 (3.6) 3.0 (5.5)a 2.8 (7.9)a 0.77 0.84 1.66 1.93

False starts (#) −0.6 (4.3) −3.6 (7.8)a −6.6 (9.9)a 0.56 0.83 0.64 1.19

Note. Shown are the mean (standard deviation [SD]) of paired differences (across three different periods of total sleep deprivation) and correlation coef-

ficients (Pearson and Spearman) between the statistics obtained from the two PVT versions. Also shown are the effect sizes of sleep loss in the two

PVT versions. All results are based on 5‐min PVTs.

PC: personal computer; PVT: psychomotor vigilance test; RT: response time.
ap < 0.05, one‐tailed Wilcoxon signed rank test.

F IGURE 3 Mean response time (RT) data for the last day of the
at‐home phase of the study, 62 hr of total sleep deprivation (TSD),
and recovery day for three subjects (#7, #9 and #11), who exhibited
different patterns of response to sleep loss. The three dotted and/or
dashed lines indicate 2B‐Alert App real‐time individualized
predictions for the last 24 hr of TSD (hours 38–62), using models
customized based on psychomotor vigilance test (PVT) data
collected during the at‐home phase, and after 8 and 12 PVTs during
TSD. The best‐fit model estimate is shown for comparison by the
solid red line
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limited and varying opportunities to sleep, while requiring periods of

heightened vigilance during wakefulness, which may vary in duration

and time of day. Such daily variations in sleep/wake schedules and

requirements for peak alertness at both favourable and unfavourable

phases of the circadian make it challenging, if not impossible, for

individuals to self‐administer countermeasures to achieve peak alert-

ness at the desired times of the day for the desired durations. In

such a scenario, an already‐individualized 2B‐Alert App would use

the Service member’s recent history of caffeine consumption and

sleep/wake schedule to make individualized predictions of future

alertness levels, as well as those regarding the efficacy of future caf-

feine and nap interventions, to determine the one that optimizes

alertness for periods of required heightened vigilance.

The UMP has been validated using data from more than a dozen

studies, including those investigating sleep loss (Ramakrishnan,

Wesensten, Balkin, et al., 2016) and the effects of caffeine during

sleep loss (Ramakrishnan, Wesensten, Kamimori, et al., 2016), in both

laboratory and field environments. Nevertheless, the model has limi-

tations. The UMP was developed using simple reaction time data

(i.e. from a PVT), and the extent to which its predictions generalize

to other aspects of neurobehavioural performance is unknown. Also,

the validation studies invariably involved a homogenous population

of young (<40 years old), healthy adults, and the extent to which

the results can be extrapolated to an older, heterogeneous popula-

tion remains to be determined. Another question concerns the use

of the app under conditions of both sleep loss and circadian

misalignment. Although we have previously shown that the model

accurately predicts the effects of daytime sleep under sleep

deprivation for a group of individuals [e.g. 2‐hr daytime naps

(Ramakrishnan, Wesensten, Balkin, et al., 2016) and 4 hr of daytime

sleep per 24‐hr period (Ramakrishnan, Wesensten, Kamimori, et al.,

2016)], it is not yet known whether this holds for individual‐level
predictions. However, because the app continually updates the

model parameters and two of the three most sensitive model param-

eters are used to characterize the circadian component [i.e. the cir-

cadian amplitude and phase (Liu et al., 2017)], we expect the app to

progressively capture circadian misalignments due to shift work and

transmeridian travel. Finally, while part of this study involved an at‐
home phase, the sleep‐deprivation component was conducted in a

laboratory. Hence, we need to assess how the app would work in a

“real‐world” situation, where laboratory‐controlled conditions are not

applicable.

Requiring a period of sleep deprivation to learn an individual’s
sleep‐loss phenotype could preclude the wide‐spread use of the app

as a fatigue‐management tool. However, TSD, as used in this study,

is not required. We have recently shown that the model can learn,

in less than a week, the phenotype for a group of individuals who

had been challenged with 3 hr of sleep per night (Liu et al., 2017).

What would be valuable to know is whether the model can learn

the sleep‐loss phenotype of an individual under milder sleep‐depriva-
tion requirements, such as one week of 5 hr of sleep per night—a

condition more commonly experienced by the general population.

An affirmative answer to this question would mitigate the limitation

mentioned above.

The 2B‐Alert App incorporates the latest scientific findings on

sleep restriction, sleep extension, caffeine and recovery sleep, auto-

matically learning an individual’s trait‐like response to sleep depriva-

tion on the fly, to generate real‐time individualized predictions of

alertness. Importantly, this allows users to prospectively compare

and contrast the efficacy of different nap and caffeine interventions

to tailor personalized fatigue management strategies, facilitating the

self‐management of alertness and safety in both operational and

non‐operational settings.
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