
Commentary on the Three-Process Model of
Alertness and Broader Modeling Issues

Jaques Reifman and Philippa Gander

REIFMAN J, GANDER P. Commentary on the three-process model of
alertness and broader modeling issues. Aviat Space Environ Med
2004; 75(3, Suppl.):A84–8.

IN ITS ORIGINAL FORM, the Sleep/Wake Predictor
Model was a conceptually simple model that pre-

dicted group mean alertness based on the addition of
the instantaneous values of three independent pro-
cesses (9):

1. A sinusoidal circadian process (Process C, some-
times considered as two separately modifiable
components, Process C during wake and Process
C� during sleep);

2. A homeostatic process that declines exponentially
toward a minimum during wake (Process S) and
increases exponentially toward a maximum dur-
ing sleep (Process S�); and

3. A sleep inertia process, which results in depressed
alertness on awakening, and then exponentially
improves toward Process S over 3 h (Process W).

Hence, predicted alertness was estimated as the sum
of C � S - W with 8 h assumed to provide sufficient time
for full recovery of Process S�.

The original version of the model was derived from
group mean alertness ratings on a visual analog scale,
collected 6 times a day from 12 young volunteers in a
3-wk time-isolation study. For the first 3 d, the partici-
pants lived on a 24-h schedule, which was then gradu-
ally shortened to 22 h across the remaining 18 d of the
study. The circadian and sleep-related components of
alertness were derived by comparing the rhythm dur-
ing entrained conditions and forced internal desyn-
chrony. Regression analyses were then used to compare
model predictions with self-reported alertness or fa-
tigue ratings from studies examining normal sleep/
waking schedules, total sleep deprivation for 64–75 h,
and abnormal sleep/wake schedules in shift work.

Although it is described as a three-process model,
Process W is typically omitted from simulations on the
basis that the data being modeled do not address func-
tioning during the first 3 h after awakening. In effect,
the model is a version of the Borbély two-process model
(5). A series of papers published between 1995 and 2000
(1–4,9–11) have explored the model’s capacity to pre-
dict a range of different outputs, but in each case these
involve changes to model parameters and, in some

cases, to inputs. This model evolution is summarized in
Table I.

During this evolution, basic assumptions of the
model have been modified over time to improve model
fit to the particular data set being modeled. For exam-
ple, in the simulations of sleep length (3), the previously
established set of model parameter values significantly
underestimated the duration of daytime sleep episodes.
This lead to the proposition that there was circadian
modification of the Process S� during sleep, in contra-
diction to the basic model assumption that alertness is
the simple arithmetic sum S � C of the model outputs.
The best-fitting simulations also used a different ac-
rophase of Process C.

To model alertness across successive night shifts
(10,11), a series of new assumptions and parameters
were introduced. First, it was assumed that the time of
waking up sets the phase of Process C. Again, this
contradicts the basic model assumption that alertness is
the simple arithmetic sum of the outputs of S � C.
Second, a “first night compensation effect” was intro-
duced because shift workers rated themselves as pro-
gressively more alert than would be predicted over the
course of the first night shift. It was also necessary to
model a general lowering of alertness on the second
night shift, which was proposed to reflect a “cost” of the
first night shift effect. Third, a “time on shift” effect was
introduced, whereby on night shifts after the first, alert-
ness ratings decreased over the course of each shift
before showing a modest improvement at the end of the
shift. These new assumptions and parameters are pre-
sumably relevant to data sets simulated with earlier
formulations of the model, for example, changes in EEG
alpha power across the night shift among truck drivers
and locomotive engineers. However, the effects of add-
ing these new parameters on model predictions for
these other data sets have not been reported.
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TABLE I. SUMMARY OF THE EVOLUTION OF THE SLEEP-WAKE PREDICTOR MODEL.

Data Set (ref. #) Measure Simulated
Process C

Parameters Model Output
Best-Fit Regression

Model

Objective Sleepiness
15 male truck drivers (1) EEG alpha power during

night drives
amplitude � 2.5 1/(S � C) exponential
acrophase � 20:48 r2 � 0.80

11 male train drivers (1) EEG alpha power during
night drives

amplitude � 2.5 exponential
acrophase � 20:48 r2 � 0.94

8 males in time isolation (1) EEG alpha power during 28
h without sleep

amplitude � 2.5 exponential
acrophase � 19:48 r2 � 0.95

Subjective Sleepiness
8 males in time isolation (1) KSS rating during 28 h with

2 h, 4 h, or 8 h sleep.
amplitude � 2.5 1/(S � C) linear
acrophase � 20:48 r2 � 0.70

Objective Sleep Latency
2 groups of 8 males in time

isolation (2)
Sleep latency after

wakefulness of 16–40 h.
amplitude � 2.5 S � C exponential
acrophase � 20:48 r2 � 0.88

8 females in time isolation (2) Sleep latency after
wakefulness of 4–12 h

amplitude � 2.5 linear
acrophase � 20:48 r2 � 0.65

25 males working a rotating
3-shift system (2)

Sleep latency before or after
different shifts

amplitude � 2.5 N/A
acrophase � 20:48 errors in both directions,

depending on shift

11 male train drivers (2) Sleep latency before or after
different shifts

amplitude � 2.5 N/A
acrophase � 20:48 errors in both directions,

depending on shift
Objective Sleep Length

2 groups of 8 males in time
isolation (3)

Sleep duration after
wakefulness of 16–40 h

amplitude � 0.6 asleep at bedtime linear
acrophase � 16:48 r2 � 0.99

25 males working a rotating
3-shift system (3)

Sleep duration before or
after different shifts

amplitude � 0.6
acrophase � 16:48

awake at S� � C�
� 14.2

linear, intercept
correction � 0.1

r2 � 0.99

11 male train drivers (3) Sleep duration before or
after different shifts

amplitude � 0.6
acrophase � 20:48

linear, intercept
correction � 0.6

r2 � 0.95

6 male normal day workers
in time isolation (3)

Sleep duration after
wakefulness of 4 h

Auditory Vigilance Performance
12 males in time isolation (4) Hits on a 30-min task

across 64 h of sleep
deprivation

amplitude � 2.5
acrophase � 20:48

S � C linear
r2 � 0.79

Alertness Across Shifts
Parameter setting

1,114 shift workers on 6
rotating shift systems (four
8-h shift systems, two 12-h
shift systems) (10)

Retrospective subjective
sleepiness (KSS)

amplitude � 2.5
acrophase � 16:48

S � C linear
r2 � 0.34 to 0.59

amplitude � 2.5 linear
acrophase �

(wakeup � 9 h)
r2 � 0.63 to 0.88

Parameter setting
23 workers on two rotating

12-h shift systems (10)
2-hourly alertness ratings

over 28 days
amplitude � 2.5
acrophase � 16:48

S � C linear
r2 � 0.23 to 0.35

amplitude � 2.5 linear r2 � 0.40 to 0.42
acrophase �

(wakeup � 9 h)
r2 � 0.40 to 0.42

amplitude � 2.5 linear
acrophase �

(wakeup � 11 h)
r2 � 0.47 to 0.50
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General Modeling Issues and the Sleep/Wake Predictor
Model

Many of the limitations of the current generation of
models of neurobehavioral function may have a com-
mon explanation. They are all, in one form or another,
variations of Borbély’s seminal two-process model,
which was originally developed solely to explain sleep
regulation (5). Borbély’s model was not formulated to
predict human fatigue and performance, let alone
trends in accident risk, which are the outcomes that the
current generation of models are trying to predict.
Hence, it is unlikely that model enhancements and re-
finements around Borbély’s original model will provide
the answers and the new insights needed to address the
well-known research gaps in predicting human perfor-
mance subject to sleep deprivation across the circadian
cycle (7,8). Given the common theoretical basis of the
current models, it is also not surprising that there is not
great variability in model performance—one model
performing better in one scenario and worse in another
(16).

Following, we discuss four modeling issues: 1) model
validation and refinement; 2) predicting group vs. in-
dividual performance; 3) model prediction uncertainty;
and 4) scaling of model outputs within the context of
the Sleep/Wake Predictor Model. However, as articu-
lated above, these issues are prevalent and equally rel-
evant throughout the current generation of sleep and
performance models.

Model Validation and Refinement

The Sleep/Wake Predictor Model does not follow a
conventional life cycle development protocol of system-
atic development, validation, and refinement leading to
a comprehensive explanation of the underlying mech-
anisms of sleepiness and alertness. Rather, its evolution
appears unsystematic, with ad-hoc adjustments made
as necessary, and without reference to formal hypoth-
eses to account for observed model inaccuracies. When-
ever the existing model fails to explain new experimen-
tal data, new components are added and model
parameters are fitted to the new data in order to mini-
mize the differences between “predicted” and observed
values. This is potentially a never-ending process, with

the model being continually adjusted as new field and
laboratory data become available. For example, as dis-
cussed above, to enhance model predictive power for
the trend in accident risk among rotating shift workers,
Folkard et al. (10,11) assumed that the phase of Process
C was variable and dependent on the time of waking.
Similar ad hoc adjustments are made in other models.
For instance, in the SAFTE Model, Johnson et al. (12)
modified the reservoir concept to avoid performance
over predictions during the recovery phase of individ-
uals who are subject to chronic sleep restriction.

While this approach allows for a model to be tailored
to the specific dataset of interest, it provides no insight
on the model’s predictive power or generalization abil-
ity. There is no way of knowing whether the refined
model has an improved ability to generalize to new,
unanticipated conditions and scenarios. Furthermore,
the tailored model may no longer be predictive for data
sets simulated with earlier formulations of the model.
As pointed out above, it is not clear if the tailoring of the
Sleep/Wake Predictor Model to predict alertness across
successive night shifts (10,11) is applicable to earlier
data sets. Models derived in this fashion cannot be
characterized quantitatively, so it cannot be deter-
mined, a priori, to which set of scenarios/conditions the
models are applicable and to which they are not. Just
knowing when a given model should or should not be
employed would be extremely useful.

To improve understanding of the underlying neu-
robehavioral mechanisms, it is more informative to ex-
amine how model predictions differ systematically
from observations, rather than modifying or adding
parameters to improve the fit. In this context, the use of
regression models to describe overall fit is unhelpful
without consideration of the structure of the residuals.
Furthermore, R2 statistics do not identify at which times
of day model predictions are weakest, although this
may be of key theoretical and operational significance.

Group Prediction vs. Individual Prediction

Another characteristic of the Sleep/Wake Predictor
Model that is common across the other models is the
focus on the prediction of group averages, necessarily
de-emphasizing individual variation in neurobehav-

TABLE I. CONTINUED.

Data Set (ref. #) Measure Simulated
Process C

Parameters Model Output
Best-fit Regression

Model

Predicting Accident Risk
3 studies of 8-h shift systems
(no data on sleep times,
modelers “assumed” them)
(11)

accident risk on afternoon
and night shifts versus
morning shift

amplitude � 2.5 mean 1/(S �
C) across
shift

linear
acrophase �

(wakeup � 9 h)
r2 � 0.89

accident risk across 4 night
shifts

amplitude � 2.5
acrophase �

(wakeup � 9 h)

mean 1/(S �
C) across
shift � 1st
night effect
� 2nd night
effect �
time on task
component

linear
r2 � 0.97
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ioral functioning. This focus is inconsistent with the
recent trend for models to move from being basic re-
search tools to practical field-applicable tools used to
optimize work scheduling. Because measures of perfor-
mance may vary substantially from individual to indi-
vidual, even if a model is capable of accurately predict-
ing mean group performance, this capability would be
of limited benefit without knowing how this translates
into predicting the performance of a given individual.
In many situations, such as mission-critical operations
prevalent in the military environment and in commer-
cial aviation, the emphasis is on the performance of one
or two key individuals whose performance could be
substantially different from those of a group. It would
be extremely valuable if the models could predict indi-
vidual neurobehavioral function and/or estimate the
range of inter-individual variations around group pre-
dictions, i.e., estimate the prediction error. However,
these capabilities may require a completely new mod-
eling paradigm (6,15) and much greater understanding
of sleep and human behavior.

One potential approach to model individual perfor-
mance that would be highly applicable to the military
environment is to develop personal models based on
individualized on-line measurements of physiologic
and non-physiologic variables, such as core body tem-
perature, levels of light exposure, and sleep/wake his-
tory (15). This approach may require the coupling of
existing parametric models with nonparametric mod-
els, such as artificial neural networks, in the develop-
ment of hybrid models that in addition to being ame-
nable to predicting individual performance could also
quantitatively assess the reliability of model predictions
through estimation of statistical error bounds. In addi-
tion to the intrinsic large data requirements posed in the
development of hybrid individualized fatigue and per-
formance models, a related issue is how a personal
model handles missing data (for example, sleep times).
This is a common occurrence in real-world applications,
and the substitution of group data may be inadequate
for predicting individual performance.

Estimating Prediction Uncertainties

The applicability of prediction models, be it for pre-
dicting group-average or individual performance, is of
limited benefit if the model does not also provide a
theoretically sound approach for quantitatively estimat-
ing the precision of the model predictions for new data
for which the outcomes are not known. Thus, in addi-
tion to the predicted model value, the model should
employ algorithms that simultaneously provide statis-
tical error bounds (such as standard error, confidence
intervals, and prediction intervals) to quantitatively de-
termine the bounds within which the predictions may
be trusted for a pre-defined coverage probability, e.g.,
� � with 95% confidence. The algorithms should explic-
itly allow for the incorporation of the distribution of the
data employed in model development (i.e., the “train-
ing” data) in the estimation of error bars for new data.
Hence, when a prediction is made in a region where the
training data are sparse, the error bounds should be
wide, indicating less reliability in the resulting predic-

tion. In contrast, in regions where the training data are
dense, the bounds should be narrower because the
model would have been exposed to similar patterns
during model development. This would allow for a
quantitative assessment of the accuracy of the model
predictions, affording their use when error bounds are
within pre-specified range and avoiding their usage
when the quality of the prediction deteriorates.

Unfortunately, the nature of the modeling approach
employed in the Sleep/Wake Predictor Model as well
as the other neurobehavioral function models does not
lend itself to the evaluation of prediction uncertainties.
Formal statistical methods are not routinely employed
in developing the models and, therefore, the uncer-
tainty in inferences based on differential equation mod-
els and algebraic models and their sensitivity to model
specification and parameter estimation error cannot be
evaluated (6). Nevertheless, the model by Moore-Ede et
al. (14) attempts to infer lower and upper limits about
the model prediction. These limits are obtained by em-
ploying a proprietary database, rerunning the model
with individuals from the database with different “con-
ditions,” and associating the minimum and maximum
predicted alertness values for any individual in the
database with the lower and upper limits, respectively.
Due to a lack of statistical underpinning in this ap-
proach, it is unlikely that the suggested limits around
the predictions are meaningful. None of the other mod-
els presented at the workshop, however, attempted to
provide an assessment of the accuracy of the model
predictions.

Research is needed to address this fundamental issue
and provide statistically based algorithms that make
quantitative, objective statements of the reliability of the
model predictions. Model reliability cannot be assured
if reliability cannot be quantified. This quantification of
model reliability might hold the key for enabling the
use of neurobehavioral function models for practical,
mission-critical applications. Again, achieving this ca-
pability might require developing models from scratch
based on modeling paradigms that lend themselves to
these functionalities.

Scaling of Model Outputs

The outputs of the neurobehavioral functional mod-
els are internally scaled into arbitrary numerical units,
which are subsequently mapped or normalized to dif-
ferent metrics corresponding to different subjective and
objective measures of alertness and performance. Be-
cause each model output is normalized to its own arbi-
trary subjective and objective metric, the models cannot
be directly compared with each other and neither can
they be directly compared with performance test mea-
surements, such as the Psychomotor Vigilance Task
(PVT) and the Karolinska Sleepiness Scale (KSS). It is
not clear how these normalizations are performed and
validated and what sort of mapping function, e.g., lin-
ear, nonlinear, is employed. It is intriguing and disturb-
ing, however, that a model not designed (i.e., normal-
ized) to predict subjective alertness outperforms
models tuned to do so in certain applications [see the
subjective alertness results of Scenario 2 in Van Dongen
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(16)]. The larger issue, though, is whether the outputs
provided by the model (e.g., subjective alertness, objec-
tive alertness) are appropriate measures of the outcome
that the model is trying to predict (e.g., accident risk,
functional field performance) (13). This is of particular
concern as the Sleep/Wake Predictor Model (and other
models) are being proposed to predict accident risk
when, in fact, the links between sleep regulation, alert-
ness, and work performance are not well established.
Clearly, there is a need to standardize the metrics that
models are mapped to and to validate the relationship
between the output measures provided by the models
and the actual field performance measures of interest.
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5. Borbély AA. A two process model of sleep regulation. Hum
Neurobiol 1982; 1:195–204.

6. Brown EN, Luithardt H. Statistical model building and model
criticism for human circadian data. J Biol Rhythms 1999; 14:
609–16.

7. Dinges DF, Achermann P. Commentary: Future considerations
for models of human neurobehavioral function. J Biol Rhythms
1999; 14:598–601.

8. Dinges DF. Critical research issues in development of biomath-
ematical models of fatigue and performance. Aviat Space En-
viron Med 2004; 75(3, Suppl.):A181–91.

9. Folkhard S, Åkerstedt T. A three-process model of the regulation
of alertness-sleepiness. In: Broughton RJ, Ogilvie R, eds. Sleep,
Arousal and Performance: Problems and Promises. Boston:
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