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INTRODUCTION
Borbely’s1 seminal two-process model of sleep regulation 
provides an elegant mathematical representation of the tem-
poral dynamics of homeostatic and circadian sleep processes. 
These two processes also account for the bulk of the varia-
tion in neurobehavioral performance both within and across 
days and, therefore, serve as the theoretical framework for 
most neurobehavioral performance prediction models.2 How-
ever, although such models performed well when applied to 
humans exposed to total sleep deprivation (TSD) conditions, 
they were less accurate for predicting the effects of chronic 
sleep restriction (CSR) because they do not account for prior 
sleep/wake history3 and inaccurately specify the relationship 
between the lower and upper asymptotes of the homeostatic 
sleep process.4

Recently, to address these issues, we developed a unified 
model of performance (UMP), which captures the neurobehav-
ioral performance effects of both TSD and CSR in a single (i.e., 
unified) mathematical model.5 The UMP was able to repro-
duce physiological findings, which showed that neurobehav-
ioral performance recovery following sleep loss is inversely 
proportional to sleep debt6 and that extending sleep prior to 
CSR slows performance degradation and results in faster sub-
sequent recovery.7 Although the UMP accurately predicted 
neurobehavioral performance for two studies (involving 64 h 
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Significance
We showed that, given the sleep/wake schedule of a group of individuals, one mathematical model can accurately predict neurobehavioral performance 
across a whole host of sleep-loss conditions, including conditions considerably different from those used in model development. In particular, the 
model accurately predicted the effects of sleep loss (total and partial) and countermeasure strategies, such as extended sleep and short daytime sleep 
episodes, with errors in model predictions no greater than those observed in the experimental performance data. Such a validated model can be used 
to generate hypotheses that can be experimentally tested, and to design optimal sleep/wake schedules for maintaining performance at desired levels at 
specified times of the day or for accelerating recovery following sleep loss.

of TSD and CSR of 7 nights with 3 h of sleep/night)7,8 from one 
laboratory, before it can be broadly applied, its performance 
must be validated across a larger number of studies, encom-
passing a wider range of sleep/wake schedules, including dif-
ferent durations of TSD and CSR and their combinations. In 
addition, it must show the ability to predict performance under 
sleep/wake schedules not used in developing the model. Fur-
thermore, because the UMP has only been validated on studies 
from one research group, whether its predictions are generaliz-
able across laboratories remains unknown. Therefore, in the 
current work, our first objective was to:

1. Determine the extent to which the UMP developed 
from the results of one study (composed of four 
different sleep/wake conditions) accurately predicts 
results obtained from five different studies in four 
different laboratories, comprising a total of 14 
different sleep/wake conditions involving different 
combinations of TSD (40 to 88 h), CSR (2 to 6 h of 
sleep/night), control (8 to 10 h of sleep/night), and nap 
(nocturnal and diurnal) schedules.

Subsequently, we used the UMP to simulate 
different sleep/wake schedules to address three 
additional research questions:

2. Can we determine the number of recovery nights 
and the associated recovery time in bed (TIB)/night 
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required to return neurobehavioral performance to a 
given basal level observed prior to sleep loss?

3. Can we quantify the neurobehavioral performance 
benefit derived from sleep extensions (e.g., 10 h TIB/
night versus 8 h TIB/night) prior to sleep loss?

4. Can we assess the differential neurobehavioral impact 
of a split-sleep schedule versus a consolidated sleep 
schedule?

METHODS

Datasets
We obtained psychomotor vigilance task (PVT) lapse data 
(number of response times > 500 msec) or simple reaction-time 
test (SRTT) lapse data from six different previously published 
sleep studies conducted in four different laboratories, reflecting 
a total of 18 different sleep/wake conditions. The SRTT is a 
reaction-time test similar to the PVT; the only difference was 
that the visual stimulus used in the former is a black square 
displayed on a screen at randomized (2–7 sec) intervals over 10 
min, whereas in the latter it is a running counter displayed on a 
screen at randomized (2–10 sec) intervals.9 We then used data 
from one of these studies (Study T1) for estimating the UMP 
model parameters, and data from the remaining five studies 
(Studies V1–V5) for validating the model predictions. Table 1 
summarizes the sleep/wake conditions [consisting of baseline, 
TSD/CSR/control, and recovery phases] for each of the six 
studies, which are briefly described next.

Study T1 6

Fifty-seven healthy adults (ages 24–62 y, mean 38 y) under-
went 7 consecutive nights of 3, 5, 7, or 9 h TIB (CSR phase) fol-
lowed by 3 consecutive nights of 8 h TIB (recovery phase) in a 
controlled laboratory study. A 10-min PVT was administered 
four times per day (09:00, 12:00, 15:00, and 21:00). Subjects 
in the 3- and 5-h TIB study conditions performed additional 
PVT sessions (at 00:00 for both study conditions and again at 
02:00 for the 3-h TIB study condition) during their additional 
time awake.

Study V1 8

Nineteen healthy adults (ages 18–39 y, mean 28 y) underwent 
two sleep-loss challenges (crossover design) separated by 
2–4 w: (1) 64 h TSD and (2) CSR consisting of 7 consecutive 
nights of 3 h TIB. During the entire wake period of TSD and 
CSR, 10-min PVTs were administered every 2 h.

Study V2 10

Twenty-three healthy adults (ages 22–38 y) were randomly as-
signed to either a 62-h TSD or a control schedule of 10 h TIB for 
2 consecutive nights. A 10-min PVT was administered every 2 
h throughout most of the time awake. (Mean age of the partici-
pating subjects was not reported in the original publication.10)

Study V3 11

Eighteen healthy middle-aged volunteers (ages 46–55 y, mean 
50 y) underwent two sleep-loss challenges (crossover design) 

Table 1—Sleep/wake schedules of the six different sleep studies (from four different laboratories) used in our analyses.

Study Study Condition # (n)
Sleep/Wake Schedule (wi)

 Wake Time (h) Baseline  TSD/CSR/Control  Recovery
Training (T) 

T16 1 (14) 3 nights, 8 h TIB 7 nights, 3 h TIB 3 nights, 8 h TIB 07:00
2 (12) ″ 7 nights, 5 h TIB ″ ″
3 (15) ″ 7 nights, 7 h TIB ″ ″
4 (16) ″ 7 nights, 9 h TIB ″ ″

Validation (V) 
aV18 5 (19) 7 nights, 10 h TIB 64 h TSD 3 nights, 8 h TIB 07:00

6 (19) ″ 7 nights, 3 h TIB ″ ″

V210 7 (12) 2 nights, 10 h TIB 62 h TSD 2 nights, 10 h TIB 08:00
8 (11) ″ 2 nights, 10 h TIB ″ ″

aV311 9 (18) 1 night, 8 h TIB 40 h TSD 1 night, 8 h TIB 07:00
10 (18) ″ 5 nights, 4 h TIB ″ ″

V412 11 (13) 2 nights, 10 h TIB 5 nights, 4 h TIB 1 night, 0 h TIB 08:00
12 (27) ″ ″ 1 night, 2 h TIB ″
13 (29) ″ ″ 1 night, 4 h TIB ″
14 (25) ″ ″ 1 night, 6 h TIB ″
15 (21) ″ ″ 1 night, 8 h TIB ″
16 (27) ″ ″ 1 night, 10 h TIB ″

V514 17 (13) 3 nights, 8 h TIB 88 h TSD 3 nights, 8 h TIB 07:30
18 (12) ″ 88 h, 2-h naps 

(one every 12 h)
″ ″ b

aCrossover design. bWake times for the 2-h naps were 04:45 and 16:45. CSR, chronic sleep restriction; TIB, time in bed; TSD, total sleep deprivation.
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separated by at least 2 w: (1) 40 h TSD and (2) CSR con-
sisting of 5 consecutive nights of 4 h TIB. Subjects performed 
a 10-min SRTT every 2 h from 08:00 to 22:00 on each day. 
Only daily averaged values of transformed lapses (√lapses + 
√lapses + 1) were reported for this study.11

Study V4 12,13

Following CSR of 5 consecutive nights of 4 h TIB, 142 healthy 
adults (ages 22–45 y, median 29 y) were randomly assigned to 
one of the following six recovery sleep schedules: 1 night of 0, 
2, 4, 6, 8, or 10 h TIB. A 10-min PVT was administered every 
2 h throughout the wake periods. (Note: Although the 0-, 2-, 4-, 
6-h TIB nights cannot be generally considered as “recovery,” 
we use this terminology to maintain consistency across all the 
other studies.)

Study V5 14–16

Twenty-five healthy adults (ages 21–48 y, mean 28 y) were ran-
domly assigned to one of the following two schedules during 
88 h of TSD: (1) no naps or (2) 2-h naps every 12 h. A 10-min 
PVT was administered every 2 h throughout most of the time 
awake.

Unified Model of Performance
Achermann and Borbely’s17 two-process model postulates that 
the temporal pattern of performance can be represented as the 
additive interaction of two processes. The first, process S, rep-
resents the homeostatic influence on performance wherein the 
homeostat increases during wake and decreases during sleep. 
In the original two-process model, these increases/decreases 
operate within fixed upper and lower asymptotes that are inde-
pendent of prior sleep debt. The second process is the endoge-
nous circadian rhythm, process C, which is independent of the 
sleep/wake history and represents a self-sustaining oscillator 
with a 24-h period.17

The UMP5,18 was developed as an extension of the original 
two-process model. In the UMP, process S is dependent on 
prior sleep debt such that the capacity to recover during sleep 
varies inversely with extant sleep debt. Specifically, the UMP 
modulates the lower asymptote of process S as a function of 
the sleep debt resulting from prior sleep/wake history such 
that the most recent sleep loss exerts the greatest effect, with 
the sleep loss influence decreasing with increasing temporal 
distance. Table 2 summarizes the biomathematical equations 
(Equations 1–5) governing the UMP, where Equations 2–3 de-
scribe processes C and S, respectively, Equation 4 describes 
the effect of sleep debt on the lower asymptote of process S, 
and Equation 5 describes the accumulation and restoration of 
sleep debt as a function of the sleep/wake history.

The UMP consists of eight parameters: (1) U, the upper as-
ymptote of the homeostatic process S; (2) τw, the time constant 
of increasing homeostatic pressure during wake time; (3) τs, 
the time constant of decreasing homeostatic pressure during 
sleep; (4) S0, the initial state value for process S; (5) κ, the am-
plitude of the circadian process C; (6) φ, the circadian phase; 
(7) τLA, the time constant accounting for the exponential rise 
and fall of sleep debt (via modulation of the lower asymptote L) 
as a function of sleep/wake history; and (8) L0, the initial state 

value of L. The first six parameters originate from the original 
two-process model, whereas the last two parameters account 
for the effects of sleep debt.

In this work, we modified the UMP to more accurately 
quantify the effect of sleep debt on process S. The original 
UMP5 quantifies the sleep debt to lie within a range of −2 and 1, 
where −2 corresponds to the asymptotically approached lower 
debt limit associated with 24 h of sleep/day, and 1 corresponds 
to the asymptotic upper debt limit associated with total sleep 
loss (0 h sleep/day). However, it is unlikely that normal, healthy, 
non-sleep-deprived individuals can sleep for 24 consecutive 
hours during 24 h of TIB. In fact, the estimated maximal ca-
pacity for sleep (under well-rested conditions) in young adults 
when given 16 h of sleep opportunity per 24 h is 8.9 h.19 There-
fore, in the current work, we modified the UMP to impose a 
minimum debt level of −0.11 (corresponding to the asymptotic 
debt limit associated with 8.9 h of sleep/day) instead of the 
previous limit of −2. (The revised debt limit associated with 
8.9 h of sleep/day is reached only under well-rested conditions. 
Under sleep-deprived conditions or when carrying a positive 
sleep debt, an individual can certainly sleep > 8.9 h/day, and 
this is considered in our model.)

Estimation of UMP Parameters
To obtain the UMP parameters using data from Study T1, we 
minimized the combined sum of the squared errors between 
the model outputs and the PVT lapse data from the four dif-
ferent study conditions 1–4 in the study (see Table 1). Specifi-
cally, we minimized the following objective function to obtain 
the eight UMP parameters Θ = (U, τw, τs, S0, κ, φ, τLA, L0):

 (t) − P(t, wi, Θ)[ ]∑ ∑
= =

4

1 1
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PJ (Θ) =  (6)

where (t)i
mP  denotes the group-average data from the i-th study 

condition at time t, Ti denotes the total number of measure-
ments available in the i-th study condition, wi denotes the sleep/
wake schedule of the i-th study condition, and P(t, wi, Θ) de-
notes the UMP output at time t corresponding to wi and Θ.

For Study T1, S0 and L0 represented the S and L values at the 
beginning of the baseline phase. However, because S0 and L0 
are parameters that depend on the prior sleep/wake history and 
because in each of the validation studies V1–V5 subjects slept 
for ~8 h for at least 3 d prior to the study,8,10–12,14 for the valida-
tion studies, we computed the S and L values corresponding 
to the end of the baseline of Study T1 (3 d of 8 h TIB) and 
assigned them as the S0 and L0 for all study conditions. Specifi-
cally, the S0 and L0 parameters were computed to be 0.50 and 
0.00 lapses, respectively.

UMP Predictions
A review of the inclusion/exclusion criteria for Studies V1–V5 
revealed that subjects were similar to those in Study T1 in 
terms of sleep habits, caffeine use, etc. Accordingly, we as-
sumed that the entrained circadian phase φ of each group of 
subjects was similar across all studies. We then computed the 
performance predictions (i.e., PVT or SRTT lapses) for each of 
the conditions in the validation studies as P(t, wi, Θ), where wi 
was obtained from Table 1.
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In the datasets considered in this work, we observed that 
the PVT and SRTT performance differed on the first day of 
TSD/CSR across studies, despite having the same sleep/wake 
schedules during the baseline phase. This could be due to 
various reasons, such as differences in the actual time asleep 
for a given TIB, between-study differences in the workload of 
the experimental protocols (e.g., frequency of PVTs, number 
and frequency of other performance tests, etc.), differential 
effects of seasonal variations in moods on subjects’ perfor-
mances, and differences between sleep laboratories (and the 
conditions within them). To account for these differences, and 
effectively normalize performance data across the study con-
ditions, we added a constant value δ to the UMP predicted 
output P(t, wi, Θ) for each study condition, where δ was 
computed as the difference between the average number of 
measured PVT (or SRTT) lapses and the average number of 
predicted lapses P(t, wi, Θ) on the first day of TSD/CSR for 
that particular study condition.

Goodness of Fit
To assess the goodness of fit (on data from Study T1) and 
predictions (on data from Studies V1–V5), we calculated the 
root mean squared errors (RMSEs) between the UMP model 
outputs P(t, wi, Θ) (fits and predictions) and the group-av-
erage PVT or SRTT lapse performance data for each study 
condition.

To provide an alternate goodness of fit for the UMP predic-
tions, we quantified the likelihood that the predictions came 
from the same distribution as the group-average data. Specifi-
cally, we computed the percentage of model predicted points 
that lie within a 95% confidence interval (CI) of the group-
average data, wherein we used the standard errors of the data 
to compute the CIs (95% CI ≈ 2 standard errors).20 Thus, higher 
percentage values indicate greater likelihood and, hence, better 
predictions. Such a metric is justified because if the model 
prediction at a particular time instant is considered as another 

“measurement” of group-average performance, it would be 

Table 2—Governing equations of the unified model of performance (UMP).

Performance impairment (P ):
P(t) = S(t) + κC(t) (1)

where C and S denote the circadian and homeostatic processes of the two-process model at time t, respectively, and κ represents the circadian 
amplitude. 

Circadian process (C ):

 
ai sin  i      (t + φ)∑

=

5

1i

2
τ
πC(t) = [ ] (2)

where ai, i = 1, …, 5, represent the amplitude of the five harmonics (a1 = 0.97, a2 = 0.22, a3 = 0.07, a4 = 0.03, and a5 = 0.001), τ denotes the 
period of the circadian oscillator (~24 h), and φ denotes the circadian phase.

Homeostatic process (S ):

 

[U − S(t)] / τw

[L(t) − S(t)] / τs
=

dt
dS(t) { (3)

where U and L denote the upper and lower asymptotes of process S, respectively, τw and τs denote the time constants of the increasing and 
decreasing sleep pressure during wakefulness and sleep, respectively. S(0) = S0 and L(0) = L0 correspond to the initial state values for S and 
L, respectively. (See text)

Lower asymptote (L) of process S :

 L(t) = U × Debt(t) (4)

where Debt denotes the sleep debt.

Sleep debt (Debt ):

 
= [Loss(t) − Debt(t)] / τLAdt

dDebt(t)
(5a)

 

1
−2

Loss (t) = { (5b)

where τLA denotes the time constant of the exponential decay of the effect of sleep history on performance.

Refer to Rajdev et al.5 for additional details.

during wakefulness

during wakefulness

during sleep

during sleep
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expected to lie within the 95% CI of the group-average data at 
that time instant.

RESULTS

Estimated UMP Parameters and Fits on Study T1
By minimizing the objective function in Equation 6, we ob-
tained the following UMP parameter estimates (standard error): 
U = 18.35 (0.73) lapses, τw = 40.00 (3.19) h, τs = 2.11 (0.11) h, 
S0 = 0.00 (0.66) lapses, κ = 3.26 (0.26) lapses, φ = 2.31 (0.26) h, 
τLA = 7.00 (1.67) d, L0 = −4.96 (0.00) lapses. Figure 1A–1D shows 
the corresponding fi ts on data from each of the four study con-
ditions (one in each panel) in Study T1. The UMP was able 
to capture the dose-dependent effect of TIB on performance 
during CSR, yielding RMSEs ranging from 1.20 lapses (for the 
7-h TIB condition) to 3.26 lapses (for the 3-h TIB condition). 
Although the fi t on the last 2 d of CSR for the 3-h TIB condition 
was, on average, lower than the data by 4.92 lapses, it success-
fully captured the slower recovery in this study condition (with 

an average discrepancy of only 0.86 lapses) in comparison to 
the recovery times in the other study conditions.

Validation of UMP Predictions on Studies V1–V5
We used the UMP parameters (as obtained from Study T1) to 
predict performance in the 14 different sleep/wake conditions 
of Studies V1–V5 in Table 1. We then validated the UMP pre-
dictions by comparing against the measured data for each of 
the 14 study conditions.

Figure 2 shows performance data and UMP predictions 
during the TSD/CSR and recovery phases of Study V1 (study 
conditions 5 and 6 in Table 1). Except for the PVT sessions 
between T1 and T2 (TSD challenge) and the fi rst sessions im-
mediately following sleep between C4 and C7 (CSR challenge), 
the UMP accurately predicted the effects of sleep loss during 
both TSD and CSR (and the recovery phases following them), 
yielding overall RMSEs of 2.46 and 2.39 lapses, respectively. 
Also, for TSD and CSR, 80% and 76% of the model predictions 
fell within the 95% CIs of the measured data, respectively. As 

Figure 1—Group-averaged lapse data (standard errors) and unifi ed model of performance (UMP) fi ts on baseline (B2–B3), chronic sleep restriction (CSR; 
C1–C7), and recovery (R1–R3) phases in Study T1.6 The four panels A-D correspond to the 3-, 5-, 7-, and 9-h time in bed (TIB) study conditions (1–4; 
Table 1) in Study T1, respectively. Gray-shaded vertical bars represent sleep episodes. Also shown are root mean squared errors (RMSE; lapses) between 
measured data and UMP fi ts, and 95% prediction intervals (PI) of the model outputs (dashed black lines).

PV
T 

la
ps

es

B2 B3 C1 C2 C3 C4 C5 C6 C7 R1 R2 R3
0

5

10

15

20

25

B2 B3 C1 C2 C3 C4 C5 C6 C7 R1 R2 R3

PV
T 

la
ps

es

Days
B2 B3 C1 C2 C3 C4 C5 C6 C7 R1 R2 R3

0

5

10

15

20

25

Days
B2 B3 C1 C2 C3 C4 C5 C6 C7 R1 R2 R3

Baseline RecoveryCSR

RMSE = 3.26 RMSE = 1.59

RMSE = 1.20 RMSE = 1.40

Baseline RecoveryCSR
A B

C D

TIB = 3 h TIB = 5 h

TIB = 7 h TIB = 9 h



SLEEP, Vol. 39, No. 1, 2016 254 A Unifi ed Model of Performance—Ramakrishnan et al.

observed in the data, the UMP also predicted a faster recovery 
following 64 h TSD compared to CSR of 7 nights of 3 h TIB.

Figure 3 illustrates performance data and UMP predic-
tions for Study V2 (study conditions 7 and 8 in Table 1). For 
study condition 7 (TSD), the UMP accurately predicted lapses 
during baseline, the initial portion of the TSD phase, and the 
recovery phase. However, it underpredicted lapses during the 
latter part of the TSD phase, yielding an overall RMSE of 3.80 
lapses (Figure 3A). Nevertheless, 79% of the lapse predictions 
fell within the 95% CIs of the data. For study condition 8 (con-
trol; no sleep loss), the UMP accurately predicted lapses across 
all phases, yielding an RMSE of 1.13 lapses, with 100% of the 
predictions lying within the 95% CIs of the data.

Figure 4 shows performance data and UMP predictions for 
Study V3 (study conditions 9 and 10 in Table 1). For this study, 
SRTT lapse data were transformed (√lapses + √lapses + 1) and 
daily means were reported. Accordingly, we transformed the 
UMP predictions and plotted them as a single daily average 
in Figure 4. Qualitatively, the UMP predictions accurately 
tracked performance trends during both TSD (Figure 4A) and 
CSR (Figure 4B) phases except for day C5 during CSR, where 
the measured data show an unexpected improvement in per-
formance from day C4 to day C5. Quantitatively, the RMSEs 
(based on daily means) were 0.63 and 0.50 transformed lapses 
for the TSD and CSR conditions, respectively. The largest 
prediction error observed on day T1 during TSD (Figure 4A)
was ~1 transformed lapse, which corresponds to ~3 non-trans-
formed lapses. For both conditions, 100% of the predictions 
were within the 95% CIs of the data.

Figure 5 illustrates performance data and UMP predictions for 
Study V4 (study conditions 11–16 in Table 1). The UMP accurately 
predicted performance during CSR days C1–C4 and slightly un-
derpredicted lapses on day C5, yielding an RMSE of 1.77 lapses 

across the baseline and CSR phases (Figure 5A). In the original 
publication, standard errors of the data during the baseline and 
CSR phases were not provided; consequently, the percentage of 
predictions falling within the 95% CIs of the data could not be 
computed. Also, the data obtained during the recovery phases 
were reported only as daily averaged lapses. Therefore, we 
plotted the daily averaged UMP predictions for the six different 
recovery phases (Figure 5B–5G). This, however, precluded cal-
culation of RMSEs for the various recovery phases. However, 
83% of the daily averaged predictions were within 95% CIs of the 
daily averaged data. Overall, the UMP successfully predicted the 
dose-dependent effect of TIB during recovery. For the 8-h TIB/
night recovery phase, UMP-predicted lapses were indistinguish-
able from the measured performance data (Figure 5F). The UMP 
underpredicted lapses in the 0-, 2-, and 4-h TIB/night recovery 
phases, and slightly overpredicted lapses in the 6- and 10-h TIB/
night recovery phases. With the exception of the 0-h TIB/night 
recovery phase, discrepancies between UMP predictions and 
measured data were less than 3 lapses.

Figure 6 illustrates performance data and UMP predictions 
for Study V5 (study conditions 17 and 18 in Table 1). For the 
88-h TSD condition (Figure 6A), the UMP generally underpre-
dicted lapses for the most part, yielding an overall RMSE of 
4.16 lapses. However, the measured data exhibited large stan-
dard errors and more than 75% of the UMP group-average pre-
dictions fell within the 95% CIs of the data. In contrast, the 
UMP predictions were quite accurate (RMSE = 2.07 lapses) for 
the 2-h nap condition illustrated in Figure 6B, with more than 
90% of the predictions falling within the 95% CIs of the data.

UMP Predictions for Simulated Sleep/Wake Scenarios
After validating the UMP predictions, we used the model to 
investigate (via simulations): (1) the number of nights and TIB/

Figure 2—Group-averaged lapse data (standard errors) and unifi ed model of performance (UMP) predictions on baseline (B7), total sleep deprivation 
(TSD; T1–T2)/chronic sleep restriction (CSR; C1–C7), and recovery (R1–R3) phases in Study V1.8 Panels A and B correspond to the 64-h TSD and 3-h 
time in bed CSR study conditions (5–6; Table 1) in Study V1, respectively. Gray-shaded vertical bars represent sleep episodes. Also shown are root mean 
squared errors (RMSE; lapses) between measured data and UMP predictions, and 95% prediction intervals (PI) of the model outputs (dashed black lines).
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night required for complete recovery (i.e., return to the basal 
performance level observed under habitual 8 h TIB/night) fol-
lowing 64 h TSD and 7 nights of 3 h TIB (Study V1); (2) the 
effect of prior sleep history on performance during TSD/CSR 
and during recovery in Study V1; and (3) the effect of split-
sleep schedule versus consolidated sleep on performance in 
Study V5 (study condition 18 in Table 1).

Number of nights and TIB per night for complete recovery
We used the UMP to generate performance predictions under 
the following two alternative recovery scenarios for TSD and 
CSR conditions in Study V1: (1) 10 nights of 8 h TIB and (2) 
10 nights of 10 h TIB. We then defi ned complete recovery as 
maintenance of PVT lapses within 20% of the maximum basal 
performance level across an entire recovery day. Here, basal 

performance was defi ned as the number of predicted lapses 
between 07:00 and 23:00 on the last day of 8 h TIB/night (of 7 
nights) preceding the fi rst 10-h TIB baseline night (Study V1).

Figure 7 illustrates the UMP-predicted performance under 
these two recovery scenarios for TSD (Figure 7A) and CSR 
(Figure 7B). For the TSD condition, the UMP predicted that 
complete recovery would occur after the 3rd night of 10-h 
TIB scenario. In contrast, complete recovery would occur 
only after 10 nights with 8 h nightly TIB. For the CSR condi-
tion, the UMP predicted that complete recovery would occur 
after the 5th night of 10-h TIB scenario; however, it would 
not be achieved even after 10 nights of 8 h nightly TIB. (The 
UMP predicted that complete recovery would require 14 
nights of 8 h nightly TIB.) These results suggest that only 
2 h of additional sleep can signifi cantly speed up recovery 
following sleep loss. Indeed, these fi ndings are in line with 
the observations of Faraut et al.,21 who noted that following 
a night of acute sleep restriction (2 h of sleep for 1 night), 
young healthy adults are able to return to normal baseline 
levels of alertness by extending the duration of the recovery 
night from 8 h to 10 h.

Effect of prior sleep history
In Study V1, subjects were subjected to 10 h TIB for 7 con-
secutive nights prior to the TSD/CSR phase (see Table 1). To 
determine the effect of prior sleep history on performance, 
we simulated and compared the effects of 7 consecutive 
nights of 10 h TIB (original study design) with those of 7 
consecutive nights of 7 h TIB on subsequent performance 
during TSD/CSR and recovery (the latter consisting of 8 h 
TIB/night, as per the original study). Figure 8 illustrates the 
UMP-predicted performance under these two prior sleep 
history scenarios for TSD/recovery (Figure 8A) and CSR/

Figure 3—Group-averaged lapse data (standard errors) and unifi ed 
model of performance (UMP) predictions on baseline (B1–B2), total 
sleep deprivation (TSD; T1–T2)/control (C1–C2), and recovery (R1–R2) 
phases in Study V2.10 Panels A and B correspond to the 62-h TSD and 
10-h time in bed control study conditions (7–8; Table 1) in Study V2, 
respectively. Other descriptors are identical to those in Figure 2.
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recovery (Figure 8B). As expected, the UMP predicted that 
performance during TSD/recovery would be better following 
7 nights of 10 h TIB than following the 7 nights of 7-h TIB 
scenario. However, it predicted that the performance benefi ts 
of extended TIB would gradually fade away across the TSD 
days (from 3.29 to 0.66 lapses) and the recovery days (from 
1.75 to 0.33 lapses). For the 10-h TIB scenario, the UMP pre-
dicted that complete recovery would be reached after the 10th

night. For the 7-h TIB scenario, it predicted that complete 
recovery would be reached only after 14 nights of 8 h nightly 
TIB; however, the predicted benefi t of the 10-h TIB scenario 
over the 7-h TIB scenario was less than one lapse after 5 
recovery nights. For the CSR/recovery condition, the UMP 
predicted that performance benefi ts derived from 7 prior 
nights of 10 h TIB would decrease across the CSR days (from 
3.29 to 0.61 lapses) and the recovery days (from 0.86 to 0.16 
lapses). In addition, during recovery, neither prior sleep his-
tory scenario would reach complete recovery by the 10th day. 
The UMP predicted that complete recovery would require 14 
nights of 8 h nightly TIB for the 10-h TIB scenario and 15 
nights of 8 h nightly TIB for the 7-h TIB scenario; however, 
the predicted benefi t of the 10-h TIB scenario was less than 
one lapse during the recovery days. Overall, the model pre-
dicted that the effect of prior sleep history on performance 
would fade away with increasing days of either form of sleep 
loss, but would became prevalent again, albeit to a lesser ex-
tent, during the fi rst few recovery days. These predictions are 
in concurrence with results reported by Rupp et al.,7 where 
extending sleep prior to CSR slows performance degradation 
and provides faster subsequent recovery.

Effect of a split-sleep schedule over consolidated sleep
In the nap condition of Study V5 (study condition 18 in Table 1), 
subjects took 2-h naps every 12 h during 88 h of sustained 
wakefulness (Figure 6B). This sleep/wake schedule can be 
considered as a form of split-sleep schedule with 4 h TIB per 
day. To determine the effect of such a split-sleep schedule 
versus consolidated sleep of 4 h TIB (nocturnal or diurnal), 
we generated UMP predictions for the following two condi-
tions: 4 h nocturnal sleep (01:45 to 05:45) and 4 h diurnal 
sleep (13:45 to 17:45). Figure 9 illustrates the UMP predic-
tions under the split-sleep schedule and the two consolidated 
sleep conditions. Under each condition, the UMP predicted 
that performance would be the worst during the early part of 
the day (06:00–11:00) and the best during the early evening 
hours of the day (18:00–23:00). The model predicted that 
performance under the split-sleep schedule would lie in be-
tween the performance trajectories observed under the two 
consolidated sleep conditions. Specifi cally, in the morning 
hours, performance under the split-sleep schedule would 
be much better than consolidated diurnal sleep, and slightly 
worse (less than one lapse) than consolidated nocturnal 
sleep. In the evening hours, it would be much better than 
consolidated nocturnal sleep and slightly worse (less than 
two lapses) than consolidated diurnal sleep. Thus, overall, 
the split-sleep schedule would provide a better compromise 
than either of the two consolidated 4 h TIB/day conditions. 
More importantly, splitting up sleep would not negatively af-
fect daytime performance compared to a consolidated sleep 
period of the same total duration, which is supported by a 
couple of prior studies.22,23

Figure 5—Group-averaged lapse data and unifi ed model of performance (UMP) predictions on baseline (B2), chronic sleep restriction (CSR; C1–C5), and 
six different recovery time in bed (TIB) phases in Study V4.12 Panel A shows the measured data (averaged across all 142 subjects in the six study conditions 
11–16; Table 1) and the UMP prediction for the baseline and CSR phases. Panels B–G show daily-averaged measured data (standard errors) and UMP 
predictions during recovery night of 0, 2, 4, 6, 8, and 10 h TIB (study conditions 11–16; Table 1), respectively. Other descriptors are identical to those in 
Figure 2. (Standard errors of the measured data were not available for the baseline and CSR phases.)
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DISCUSSION
To be useful, a model needs to accurately predict neurobehav-
ioral performance across conditions and subjects not used to 
develop the model. Hence, our fi rst goal was to validate the 
UMP on PVT performance data from fi ve studies that encom-
passed a wide range of sleep/wake schedules, including ones 
considerably different from those used in model development. 
After validation, we demonstrated how the UMP can be used 
to generate testable hypotheses on the effects of specifi c sleep/
wake schedules on PVT performance. In particular, we simu-
lated different schedules to assess the effect of the number of 
nights (and TIB per night) required for complete recovery fol-
lowing sleep loss, the benefi cial effect of sleep extension prior 
to sleep loss, and the effect of split-sleep schedule vis-à-vis
consolidated sleep.

Our fi rst objective was to determine the extent to which 
the UMP developed using data from one study (composed of 
four different CSR conditions involving 7 d of 3, 5, 7, and 9 
h TIB/night) accurately predicted performance data from fi ve 
different studies comprising a total of 14 different sleep/wake 
conditions. These fi ve studies, conducted in four different lab-
oratories, included different combinations of TSD (40 to 88 h), 
CSR (2 to 6 h TIB/night), control (8 to 10 h TIB/night), and nap 
(nocturnal and diurnal) schedules. Overall, across all studies, 
the UMP accurately predicted the performance trends during 
each of the sleep/wake schedules. Quantitatively, the UMP pre-
diction accuracy was high, with RMSEs across studies ranging 
from 7% to 36% of the maximum impairment levels. Impor-
tantly, on average, 87% of the UMP predictions lay within 2 
standard errors of the measured data, which ranged from 14% 
to 117% of the maximum impairment levels. In general, the 
prediction accuracy was higher for the conditions that included 
partial sleep loss versus the no-sleep (TSD) conditions. It is not 
clear if this should be attributed to the fact that the model was 
developed using CSR data or because TSD is, in fact, harder 
to predict. For conditions that included partial sleep loss, the 
measured data invariably fell within the 95% prediction in-
tervals of UMP-predicted values. In addition, consistent with 
prior fi ndings that humans exhibit trait-like responses to sleep 
loss, the accuracy of the UMP predictions was more homog-
enous in crossover design studies (Studies V1 and V3)8,11 than 
in parallel-group design studies (Studies V2, V4, and V5).10,12,14

Qualitatively, the UMP accurately captured the temporal 
dynamics of performance in all study conditions investigated 
in this work, yielding an average Pearson correlation coeffi -
cient of 0.86. However, quantitatively, it tended to underpredict 
lapses, particularly after extended sleep loss or during periods 
of increased extant sleep debt (e.g., Figures 3A, 5B, and 6A), ex-
cept for two study conditions involving 64 h TSD and 7 nights 
of 3-h TIB CSR8 (Figure 2). Lapse underpredictions could be 
due to many reasons. First, the model-generated predictions 
were based on the presumption that TIB was equivalent to time 
asleep. However, TIB represents an overestimation of actual 
sleep obtained under conditions in which sleep effi ciency is 
reduced, most notably during extended sleep periods.7 Further-
more, most of the studies modeled here did not report actual 
sleep or TIB during the pre-baseline phase, which therefore 
could have been greater or less than the assumed 8 h. Second, 

in the UMP, the recovery capacity during sleep varies as a 
function of extant sleep debt (i.e., the lower asymptote L of the 
homeostatic process increases or decreases with increasing or 
decreasing sleep debt, respectively, while the upper asymptote 
U is held constant).5 However, it is possible that the maximum 
performance degradation during wake time, which is repre-
sented by U, is also a monotonic function of sleep debt, which 
then could account for the increased lapses observed during 
extended sleep loss. Data from additional extended sleep-loss 
studies would, however, be needed to determine the appro-
priate enhancements to the UMP.

The UMP overpredicted lapses in one study involving 40 h of 
TSD and 5 nights of 4-h TIB CSR study conditions (Figure 4). 
We speculate that this may be because the subjects involved in 

Figure 6—Group-averaged lapse data (standard errors) and unifi ed 
model of performance (UMP) predictions on baseline (B3), no naps 
(T1–T3), and 2-h naps every 12 h (C1–C3) phases in Study V5.14 Panels 
A and B correspond to the 88-h TSD and 2-h naps study conditions 
(17–18; Table 1) in Study V5, respectively. The dark- and light-gray 
shaded vertical bars represent the nocturnal and diurnal sleep episodes, 
respectively. Other descriptors are identical to those in Figure 2.
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this study were middle-aged (46–55 y) with a mean age of 50 y; 
the mean ages of subjects in all the other studies ranged from 
28 to 38 y. In comparison with young subjects, healthy adults 
of older ages typically feel less sleepy after sleep deprivation, 
and they show fewer response lapses on the PVT.24 Because the 
UMP was developed using lapse data from relatively younger 
subjects, it might tend to overpredict lapses for older subjects. 
Therefore, future modeling efforts might have to account for 
the effects of age on neurobehavioral performance.

Our second and third objectives were to demonstrate the 
use of UMP in (1) determining the number of recovery nights 
(and the associated TIB/night) required for complete recovery 
following sleep loss and (2) quantifying the beneficial effect 
of sleep extension prior to sleep loss. UMP simulations of 

two different recovery scenarios following 64 h of TSD and 7 
consecutive nights of 3-h TIB CSR (Figure 7) suggested that 
only 2 h of additional recovery sleep can significantly speed 
up recovery following sleep loss from 10 to 3 nights for TSD 
and from 14 to 5 nights for CSR. Similarly, simulations of two 
different baseline conditions (Figure 8; 7 consecutive nights of 
10-h TIB and 7 consecutive nights of 7-h TIB) preceding TSD 
and CSR suggested that prior sleep extension (10-h TIB/night) 
is beneficial, improving performance by at least three lapses 
during sleep loss (and, to a lesser extent, during subsequent 
recovery). The simulations also suggested that the effect of 
prior sleep history on performance fades away with increasing 
days of sleep loss, but becomes prevalent again during the first 
few recovery days (Figure 8). In Figure 2, we observed that 

Figure 7—Unified model of performance (UMP) simulations for baseline (B1–B7), total sleep deprivation (TSD; T1–T2)/chronic sleep restriction (CSR; 
C1–C7), and recovery (R1–R10) phases under two different recovery scenarios for Study V1.8 Panels A and B correspond to the 64-h TSD and 3-h time 
in bed (TIB) CSR study conditions (5–6; Table 1), respectively. Black solid lines represent the UMP predictions up to the first recovery night. Solid red 
and dashed blue lines represent UMP predictions during the recovery nights for the 8- and 10-h TIB recovery scenarios, respectively. The dotted green 
horizontal line corresponds to the threshold used to define complete recovery (within 20% of the maximum basal performance level). Gray-shaded vertical 
bars represent the sleep episodes. Also indicated, within red and dashed blue circles, are the number of recovery nights required for complete recovery 
under the 8- and 10-h TIB recovery scenarios, respectively.
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the UMP marginally overpredicted lapses during recovery fol-
lowing TSD and CSR. Thus, the UMP-predicted number of 
recovery nights in the simulations could have been slightly 
overestimated. Nevertheless, these simulations demonstrate 
how the UMP could be used to strategically design different 
baseline and recovery phases for optimal performance mainte-
nance during sleep loss and faster subsequent recovery. Addi-
tional studies validating these model simulation results would 
help further ascertain the generalizability of the UMP model 
predictions.

Our final objective was to investigate the effect of a split-
sleep schedule versus a consolidated sleep schedule. The UMP 
predicted that, when considering the best and worst perfor-
mances during wake time in Study V5, a split-sleep schedule of 
2-h naps (one every 12 h) during an 88-h time interval would 

be, on average, better than consolidated sleep schedules of 4 h 
TIB per day (nocturnal or diurnal) (Figure 9). As expected, the 
split-sleep schedule yielded predicted performance that was 
better than consolidated nocturnal sleep during the evening 
hours and better than consolidated diurnal sleep during the 
morning hours. This result was confirmed in another simula-
tion where we split the 4-h nocturnal sleep in Study V4 into 
two 2-h sleep schedules every 12 h (05:00 to 07:00 and 17:00 
to 19:00). Importantly, the simulations suggest that, given a 
fixed TIB/day, split-sleep schedules offer enhanced flexibility 
for sleep/work schedules while maintaining performance at 
similar levels.22,23 One of the underlying assumptions of these 
UMP simulations is that the recuperative effect of sleep on per-
formance is independent of the time of day. Although there are 
reports that suggest otherwise25,26, to date, experimental data 

Figure 8—Unified model of performance (UMP) simulations for baseline (B1–B7), chronic sleep restriction (CSR; C1–C7), and recovery (R1–R10) phases 
under two different baseline conditions for Study V1.8 Panels A and B correspond to the 64-h TSD and 3-h time in bed (TIB) CSR study conditions (5–6; 
Table 1), respectively. Solid red and dashed blue lines represent UMP predictions for the 10- and 7-h TIB baseline conditions, respectively. The dotted 
green horizontal line corresponds to the threshold used to define complete recovery (within 20% of the maximum basal performance level). Gray-shaded 
vertical bars represent the sleep episodes. Also indicated, within the red circle, is the number of recovery nights required for complete recovery under the 
10-h TIB baseline condition.
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available to quantify the effect of circadian phase on the recu-
perative effect of sleep on performance are sparse.

The UMP was derived as an extension to Borbely’s1 seminal 
two-process model of sleep regulation with the intention to 
capture the effects of TSD and CSR in one unifi ed framework, 
wherein the lower asymptote of the homeostatic process was 
modulated as a function of extant sleep debt. Recently, Mc-
Cauley and colleagues27 proposed a state-space modeling ap-
proach that represents the two-process model as a system of 
coupled, nonhomogeneous, fi rst-order ordinary differential 
equations, where the upper and lower asymptotes of the ho-
meostatic process are modulated based on sleep/wake history 
while maintaining a fi xed difference between them. Although 
these two models represent extensions of the two-process 
model, they are structurally distinct and such differences lead 
to different predictive ability in certain sleep/wake schedules. 
For example, when we compared the ability of the models to 
learn group PVT performance under one condition (64 h of 
TSD in Study V1) and then predict the same group’s perfor-
mance under a different condition (CSR of 7 nights of 3-h 
TIB in Study V1), the UMP model was signifi cantly more ac-
curate (> 75%) than the state-space model.5 In particular, the 
state-space model predicts that performance continuously de-
grades under the CSR condition. This is due to the bifurcation 
characteristic in this model, which stipulates that when daily 
wakefulness is maintained below a critical threshold (20.2 h), 
performance converges to a stable level, whereas when daily 
wakefulness is increased beyond this threshold, performance 
continuously degrades over time. In contrast, the UMP does 
not assume the existence of such bifurcation. Rather, it seam-
lessly bridges the continuum of sleep loss—from CSR to 

TSD—by modeling TSD as a limiting case of CSR and con-
verging to the two-process model when TIB approaches zero. 
In this simulation, the UMP was also 20% more accurate than 
the two-process model.5

In other sleep/wake schedules, the structural differences be-
tween the two models did not seem to affect their predictive 
ability; both models yielded comparable predictions, which 
were better than the ones obtained with the original two-pro-
cess model. For example, in Study T1, the UMP and the state-
space models captured the dose dependence of sleep loss and 
PVT performance reasonably well and signifi cantly better (> 
35%) than the two-process model.5

More recently, McCauley and colleagues13 updated their 
state-space model by incorporating a time-dependence in the 
circadian amplitude to better account for the effects of night-
shift schedules and daytime naps. Although the UMP has not 
been validated on studies involving night-shift schedules, and 
it is not clear how it would perform in such schedules, it has 
been able to accurately predict the effects of daytime naps 
(Study V5). In fact, when compared with the updated state-
space model results reported by McCauley and colleagues, it 
showed a signifi cant improvement (51%). When we compared 
the UMP predictions against the updated state-space model 
for two additional sleep/wake schedules used here and by Mc-
Cauley and colleagues, we noted that the state-space model 
yielded more accurate predictions (19%) for the TSD schedule 
in Study V2 and equivalent predictions for the CSR schedule 
in Study V4.

The UMP was developed using PVT performance data. 
Consequently, the extent to which its predictions generalize 
to other aspects of neurobehavioral performance or behavioral 
tasks is not known. For example, prior studies have found that 
an individual’s relative rank on the PVT was not the same as 
that individual’s relative rank on other neurocognitive tasks.8,28

However, the PVT is more widely used because it has been 
shown to be more sensitive to sleep loss than other neurobe-
havioral metrics.29 Thus, prior results showing that a person’s 
relative rank on PVT is not correlated with his/her relative rank 
on other metrics may be due to the lack of metric sensitivity. 
Accordingly, PVT-based model predictions could only serve 
as indicators of the likelihood of near-future defi cits in other 
aspects of neurobehavioral performance.

Another model component requiring further work regards 
the phase of the circadian rhythm function. The UMP cur-
rently does not change the circadian phase in response to travel 
across time zones. Given information about the time zone, the 
phase could be gradually adjusted in a dynamic fashion, such 
that the rate of change of phase would depend primarily on 
the magnitude and direction of the time-zone change, duration 
since travel, and, to a lesser extent, on the sleep schedule in 
the newer time zone. However, such model revisions would 
require suffi cient performance data from studies involving 
transmeridian travel, which are diffi cult to obtain.

The practical utility of biomathematical models, such as 
the UMP, lies in the user’s ability to simulate the effect of 
any given sleep/wake schedule on performance, without the 
need to perform additional experimental studies. Underes-
timating negative performance effect could negatively affect 

Figure 9—Unifi ed model of performance (UMP) simulations for baseline 
(B3) and three 4-h time in bed (TIB)/day schedules (C1–C3) across 88 h: 
(1) solid red line: split sleep with 2-h naps (one every 12 h) as in Study V5 
(study condition 18; Table 1)14; (2) dashed green line: consolidated 4 h 
nocturnal sleep (01:45 to 05:45); and (3) dotted blue line: consolidated 4 h 
diurnal sleep (13:45 to 17:45). The dark- and light-gray-shaded vertical 
bars represent the nocturnal and diurnal sleep episodes, respectively, 
corresponding to the split-sleep schedule.
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safety (in the form of performance-related errors and acci-
dents), whereas overestimating negative performance effect 
could result in overmanning, unnecessary redundancies, inef-
ficient on/off duty cycles, and other cost-ineffective practices. 
Although biomathematical model predictions are not perfect, 
they do provide an objective, quantitative means to assess 
human performance impairment due to sleep loss. In fact, the 
use of such models in operational settings are becoming more 
widespread, e.g., the US Federal Aviation Administration uti-
lized model predictions to revise flight-duty periods for avia-
tion crew members.30 Friedl and colleagues31 and Raslear and 
Coplin32 provide additional examples of the use of models in 
operational settings.

In summary, this work validates the UMP’s ability to pre-
dict cognitive performance impairment due to a wide range 
of sleep-loss schedules investigated in different sleep labora-
tories. Accordingly, it could serve as a useful tool to design 
and optimize laboratory sleep-study protocols as well as a key 
component of fatigue management systems. To enhance the 
utility of the UMP, we seek to incorporate additional capabili-
ties. In particular, we are developing strategies to integrate 
the UMP with the recently developed dose-dependent model 
of caffeine response33 so as to predict the detrimental effects 
of total/chronic sleep loss and the recuperative effects of caf-
feine using a single model. This supports our long-term goal 
of incorporating these model components into an integrated 
computational tool that prescribes countermeasures (e.g., the 
timing of naps and timing and dosage of caffeine), to optimize 
an individual’s neurobehavioral performance and thereby re-
duce the risk of sleep loss-related errors and accidents. Al-
though many challenges remain, the integrated UMP would 
provide another step toward the development of a wearable 
computer-based system or smartphone app that considers an 
individual’s sleep/wake history, current and recent past per-
formance, and caffeine consumption to predict future levels of 
performance.34

ABBREVIATIONS
CI, confidence interval
CSR, chronic sleep restriction
PI, prediction interval
PVT, psychomotor vigilance task
RMSE, root mean squared error
SRTT, simple reaction-time test
TIB, time in bed
TSD, total sleep deprivation
UMP, unified model of performance
US, United States 
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