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� We developed a model of neurocognitive performance that incorporates sleep debt.

� Our model unifies total sleep deprivation and chronic sleep restriction scenarios.
� Our model captures the slower recovery process after chronic sleep restriction.
� Our model describes the beneficial effects of banking sleep on performance.
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Performance prediction models based on the classical two-process model of sleep regulation are
reasonably effective at predicting alertness and neurocognitive performance during total sleep depriva-
tion (TSD). However, during sleep restriction (partial sleep loss) performance predictions based on such
models have been found to be less accurate. Because most modern operational environments are
predominantly characterized by chronic sleep restriction (CSR) rather than by episodic TSD, the practical
utility of this class of models has been limited.

To better quantify performance during both CSR and TSD, we developed a unified mathematical
model that incorporates extant sleep debt as a function of a known sleep/wake history, with recent
history exerting greater influence. This incorporation of sleep/wake history into the classical two-process
model captures an individual's capacity to recover during sleep as a function of sleep debt and naturally
bridges the continuum from CSR to TSD by reducing to the classical two-process model in the case of TSD.
We validated the proposed unified model using psychomotor vigilance task data from three prior studies
involving TSD, CSR, and sleep extension. We compared and contrasted the fits, within-study predictions,
and across-study predictions from the unified model against predictions generated by two previously
published models, and found that the unified model more accurately represented multiple experimental
studies and consistently predicted sleep restriction scenarios better than the existing models. In addition,
we found that the model parameters obtained by fitting TSD data could be used to predict performance
in other sleep restriction scenarios for the same study populations, and vice versa. Furthermore, this
model better accounted for the relatively slow recovery process that is known to characterize CSR, as
well as the enhanced performance that has been shown to result from sleep banking.
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1. Introduction

Sleepiness increases the risk of human error and accidents. It
also affects the health, safety, and quality of life of military and
civilian personnel who are regularly exposed to work schedules
that preclude adequate daily sleep duration and timing (Mallis
et al., 2004). Critical to effective management of operational
alertness and performance is the ability to accurately predict the
impact of various work/rest schedules on individual operators. In
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this paper, we consider the problem of predicting the alertness
and performance of a population for a set sleep/wake schedule.
Biomathematical modeling provides the most promising strategy
for addressing the problem of helping manage alertness and
neurocognitive performance in operational environments (Friedl
et al., 2004), thereby enhancing the safety and productivity of both
military and civilian operators.

Borbély's seminal two-process model, originally developed to
describe the mechanisms mediating sleep regulation (Borbély,
1982), has also served as the basis of many models used to predict
human alertness and neurocognitive performance during sleep
loss (Mallis et al., 2004). A basic postulate of this model is that
alertness and performance are modulated by the additive interac-
tion of two processes. The first, process S, is the sleep homeostat,
responsible for increasing sleep propensity during waking, and
reducing sleep propensity as recovery occurs during sleep. The
fluctuations of S are described by exponential functions with fixed
upper and lower asymptotes. The second process is the endogen-
ous circadian rhythm, process C, which is driven by the internal
clock residing in the suprachiasmatic nuclei of the anterior
hypothalamus (Daan et al., 1984). This phenomenological model,
based on findings from acute total sleep deprivation (TSD) studies,
has been extended beyond its original goal of predicting slow-
wave activity as a function of sleep/wake history, and now also
provides a theoretical framework for quantifying the effects of
sleep deprivation on objective and subjective alertness and neuro-
cognitive performance.

More recently, several groups have investigated performance
degradation resulting from different levels of sleep restriction
(Belenky et al., 2003; Van Dongen et al., 2003; Rupp et al., 2009,
2012; Carskadon and Dement, 1981; Dinges et al., 1997). In
contrast to TSD studies, results from these well-controlled chronic
sleep restriction (CSR) studies have shown that models of neuro-
cognitive performance based solely on Borbély's two-process
model fail to accurately predict the observed degradation (Van
Dongen et al., 2003; Carskadon and Dement, 1981; Dinges et al.,
1997; Mollicone et al., 2010). It has also been observed that the
rate of neurocognitive performance recovery after CSR is consider-
ably slower than the rate of recovery after acute TSD (Belenky
et al., 2003; Johnson et al., 2004) and that this class of models does
not accurately capture this difference (Johnson et al., 2004).

New performance prediction models have been proposed to
explain these observations. Van Dongen et al. (2003) described the
effects of sleep restriction in terms of “excess wakefulness” or
cumulative wake-time extensions rather than as a homeostatic
process, whereas Johnson et al. (2004) and Hursh et al. (2004)
introduced a “slow” process modulating the homeostat based on
sleep/wake history. The latter model provides accurate predictions
for aggregate, daily mean performance during seven days of CSR.
However, it has not been used to describe performance variations
within each day. Avinash et al. (2005) used this slow process to
manipulate the upper and lower asymptotes of the sleep homeo-
stat process in the two-process model so that they simultaneously
rise during wakefulness and decay during sleep while maintaining
a constant, fixed difference between them. A limitation of this
approach is the requirement for an a priori estimate of the exact
value of the fixed difference between the asymptotes, which is
likely to vary across different data sets. In addition, they found that
although these models accurately fit data collected under CSR,
they substantially underestimate performance impairment under
TSD Avinash et al. (2005).

McCauley et al. (2009) showed that these approaches belong to
a broader class of homeostatic models and incorporated the two-
process model and Avinash et al.'s model into a generalized state-
space model. This state-space model similarly maintains a con-
stant, fixed difference between the homeostat asymptotes as they
rise and fall. In addition, it predicts a bifurcation of the perfor-
mance trajectory; that is, when daily wakefulness is maintained
below a critical threshold, performance tends to stabilize at a
deteriorated level, whereas when daily wakefulness is increased
beyond this threshold, the model predicts a continuous degrada-
tion in performance over time. This predicted bifurcation of the
performance trajectory follows a timescale much longer than the
duration of their 14-day CSR study on which the model was based
and thus has not been experimentally validated. Moreover, the
inclusion of seven additional parameters beyond the seven para-
meters of the classical two-process model (Avinash et al., 2005;
Achermann and Borbély, 1994) makes it difficult to estimate the
model parameters from limited CSR data. Furthermore, the inher-
ently nonlinear interaction between the homeostatic and circadian
processes in this model can place the lower asymptote above
actual performance data.

To address these limitations, we developed a model we call the
“unified model.” Results of recent studies suggest that CSR induces
relatively long-term, slow-recovering changes in brain physiology
that affect alertness and performance (Belenky et al., 2003;
Johnson et al., 2004; Alhola and Polo-Kantola, 2007). We hypothe-
sized that these long-term changes alter the homeostatic process
during sleep such that the capacity of an individual to recover
during sleep changes as a function of prior sleep/wake history, i.e.,
as a function of sleep debt. Mathematically, we modeled this
hypothesis by allowing the lower asymptote of the classical two-
process model to increase or decrease based on the accumulation
or restoration of sleep debt, respectively, while keeping the upper
asymptote constant. Because the lower asymptote bounds perfor-
mance impairment from below, constraining the minimum
amount of impairment, by modulating the lower asymptote as a
function of sleep debt we effectively constrain the rate of perfor-
mance recovery during sleep. Sleep debt, in turn, is modeled based
on a “fading memory” filter, representing the notion that sleep
losses or sleep extensions that occurred in the remote past have
less effect on the present sleep debt and performance than
comparable events in the recent past. Belenky et al. (2003)
proposed a similar notion to explain the slow rate of performance
recovery after CSR; our work builds on their observations by
constructing a mathematical model to describe the phenomenon.
A similar notion of fading memory is used in the Fatigue Audit
InterDyne (FAID) model developed by Dawson and Fletcher
(2001); the fading-memory filter we propose in this paper goes
beyond the FAID model in that it also incorporates the possible
beneficial effects of sleep banking (Rupp et al., 2009). The idea of
fading memory has not been incorporated into Borbély's two-
process model (and other closely related neurocognitive perfor-
mance models), which assume a constant capacity to recover from
sleep loss regardless of prior sleep/wake history.

The unified model is so named because it bridges the con-
tinuum between CSR and TSD and reduces to Borbély's classical
two-process model in the case of total sleep loss. We validated the
proposed model using data from three prior studies (Belenky et al.,
2003; Van Dongen et al., 2003; Rupp et al., 2012) in which subjects
were exposed to TSD as well as different CSR schedules.
2. Methods

2.1. Borbély's two-process model of sleep regulation

Borbély's two-process model (Borbély and Achermann, 1999;
Achermann and Borbély, 1992) is based on the interaction of two
processes: (1) the homeostatic process S, which rises monotoni-
cally during wakefulness and declines monotonically during sleep
(Daan et al., 1984) and (2) a circadian process C, which is a 24-h
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periodic, self-sustaining oscillator modeled as a five-harmonic
sinusoidal equation.

The homeostatic process S(t) is defined for each time t by
two exponential functions, one each for wakefulness and sleep
(Borbély and Achermann, 1999; Achermann and Borbély, 1992):

_SðtÞ ¼ ½U−SðtÞ�=τw during wakefulness ð1aÞ

_SðtÞ ¼ − SðtÞ−L½ �=τs during sleep ð1bÞ
where U represents the upper asymptote, L represents the lower
asymptote, τw denotes the time constant of the increasing saturat-
ing exponential function during wakefulness, and τs denotes the
time constant of the decreasing exponential function during sleep.
In the classical two-process model, both U and L are constant for
all t.

The circadian process C(t) at time t is modeled by a five-
harmonic sinusoidal equation (Daan et al., 1984):

CðtÞ ¼ ∑
5

i ¼ 1
ai sin i

2π
τ
ðt þ φÞ

� �
ð2Þ

where ai, i¼1,…, 5, represent the amplitude of the five harmonics
of the circadian process (a1¼0.97, a2¼0.22, a3¼0.07, a4¼0.03, and
a5¼0.001), τ denotes the period of the circadian oscillator (∼24 h),
and φ denotes the circadian phase (Achermann and Borbély, 1992).
This five-harmonic sinusoidal equation models the circadian pace-
maker under entrained conditions (Klerman and St-Hilaire, 2007).

We modeled the dynamics of neurocognitive performance as
the additive interaction of the homeostatic process S and the
circadian process C. Thus, performance impairment P(t) at time t is
given by

PðtÞ ¼ SðtÞ þ κ � CðtÞ ð3Þ
where κ is a positive constant representing the relative effect of the
circadian process on performance. Consequently, the seven para-
meters required for estimating performance during intermittent
periods of sleep and wakefulness using the two-process model are
S(0), U(0), L(0), τw, τs, φ, and κ. In this formulation, large values of
P(t), S(t), and C(t) indicate greater performance impairment.
2.2. The state-space model

Avinash et al. (2005) extended the two-process model by
allowing the asymptotes L(t) and U(t) to increase linearly during
wakefulness and decrease exponentially during sleep while main-
taining a constant difference between them at all times. McCauley
et al. (2009) showed that this model belongs to a broader class of
homeostatic models that can be represented by a system of
coupled nonhomogeneous first-order ordinary differential equa-
tions. In this class of models, the asymptotes increase exponen-
tially during wakefulness and decrease exponentially during sleep,
and this general model is expressed as

_Pw

_U

" #
¼ A

Pw

U

� �
þ μþ κ � CðtÞ

0

� �
;

A ¼
α11 α12
α21 α22

" #
during wakefulness ð4aÞ

_Ps

_L

" #
¼Σ

Ps

L

� �
þ μþ κ � CðtÞ

0

� �
;

Σ ¼
s11 s12
s21 s22

" #
; during sleep ð4bÞ

LðtÞ ¼UðtÞ−δ; during wakefulness and sleep ð4cÞ
where Pw and Ps denote performance values during wakefulness
and sleep, respectively, A represents a 2�2 matrix that modulates
Pw and the upper asymptote U during wakefulness, Σ represents a
2�2 matrix that modulates Ps and the lower asymptote L during
sleep, μ and κ represent scaling parameters for the circadian
process, and δ denotes the constant difference between the
asymptotes. The diagonal elements of matrix A , α11 and α22,
represent the time constants of processes Pw and U, respectively,
and the off-diagonal elements, α12 and α21, represent the influ-
ences of U on Pw and of Pw on U, respectively. Similar relations
exist between the elements of matrix Σ and Ps and L during sleep.
This state-space model contains a total of 14 parameters. However,
in the particular case modeled in McCauley et al. (2009), it is
assumed that performance does not affect the modulation of the
asymptotes. Therefore, α21 and s21 are set to 0 and the number of
model parameters is reduced to 12.

The homogenous part of the differential equation (i.e., the first
term on the right-hand side of Eqs. (4a) and (4b)) defines the
homeostatic process and governs the dynamics of the model over
a scale of days, whereas the nonhomogeneities (i.e., the second
term on the right-hand side of Eqs. (4a) and (4b)) define the
circadian process and govern the changes within the course of a
day. In this representation, the two model components interact in
a nonlinear fashion. This class of models predicts the existence of a
bifurcation point, or a critical threshold at Ts22=ðs22−a22Þ hours of
daily wakefulness, where T denotes the 24-h wake/sleep cycle
duration. When the amount of daily wakefulness is less than this
critical threshold, performance is predicted to stabilize, whereas
when the duration of daily wakefulness is greater than the critical
threshold, performance is predicted to continuously degrade
without limit.
2.3. The unified model

Our proposed model extends Borbély's two-process model by
taking into account a known sleep/wake history and sleep debt in
order to better describe and predict performance during chronic
sleep restriction and subsequent recovery sleep. The sleep debt of
an individual on any day is defined using a recursive filter that
incorporates an exponential decay of the sleep-loss history.
Specifically, the amount of sleep loss Loss(t) and the rate of change
of sleep debt dDebt(t)/dt at an instant t are defined as

LossðtÞ ¼
1 while awake
−2 while asleep

(
ð5aÞ

dDebtðtÞ
dt

¼ −DebtðtÞ þ LossðtÞ
τLA

ð5bÞ

where τLA denotes the time constant of the filter. The values of Loss(t)
during sleep and wake were chosen so that if an individual sleeps
8 h, the recommended optimum sleep time per night (Belenky et al.,
2003), the area under the curve (AUC) for Loss(t) over a 24-h period is
equal to zero (16�1+(−2)�8). In the differential equation defining
the dynamics of Debt(t), sleep losses or sleep extensions that
occurred in the remote past have a much weaker influence on the
present sleep debt than comparable events in the more recent past.
To initialize the model, we set Debt(0) to any value between −2 and 1,
which ensures that Debt(t) lies in this range for all t40.

The unified model incorporates sleep debt into the classical
two-process model by describing changes in an individual's
capacity to recover during sleep as a function of Debt(t), i.e., the
lower asymptote L(t) of the homeostatic process is allowed to
increase or decrease with increased or decreased Debt(t), respec-
tively, while the upper asymptote U remains constant. Thus, the
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dynamics of process S during sleep are expressed as

dSðtÞ
dt

¼ −½SðtÞ−LðtÞ�
tS

ð5cÞ

where L(t)¼U�Debt(t) changes continuously with time. The
upper asymptote U is constant for all time t within a sleep
deprivation or sleep restriction scenario. During wakefulness, S(t)
follows Eq. (1a), and thus the unified model simulates Borbély's
two-process model in the case of TSD. During sleep, the differ-
ential equation formulation in Eqs. (5b) and (5c) can be solved
explicitly, giving the solution

LðtÞ ¼ Lðt0Þexp
−ðt−t0Þ

τLA

� �
−2U 1−exp

−ðt�t0Þ
τLA

� �� �� �
ð6aÞ

SðtÞ ¼ Sðt0Þexp
−ðt−t0Þ

τs

� �
−2U 1−exp

−ðt−t0Þ
τs

� �� �

þðLðt0Þ þ 2UÞτLA
τLA−τs

exp
−ðt−t0Þ

τLA

� �
−exp

−ðt−t0Þ
τs

� �� �
ð6bÞ

where t0 denotes the time of sleep onset. The circadian process C(t)
and performance P(t) in this model are given by Eqs. (2) and (3),
respectively. This model only introduces one additional parameter,
τLA, over the two-process model and, therefore, contains a total of
eight parameters: S(0), U, L(0), τw, τs, φ, κ, and τLA.

For an individual restricted to 8-h TIB each day, the AUC for Loss(t)
each day would be zero, and the lower asymptote L(t) in Eq. (5c)
would oscillate around zero, reaching its highest point before bed-
time and its lowest point at awakening. If the time constant τLA is
slow (e.g., τLA¼120 h), the magnitude of this oscillation would be
0.06 U, and thus the unified model would closely approximate
Borbély's two-process model. Fig. 1 shows simulated results that
illustrate the dynamics of the homeostat S of the unified model for
CSR (3-h TIB; Fig. 1A) and TSD (64 h; Fig. 1B), followed by three
recovery nights (8-h TIB). Restricting an individual to 3-h TIB resulted
in an AUC for Loss(t) of 0.625 for each day (Eq. (5a)). Thus, Debt(t)
asymptotically approached a limit cycle around 0.625 (Eq. (5b)), and,
after 7 days, the lower asymptote L(t) reached 55.7% of the upper
asymptote U (Fig. 1A) and the homeostat S (Eq. (5c)) increased to its
highest value. Subsequently, when the individual was allowed 8-h
TIB in three successive nights, L(t) decreased rapidly and, given
enough nights of 8-h TIB, it would eventually oscillate around zero.
For the TSD scenario (Fig. 1B), the homeostat S(t) rose exponentially
and was not affected by the increase in the lower asymptote, as is the
case in the classical two-process model. Then, when the individual
was allowed 8-h TIB in successive recovery nights, L(t) again
decreased and asymptotically approached a limit cycle around zero.
Fig. 1. Simulated dynamics of the sleep homeostatic process of the unified model under
scheduled wake time (SWT)/3 h of time in bed (TIB) for an extended period of time (i.e.
the upper asymptote (U, dashed-dotted blue line). This increase in the lower asymptote c
When the individual was allowed 8-h TIB (three nights, R1–R3), the lower asymptote mon
exposed to total sleep deprivation (TSD), the homeostat (dashed orange line) rose expone
lower asymptote increased. Then, when the individual was allowed 8-h TIB (three nights,
the homeostat decreased more rapidly than in the chronic sleep restriction (CSR) case. Be
the TSD case (panel B), the performance recovery during R1after CSR (Smax,A−Srec,A) was l
to color in this figure legend, the reader is referred to the web version of this article.)
After 7 days of 3-h TIB, the homeostat S reached its maximum
value, Smax,A. This value was slightly less than the value Smax,B

reached by S after 64 h of TSD. However, after the first night of
recovery sleep following CSR, the homeostat value Srec,A was
greater than the homeostat value Srec,B after the first night of
recovery sleep following TSD (Fig. 1A and B). This difference in the
value of the homeostat after recovery occurred because the value
of L(t) after 7 days of 3-h TIB was approximately 55.7% of U,
whereas after 64 h of TSD it was only approximately 45.2% of U.
This indicates that Debt(t) after 7 days of 3-h TIB was approxi-
mately 0.557, whereas that after 64 h of TSD was only approxi-
mately 0.452. This difference in sleep debt and, thus, the lower
asymptote values, predicted that the immediate recovery in
performance after 7 days of 3-h TIB would be slower than the
recovery after 64 h of TSD. That is, a larger sleep debt is modeled
as a higher value of L(t), which constrains the amount of recovery
during sleep.

2.4. Fitting and prediction

We used population-average performance data to estimate the
model parameters by performing a nonlinear least-squares opti-
mization to minimize the root mean squared error (RMSE)
between the population-average data and the model outputs.
We also used each model with parameters estimated from one
study scenario to predict the population-average performance
data in a different study scenario. This allowed us to investigate
whether models based on one of the scenarios could simulta-
neously capture the effects of TSD, CSR, and variation in sleep/
wake history on performance. Following (Rusterholz et al., 2010),
we bounded τw to lie between 0 and 40 h and τs to be greater than
1 h. All calculations were performed in MATLAB R2012a.

2.5. Statistics

We used RMSE and the adjusted coefficient of determination
(R2) to evaluate the goodness of fit of each model. For a data set
with N population-average performance observations and a model
with p parameters, the R2 of the fit is given as follows:

R2 ¼ 1−ð1−r2Þ N−1
N−p−1

; with r2 ¼ 1−
SSerr
SStot

; ð6cÞ

where r2 denotes the unadjusted coefficient of determination, SSerr
represents the sum of squares of the error between the observa-
tions and the model fits over the N observations, and SStot
represents the total sum of squares between each of the N
observations and the mean value of all of the observations
two different sleep/wake scenarios. A: When an individual was restricted to 21 h of
, seven nights, C1–C7), the lower asymptote (LðtÞ, solid green line) reached 55.7% of
auses an effective decrease in the capacity of the individual to recover during sleep.
otonically decreased, allowing the individual to recover. B: When an individual was
ntially, as in the two-process model. However, unlike in the two-process model, the
R1–R3), unlike the two-process model, the lower asymptote started to decrease and
cause the lower asymptote rose to a greater value in the CSR case (panel A) than in
ess than that during R1 after TSD (Smax,B−Srec,B). (For interpretation of the references



Fig. 2. Population-average PVT lapse data and the fits of the unified model on 3-, 5-,
7-, and 9-h time in bed (TIB) groups for seven nights of chronic sleep restriction (C1–
C7), followed by three recovery nights (R1–R3) with 16-h scheduled wake time (SWT)
and 8-h TIB.
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(proportional to the sample variance). This adjusted R2 takes into
account the increase in r2 with an increasing number of model
parameters p and the difference in the number of data points
among data sets. The values of R2 range between –∞ and +1, with
+1 indicating zero residual error and negative R2 indicating that
the mean of the data is a better fit than the model.

We also used the explained variance (EV) to describe the
variance that the model has in commonwith the data. EV is defined
as the ratio of the variance in the model fits to the variance in the
observed data (Van Dongen, 2004), that is EV¼ VarðFitÞ= VarðDataÞ.

2.6. Study data

We used psychomotor vigilance task (PVT) data, a well-
validated outcome measure of neurocognitive performance
(Belenky et al., 2003; Balkin et al., 2000; Dorrian et al., 2005), to
evaluate the proposed unified model. The PVT is a widely used
vigilance task in which volunteers respond to a randomly pre-
sented visual stimulus approximately 100 times within a test
session. The data sets were derived from two versions of the test:
(1) a 10-min PVT administered using a small hand-held device
(PVT-192—Ambulatory Monitoring Inc., Ardsley, NY), with an
inter-stimulus interval varying from 2 to 10 s in 2-s increments
(Dinges and Powell, 1985) and (2) a 5-min PVT, administered on a
personal digital assistant, with an inter-stimulus interval varying
from 1 to 5 s in 1-s increments (Thorne et al., 2005). Performance
was quantified by determining the number of lapses (i.e., response
times longer than 500 ms); more lapses indicated greater impair-
ment. We analyzed three data sets.

Study A: sleep dose–response study (Belenky et al., 2003;
Balkin et al., 2000). PVT performance was measured in a
controlled laboratory study of 66 healthy subjects who were
assigned to seven nights of 3 h (n¼18), 5 h (n¼16), 7 h (n¼16),
or 9 h (n¼16) of TIB (sleep restriction phase) followed by
3 days of 8-h TIB (recovery phase). Before the sleep restriction
phase, all subjects were allowed three nights of 8-h TIB. For all
phases, wakeup time was fixed at 07:00 h. A 10-min PVT was
administered 4 times per day (09:00, 12:00, 15:00, and 21:00 h)
along with other tests reported by Balkin et al. (2000). Subjects
in the 3- and 5-h TIB groups performed additional PVT sessions
(at 00:00 h for both groups and again at 02:00 h for the 3-h TIB
group) during their additional time awake.
Study B: trait-identification study (Rupp et al., 2012). Nineteen
healthy adults underwent two sleep-loss challenges separated
by 2–4 weeks: (1) TSD, consisting of approximately 63 h
(2 nights) of continuous wakefulness, and (2) CSR, consisting
of seven nights of 3-h TIB. Both challenges were preceded by
seven in-laboratory nights with 10-h TIB and followed by three
nights with 8-h TIB (recovery). During the entire wake period,
10-min PVTs were administered every 2 h. For both TSD and
CSR, wakeup times were fixed at 07:00 h.
Study C: sleep-banking study (Rupp et al., 2009). Twenty-four
subjects were randomly assigned to one of two groups (12
subjects each), sleep banking (10-h TIB) or habitual sleep
[mean: 7.09-h TIB, standard deviation (SD): 0.70-h TIB] for
seven nights, followed by 1 baseline night (10-h or habitual TIB,
respectively), seven sleep restriction nights (3-h TIB), and
5 recovery sleep nights (8-h TIB). A 5-min PVT was adminis-
tered hourly on a personal digital assistant between 08:00 and
18:00 h during all in-laboratory phases of the study. For both
groups, wakeup times were fixed at 07:00 h.

The above laboratory studies were approved by the Walter
Reed Army Institute of Research Human Use Review Committee
(Silver Spring, Maryland) and the United States (US) Army Medical
Research and Materiel Command Human Subjects Research
Review Board (Fort Detrick, Maryland), and were performed in
accordance with the ethical standards of the 1964 Declaration of
Helsinki. Written informed consent was obtained from all subjects
before participation.
3. Results

3.1. Simulations

We first used data from Study A (sleep dose–response study) to
assess the fits of the unified model to population-average PVT
lapse data under different sleep-restriction scenarios. Next, using
Study B (trait-identification study), we cross-validated the model
by predicting TSD performance impairment using parameter
estimates obtained from fitting CSR PVT lapse data, and vice versa.
Finally, we used the parameters obtained from Study B to predict
PVT lapse data of habitual versus sleep-banked subjects in Study C
(sleep-banking study) and to illustrate the ability of the unified
model to accurately describe performance of subjects with differ-
ent levels of initial sleep debt.

3.2. Fitting models using the sleep dose–response study (Study A)

We fitted Borbély's two-process model, McCauley et al.'s state-
space model, and the unified model to the data from Study A and
calculated the goodness-of-fit for each model. We estimated one
set of parameter values for each model using the population-
average PVT lapse data based on the aggregate of all four groups of
subjects (233 data points) in a least-squares regression.

Fig. 2 shows the population-average lapse data of the four
groups of subjects across seven nights of sleep restriction (3-, 5-,
7-, and 9-h TIB), three nights of recovery sleep (8-h TIB), and the
corresponding unified model fits. Table 1 shows the estimates of
parameters for each of the three models. Fig. 2 shows that, for each
level of sleep restriction, observed performance impairment sta-
bilized in a dose-dependent manner; that is, the performance of
subjects who obtained 3-h TIB stabilized at a deteriorated level
(i.e., higher number of lapses) compared with the daily mean
performance of subjects receiving 5-, 7-, or 9-h TIB. The unified
model captured the dose-dependence effect of TIB on performance
and fitted the data reasonably well (RMSE¼2.18 lapses, Table 1).



Table 1
Comparison of the parameter values and goodness-of-fits for the three models for Study A (sleep dose–response study). Both the state-space model and the unified model
have much better goodness-of-fits than the two-process model as measured by RMSE. However, the state-space model has four more parameters than the unified model and
thus the goodness-of-fit, as measured by R2, is 0.73 for the unified model as compared to 0.47 for the state-space model. RMSE, root mean squared error; R2, adjusted
coefficient of determination; EV, explained variance; τs, time constant of the decreasing exponential function during sleep; τw, time constant of the increasing saturating
exponential function during wakefulness; L(0), lower asymptote at time zero; U, constant value of the upper asymptote; P(0), PVT lapse count at time zero; φ, circadian
phase; κ, circadian amplitude; μ, circadian constant; τLA, lower asymptote time constant. The A (α11, α12, α21, and α22) and Σ (s11, s12, s21, and s22) matrices modulate the
homeostat and asymptotes during wakefulness and sleep, respectively, with s21 and α21 set to 0.00 h.

Model Parameter estimates Goodness of fit

Parameters Sleep parameters Wake parameters Initial conditions, lapses Circadian parameters RMSE, lapses R2 EV

Two-process model 7 τs¼4.51 h τw¼36.75 h L(0)¼0.00 φ¼5.47 h 3.48 0.04 0.54
U¼24.30 κ¼4.36 lapses

S(0)¼0.00

State-space model 12 s11¼−1.08 h−1 α11¼−0.03 h−1 L(0)¼5.92 φ¼12.56 h 2.14 0.47 0.56
s12¼0.44 h−1 α12¼0.00 h−1 U¼36.45 κ¼0.40 lapses
s22¼−0.09 h−1 α22¼0.01 h−1 P(0)¼3.76 μ¼0.24 lapses

Unified model 8 τs¼1.00 h τw¼40.00 h L(0)¼0.00 φ¼2.02 h 2.18 0.73 0.65
τLA¼4.06 days U¼24.12 κ¼4.13 lapses

S(0)¼0.00
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The rate of stabilization was captured by the lower asymptote time
constant τLA in Eq. (5a). τLA Represents the time that would be
required for the lower asymptote to reach 1—1/e≅63.2% of its final
value in the case of TSD. Under a TSD scenario, the lower
asymptote would reach 63.2% of its final value in 4.06 days
(Table 1). Furthermore, it would take 12.18 days (3τLA) for the
lower asymptote to reach 95% of its final value. The unified model
also provided a good qualitative description of the experimental
observations on the recovery days. The final sleep-debt value after
seven nights monotonically increased as TIB decreased; thus, the
model captured the observation that groups with less TIB during
the sleep restriction phase subsequently displayed less complete
recoveries following three nights of 8-h TIB (e.g., the 5-h TIB group
displayed a less complete recovery than the 7-h TIB group).

As listed in Table 1, L(0), the value of the lower asymptote at
the beginning of the experiment, was estimated to be 0.00 for both
the unified model and the two-process model, suggesting that
initially subjects carried no sleep debt. In addition, the homeo-
static wake parameter and the circadian parameters of the unified
model were in the same range as those of the two-process model.
These observations were expected because both models use the
same equation (Eq. (1a)) to describe the homeostatic process
during wakefulness. For the state-space model, the parameter
estimates were similar to those obtained in McCauley et al. (2009).

Table 1 also lists the goodness of fit metrics for the three
models. The RMSE of the population-average fit obtained using the
two-process model was 3.48 lapses; indicating a ∼50% larger error
when compared with the unified model (2.18 lapses) and the
state-space model (2.14 lapses). Taking into account the number of
parameters in each model, the adjusted R2 suggests that the
unified model performed ∼20% better than the state-space model
and considerably better than the two-process model. The unified
model also explained 65% of the variance in the population-
average data and fitted the data better than the original two-
process model (EV¼54%) and the state-space model (EV¼56%).

The first PVT session of each waking period might be con-
founded by sleep inertia, i.e., the transient performance impair-
ment frequently observed immediately after awakening (McCauley
et al., 2009). The effects of sleep inertia fall outside the predictive
capability of the three models. However, we chose not to exclude
these data points when analyzing Study A because only four to six
PVT sessions were available for each day. As a result, the EV was
smaller than it would have been had we omitted the first PVT
session in each day.
3.3. Estimating performance in the trait-identification study
(Study B)

Using data from Study B, we cross-validated the models on the
TSD and CSR PVT data. For each model, we first estimated the
parameters using the population-average PVT lapse data from the
CSR scenario (sleep restriction and recovery phases) in a least-
squares regression. Using these parameter estimates, we then
predicted the population-average PVT lapse count for the same
group of subjects undergoing TSD. In the second part of the
analysis, we estimated model parameters using the population-
average PVT lapse data from the TSD scenario (sleep deprivation
and recovery phases) and then predicted the population-average
PVT lapse count for the same group of subjects undergoing CSR. In
the CSR scenario, we used 10 PVT sessions performed bi-hourly
from 09:00 to 03:00 (we excluded the first PVT session at 07:00 to
exclude possible sleep inertia).

Fig. 3A and B shows the population-average PVT lapse data, the
two-process model fits, and the corresponding predictions for the
TSD and CSR scenarios, respectively. Table 2 (top row) lists the
sleep homeostatic parameters estimated from the population-
average CSR and TSD PVT lapse data and the goodness-of-fit
metrics of the fits and predictions for the two-process model.
Parameters estimated by separately fitting each of the CSR and TSD
data sets were similar (e.g., τs¼3.97 for CSR and 4.29 h for TSD).
For both the TSD and CSR scenarios, errors in predictions from the
two-process model (RMSE¼2.98 and 2.61 lapses, respectively,
Table 2) were up to approximately 50% greater than those from
fitting (RMSE¼1.97 and 2.05 lapses, respectively, Table 2). While
this model fitted the TSD data reasonably well (Fig. 3A), the fits
and predictions on the CSR data stabilized by the third day of sleep
restriction whereas the observed mean PVT lapse count continued
to increase (Fig. 3B). The model also predicted a rapid recovery,
which did not match the observed data (Fig. 3B).

Fig. 3C and D shows the population-average PVT lapse data, the
state-space model fits, and the corresponding predictions for the
TSD and CSR scenarios, respectively. Table 2 (middle row) lists the
sleep homeostatic parameters estimated from population-average
CSR and TSD PVT lapse data and goodness-of-fit metrics of the fits
and predictions for the state-space model. With parameters
obtained from fitting the state-space model to the CSR scenario,
the model predicted the TSD lapse data reasonably well (Fig. 3C),
and the cross-validation RMSE was 3.08 lapses. However, some of
the parameters estimated by separately fitting each of the CSR and



Fig. 3. Population-average PVT lapses and the corresponding fits and predictions. A: Population-average PVT lapses for the for the 64-h total sleep deprivation (TSD) scenario, the
fit of the two-process (TP) model, and the cross-validated predictions made using the TP model with parameters estimated from the 21-h scheduled wake time (SWT)/3-h time in
bed (TIB) chronic sleep restriction (CSR) scenario; B: population-average PVT lapses for the for the 21-h SWT/3-h TIB CSR scenario, the fit of the TP model, and the cross-validated
predictions made using the TP model with parameters estimated from the 64-h TSD scenario; C: same as panel A for the state-space (SS) model; D: same as panel B for the SS
model; E: same as panel A for the unified model (UM); F: same as panel B for the UM. The cross-validation predictions on the CSR data showed that the TP model (green line)
predicted rapid stabilization across days to occur in the CSR scenario, along with a rapid recovery process (panel B), which did not match the observations. The SS model (blue line)
predicted that daily mean PVT lapse count continued to degrade in the CSR scenario, suggesting that a daily 3-h TIB did not stabilize the daily mean PVT lapse count across multiple
days of sleep restriction (panel D). In contrast, the UM (red line) predicted a gradual stabilization of the daily mean PVT lapse count in the CSR scenario at a level better than that of
the TSD scenario (panel F) and fit the data well. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Comparison of the homeostatic parameters in the three models based on cross-validations on TSD PVT lapse data using parameter estimates obtained from fitting CSR PVT
lapse data, and vice versa, in Study B (trait-identification study). The gray areas indicate fits on CSR data and predictions on TSD data, while the white areas indicate fits on
TSD data and predictions on CSR data. Both the unified model’s fit on CSR data and prediction on TSD data have smaller RMSE and the larger R2 than the other two models.
The goodness-of-fit of the unified model on TSD data is slightly worse than that of the state-space model; however, the prediction on CSR data from the TSD model
parameters is much better. TSD, total sleep deprivation; CSR, chronic sleep restriction; R2, adjusted coefficient of at time zero; U, constant value of the upper asymptote; τs,
time constant of the decreasing exponential function during sleep; τw, time constant of the increasing saturating exponential function during wakefulness; τLA, lower
asymptote time constant. The A (α11, α12, α21, and α22) and Σ (s11, s12, s21, and s22) matrices modulate the homeostat and asymptotes during wakefulness and sleep,
respectively, with s21 and α21 set to 0.00 h.

Model Data set Fits Predictions

Sleep parameters Wake parameters L(0), lapses U, lapses RMSE, lapses R2 RMSE, lapses R2

Two-process model CSR τs¼3.97 h τw¼20.53 h 0.00 13.15 2.06 0.30
TSD 2.99 0.14
TSD τs¼4.29 h τw¼23.00 h 0.00 10.42 1.98 0.63
CSR 2.61 −0.14

State-space model CSR s11¼−0.65 h−1 α11¼−0.05 h−1 −2.65 4.36 1.87 0.37
s12¼0.28 h−1 α12¼0.01 h−1

s22¼−0.08 h−1 α22¼0.01 h−1

TSD 3.08 −0.03
TSD s11¼−15.65 h−1 α11¼−0.07 h−1

s12¼0.26 h−1 α12¼0.00 h−1 10.01 65.52 1.68 0.69
s22¼−0.02 h−1 α22¼0.02 h−1

CSR 8.08 −10.81

Unified model CSR τs¼2.46 h τw¼27.69 h −2.50 15.73 1.68 0.52
τLA¼9.90 days

TSD 2.86 0.19
TSD τs¼3.69 h τw¼23.72 h −2.31 10.91 1.86 0.66

τLA¼6.73 days
CSR 1.99 0.33
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TSD data sets were considerable dissimilar (e.g., s11¼−0.65 h for
CSR and s11¼−15.65 h for TSD). Parameters estimated from fitting
the TSD scenario predicted that daily mean PVT lapse count would
continuously increase without limit with days of sleep restriction
(Fig. 3D). The RMSE of the CSR predictions was 8.08 lapses.
Moreover, the bifurcation threshold Ts22=ðs22−α22Þ calculated
using the TSD parameters was 12 h, suggesting that daily mean
PVT lapse count would stabilize only if the subjects receive more
than 12-h TIB and would continue to degrade otherwise. It is
possible that this drastic deviation from the observed data may
have arisen from the insufficiency of data points associated with
3 days of TSD followed by 3 days of recovery to estimate the 12
model parameters. However, having limited data available for
parameter estimation may be typical of potential study environ-
ments, limiting the applicability of the state-space model.

Fig. 3E and F shows the population-average PVT lapse data, the
unified model fits, and the corresponding predictions for the TSD
and CSR scenarios, respectively. When fitting the TSD and CSR data
from Study B, we used EEG δ power data to set an upper bound of
240 h on the value of τLA. Table 2 (bottom row) lists the sleep
homeostatic parameters estimated from population-average CSR
and TSD PVT lapse counts and goodness-of-fit metrics of the fits
and predictions for the unified model. The cross-validation RMSE
for the unified model fitted to TSD data to predict the CSR data
(1.99 lapses) was only slightly greater than the error when fitting
the model to the CSR data itself (1.68 lapses). The cross-validation
RMSE when we used the model fitted to CSR data to predict the
TSD data (2.86 lapses) was 54% greater than the RMSE when fitting
the model to the TSD data itself (1.86 lapses), but still less than the
cross-validation RMSEs for the other two models. Also, L(0) was
less than zero for both the TSD and CSR scenarios (−2.31 and −2.50
lapses, respectively), indicating that the subjects were sleep
banked initially. The time constant τLA indicated that, for the CSR
data, the lower asymptote reached approximately 63.2% of its final
value in 9.90 days and that, for TSD data, it would have taken 6.73
days. The wakefulness time constant, τw, differed between the TSD
and CSR scenarios (23.72 and 27.69 h, respectively). However, the
similarity of the errors in the fits and cross-validations suggests
that the model fit is fairly insensitive to τw. Fig. 3E and F shows the
population-average PVT lapse data, the unified model fits, and the
corresponding predictions for the TSD and CSR scenarios, respec-
tively. The predictions for both TSD and CSR matched the PVT
lapse data well. During CSR, the predictions gradually stabilized at
a level better (i.e., lower number of PVT lapses) than that of TSD
data (Fig. 3E) and the accuracy of the predictions was similar to
that of the fitting. The model also captured the slower recovery
process after nights of 8-h TIB following CSR (Fig. 3F), as compared
to the faster recovery process after TSD (Fig. 3E). This dissimilarity
in the rate of recovery process can be explained by the differences
in sleep debt and, thus, differences in the lower asymptote values
after 7 days of CSR and 64 h of TSD in the unified model (also
shown in Fig. 1).

3.4. Describing the effects of sleep/wake history in the sleep-banking
study (Study C)

We used the model with parameters estimated from the CSR
data in Study B (Table 2) to predict the population-average PVT
lapse data of habitual and sleep-banked subjects in Study C. This
allowed us to test whether the models captured the effects of
different sleep/wake history on PVT lapse count.

The model parameters obtained by fitting the CSR data in
Table 2 were from subjects who underwent sleep banking (10-h
TIB for 7 days before the sleep restriction). Therefore, we used
models based on these parameters to predict the population-
average PVT lapse count of the sleep-banked group in Study C. In
the two-process model, the lower asymptote remained at zero
regardless of prior sleep-banking conditions. Thus, we used the
initial conditions L(0)¼0.00 lapses and U¼13.15 lapses (Table 2) to
predict both habitual and sleep-banked groups. In the state-space
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model, because the difference between the asymptotes is likely to
be different for each dataset, we used the least-squares method to
re-estimate the initial values of the lower asymptote L(0) and the
upper asymptote U for both the groups while holding the other
parameters constant (Table 2, CSR parameters). For the unified
model, Eqs. (5b) and (5c) define the relationship between prior
sleep debt and L(0). Therefore, we calculated the initial sleep debt
of the habitual-sleep group to be 0.06 Eqs. (5a) and (5b) and the
lower asymptote value after 7 days of habitual sleep to be 0.81
lapses [Debt(0)�U]. Thus, the initial conditions L(0)¼0.81 lapses
and U¼10.98 lapses were used to predict the PVT lapse count of
the habitual-sleep group and the initial conditions L(0)¼−2.50
lapses and U(0)¼10.98 lapses (Table 2, CSR parameters) were used
to predict the PVT lapse count of the sleep-banked group, while all
other parameters remained the same.
Table 3
Comparison of the PVT lapse count predictions and initial conditions generated by
the three models for the habitual and sleep-banked groups in Study C (sleep-
banking study). The model parameters were estimated from CSR data from Study B.
The quality of the unified model prediction of the habitual group data in Study C is
better than the predictions of the other two models, while, for the sleep-banked
group data in Study C, the quality of the unified model prediction is better than that
of the state-space model and similar to that of the two-process model. R2, adjusted
coefficient of determination; RMSE, root mean squared error; L(0), lower asymptote
at time zero; U, constant value of the upper asymptote.

Model Prediction of the habitual
group

Prediction of the sleep-
banked group

R2 RMSE,
lapses

L(0),
lapses

U,
lapses

R2 RMSE,
lapses

L(0),
lapses

U(0),
lapses

Two-
process
model

0.01 2.99 0.00 13.15 0.24 3.23 0.00 13.15

State-space
model

0.03 2.89 0.86a 8.44a 0.09 3.48 7.01a 8.06a

Unified
model

0.17 2.72 0.81b 15.73 0.23 3.27 −2.50 15.73

a Re-estimated L(0) and U(0) for both sleep groups.
b Calculated L(0) for the habitual sleep group.

Fig. 4. Population-average performance lapses, the corresponding unified model
predictions, and the lower asymptotes of the model. Model parameters were
estimated from the chronic sleep restriction data in Study B, and performance
predictions were made for habitual subjects (lower panel) and sleep-banked
subjects (top panel) in Study C. For the unified model, the initial value of the lower
asymptote was re-calculated for the habitual sleep group. A 5-min psychomotor
vigilance test was used in this study, potentially producing additional noise in
the data.
Table 3 lists the initial conditions and goodness-of-fit metrics of
the predictions using each of the three models, and Fig. 4 shows
the corresponding unified model predictions for both the habitual
and sleep-banked groups. The unified model described the effects
of habitual sleep and sleep banking as well as or better than the
two-process model and the state-space model. For the habitual
sleep scenario, the RMSE for the unified model prediction (2.72
lapses) was smaller than the RMSEs for both the two-process
model (2.99 lapses) and the state-space model (2.89 lapses). For
the sleep banking scenario, the RMSE for the unified model
prediction (3.27 lapses) was only slightly greater than the RMSE
for the two-process model (3.23 lapses) and smaller than the
RMSE for the state-space model (3.48 lapses). Similarly, for the
habitual sleep scenario, the unified model R2 value (0.17) was
larger than the R2 values for both the two-process model (0.01)
and the state-space model (0.03). For the sleep banking scenario,
the unified model R2 value (0.23) was slightly less than the R2

value for the two-process model (0.24) but greater than the R2

value for the state-space model (0.09).
In addition, we observed that the initial difference between the

lower asymptote values of the habitual and sleep-banked subjects
was 3.31 [0.81−(−2.50)] lapses and the final difference between
the lower asymptote values of the habitual and sleep-banked
subjects after 7 days of sleep restriction was 1.55 (6.00–4.45)
lapses (Fig. 4). This difference decreased exponentially with days
of sleep restriction, indicating that decreases in PVT lapse count
caused by sleep banking decreases exponentially with days of
sleep restriction.

3.5. Describing the effects of different PVT measures on fitting and
prediction in the trait-identification study (Study B)

To determine whether our results were affected by the choice
of lapse count as a measure of PVT performance, we repeated the
cross-validation analysis in Section 3.3 on the unified model, using
five different measures of TSD and CSR data from Study B: lapses,
median response time (RT), mean RT, mean reciprocal response
time (RRT), and response time divergence (RTD) (Rajaraman et al.,
2012). Table 4 lists the sleep homeostatic parameters estimated
from population-average CSR and TSD data and goodness-of-fit
metrics of the fits and predictions for the unified model for each of
the five PVT measures. To perform the fits on each metric, we
constrained τs to be not less than 2 h, τLA to be not greater than 10
days, and θ to lie between 05:00 and 07:00 so that the optimiza-
tion would generate parameter estimates within expected physio-
logical ranges.

The goodness-of-fit, as measured by R2, was approximately
equal for both TSD and CSR scenarios for lapses, mean RRT, and
RTD, slightly lower for mean RT (TSD, 0.57; CSR, 0.40), and lowest
for median RT (TSD, 0.34; CSR, 0.31). The cross-validation predic-
tion was highest for mean RRT (TSD, 0.31; CSR, 0.28), similar for
lapses, mean RT, and RTD, and lowest for median RT (TSD, 0.14;
CSR, 0.13). For all five metrics, the value of R2 for the fit on TSD data
was greater than that for the fit on CSR data. Furthermore, for all
metrics except mean RT, the value of R2 for the cross-validation
onto TSD data was greater than that for the cross-validation onto
CSR data. Conversely, for all five metrics, the RMSE values for both
the fits and cross-validation predictions of TSD data were consis-
tently greater than the corresponding values for the fits and
predictions of CSR data; the increased RMSE values for TSD are
due to greater variation in the raw data (as shown in Fig. 3).

The estimate of the wake time constant τw was similar across
all fits, ranging from a low of 20.5 h for TSD using median RT to a
high of 32.3 h for CSR using RTD. The estimates of the sleep
parameters τs and τLA varied significantly and frequently reached
their physiological limits, with τs estimated at its lower bound of



Table 4
Comparison of the homeostatic parameters in the unified model calculated using five different PVT measures based on cross-validations on TSD data using parameter
estimates obtained from fitting CSR data, and vice versa, in Study B (trait-identification study). The gray areas indicate fits on CSR data and predictions of CSR data from
models derived using TSD data, while the white areas indicate fits on TSD data and predictions of TSD data from models derived using CSR data. For each measure, the
goodness-of-fit on CSR data is better than the goodness-of-fit on TSD. Similarly, for all measures but mean response time, the quality of prediction is better onto CSR than
onto TSD. The quality of the fits and predictions are fairly consistent across all measures except for median response time, where the quality is not as good. TSD, total sleep
deprivation; CSR, chronic sleep restriction; R2, adjusted coefficient of determination; RMSE, root mean squared error; L(0), lower asymptote at time zero; U, constant value of
the upper asymptote; τs, time constant of the decreasing exponential function during sleep; τw, time constant of the increasing saturating exponential function during
wakefulness; τLA, lower asymptote time constant; AU, arbitrary units.

Measure Fits Predictions

Data Set τs (h) τLA (days) τw (h) L(0) U RMSE R2 RMSE R2

Lapses CSR 2.46 9.90 27.7 −2.50 lapses 15.7 lapses 1.68 lapses 0.52 1.99 lapses 0.19
TSD 3.69 6.73 23.7 −2.31 lapses 10.9 lapses 1.86 lapses 0.66 2.86 lapses 0.33

Median RT CSR 2.00 3.52 23.7 193 ms 296 ms 15.3 ms 0.31 17.3 ms 0.13
TSD 3.61 9.99 20.5 207 ms 302 ms 23.6 ms 0.34 26.9 ms 0.14

Mean RT CSR 2.00 2.92 28.9 204 ms 329 ms 18.2 ms 0.40 20.0 ms 0.27
TSD 2.00 10.0 25.9 217 ms 349 ms 22.6 ms 0.57 30.4 ms 0.22

Mean RRT CSR 2.00 2.45 27.5 4.61 ms−1 3.62 ms−1 0.13 ms−1 0.50 0.15 ms−1 0.28
TSD 2.00 9.99 24.5 4.49 ms−1 3.55 ms−1 0.15 ms−1 0.63 0.20 ms−1 0.31

RTD CSR 2.20 2.95 32.3 −28.6 AU 27.3 AU 6.02 AU 0.60 7.77 AU 0.22
TSD 2.20 10.0 22.6 −22.0 AU 27.8 AU 7.66 AU 0.65 11.5 AU 0.32
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2 h in six cases and τLA estimated near its upper bound of 10 days
in five cases.
4. Discussion

In this study, we present a unified model that incorporates
sleep debt to quantify performance impairment during both CSR
and TSD. This model extends the classical two-process model of
sleep regulation by accounting for the effects of a known sleep/
wake history on performance, and it bridges the continuum from
short periods of acute, total sleep deprivation to longer periods of
sleep restriction (hence, the term “unified”). Because it modifies
only those aspects of the two-process model that relate to
recovery of the homeostatic process during sleep, it reduces to
Borbély's model as TIB approaches 0 h (i.e., under conditions of
acute TSD).

Results from two seminal studies highlighted the need for a
new model to describe the dynamics of neurocognitive perfor-
mance impairment during CSR. In Belenky et al. (2003) and Van
Dongen et al. (2003), it was reported that the buildup of cumu-
lative sleep debt occurs in a dose-dependent manner. That is, the
more sleep is restricted (both in terms of nightly sleep amounts
and in terms of number of nights of restricted sleep), the more
next-day neurocognitive performance is impaired (Van Dongen
et al., 2003; Alhola and Polo-Kantola, 2007). When sleep was
restricted to 5- or 7-h TIB, daily mean performance stabilized at a
deteriorated level equivalent to 33% of the performance level seen
when subjects obtained their habitual nightly sleep amounts
(Belenky et al., 2003; Dinges et al., 1997). Further, Van Dongen
et al. (2003) noted that performance continued to degrade (i.e., did
not stabilize) when sleep was restricted to 4 h per day. They also
observed that recovery of neurocognitive functioning after CSR
was not as rapid as that seen after TSD, suggesting that CSR
induces relatively long-term, slow-recovering (i.e., long time-
constant) changes in brain physiology that affect alertness and
performance (Belenky et al., 2003; Johnson et al., 2004; Alhola and
Polo-Kantola, 2007).
The classical two-process model does not describe this cumu-
lative sleep debt observed during CSR (Van Dongen et al., 2003;
Carskadon and Dement, 1981) or its dissipation following CSR,
leading to discrepancies between predictions based on the two-
process model and observed PVT lapse data collected during
controlled CSR studies (Van Dongen et al., 2003; Achermann,
2004). The unified model extends the theoretical framework laid
down by Borbély's classical two-process model by including an
additional sleep-debt component, Debt(t), to account for sleep/wake
history. The unified model represents sleep debt accumulation and
restoration with a recursive filter that gradually diminishes the effect
of sleep loss and sleep extensions as they recede further into the past.
The recursive filter in the unified model in an exponential filter that
performs a similar function to the moving-average filter in the FAID
model (Dawson and Fletcher, 2001) and also incorporates the
possibility of sleep banking.

We assessed the performance of our proposed model on three
data sets: a sleep dose–response study, a trait-identification study,
and a sleep-banking study. Using PVT lapse data as a well-validated
outcome measure of neurocognitive performance (Belenky et al.,
2003; Balkin et al., 2000; Dorrian et al., 2005), the modeling results
indicate that daily mean performance impairment eventually sta-
bilizes for all cases of sleep restriction. The rate of performance
stabilization is not as rapid as in the two-process model and more
closely matches the observed data. The results also suggest that
sleep debt accumulation is responsible for the incomplete recovery
process after three nights of 8-h TIB following CSR. In a case of CSR
where an individual is subject to 3-h TIB for seven nights, the sleep
debt value is much higher than when the individual is subject to
TSD for 64 h. We observed that although the increase in the
homeostat S occurred more rapidly in the case of TSD, it increased
for only 64 h, limiting the amount of sleep debt to less than the CSR
case. This difference in sleep debt explains the slower recovery
process following CSR.

Also of interest is whether one's response to TSD serves to
reliably predict one's response to CSR. Of the three models
analyzed (two-process model, state-space model, and unified
model), the unified model parameters estimated by fitting perfor-
mance during TSD provided sufficient information to accurately
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describe the response to chronic sleep restriction. This, however,
was not the case for the state-space model. The state-space model
predicted that PVT lapses would continually degrade in the 3-h TIB
scenario. The parameters estimated from the TSD scenario indicate
that the rate of bifurcation is much faster than what was estimated
by McCauley et al. (2009). This discrepancy could have occurred
because the number of data points collected in 3 days of TSD
followed by 3 days of recovery were insufficient to accurately
estimate the 12 parameters of the model. However, a lack of
sufficient data for accurate parameter estimation may be quite
typical of operational environments, limiting the applicability of
the state-space model. In contrast, the two-process model pre-
dicted rapid stabilization of daily mean PVT lapse count during
sleep restriction, a prediction which did not match the data.

The unified model introduces only one parameter, τLA, that does
not appear in the classical two-process model. This one additional
parameter is sufficient to improve (often considerably) the
goodness-of-fit of the unified model when compared to that of
the two-process model, even when evaluating the fit using the
parameter-adjusted coefficient of determination R2, which pena-
lized the unified model for its extra parameter. Because the state-
space model has four more parameters than the unified model, the
state-space model can sometimes better fit the data (e.g., RMSE of
1.68 lapses vs. 1.86 lapses for the TSD fits in Table 2). However, the
additional degrees of freedom introduced by the state-space
model more drastically impaired the predictive accuracy of this
less parsimonious model. This is, in part, because it is harder to
accurately estimate the larger number of parameters in the state-
space model and less accurate parameter estimates lead to less
accurate predictions (e.g., RMSE of 8.08 lapses vs. 1.99 lapses for
the CSR predictions in Table 2).

An advantage of the proposed unified model is that it does
not require an artificial distinction between sleep deprivation,
restricted sleep, and recovery sleep—that is, it simultaneously
represents both TSD and CSR performance data. Another advan-
tage is that the model captures the effects of sleep banking and the
rate at which alertness and performance are restored after
recovery sleep. The modulation of the lower asymptote L(t)
captures mathematically the findings of Rupp et al. (2009), in
which it was reported that the extent to which sleep restriction
impairs alertness varies as a function of prior sleep/wake history.
The modulation of the lower asymptote also accounts for the
diminishing effects of sleep banking across long periods of CSR.
Because the influence of the level of sleep debt decreases expo-
nentially with days of sleep restriction, the difference between the
lower asymptotes of sleep-banked subjects and non-sleep-banked
subjects decreased exponentially as well, reducing the difference
from 3.31 to 1.55 lapses after 7 days of 3-h TIB (Fig. 4). Our analysis
differs from the original analysis of Rupp et al. (2009), in which a
linear model was fitted onto the PVT data, and no PVT data were
collected after 18:00. A linear model does not capture the
exponential decay of the effects of sleep banking described by
the unified model and thus does not extrapolate into the future
when the effects of sleep banking are predicted to reduce to zero.

The results from the present analyses indicate that the unified
model fits CSR data well. Although we did not consider such
scenarios in this study, the unified model can also be applied to
studies incorporating sleep shifting, daytime naps, and other
irregular sleep patterns. The unified model can be extended to
incorporate the decreased restorative effects of sleep opportunities
at other circadian phases (Dijk and Czeisler, 1994) by incorporating
time of day into the calculation of the value Loss(t) in Eq. (5b).
Furthermore, in the case of very long TIB periods, when the
duration of sleep may be considerably less than the TIB, the value
of Loss(t) can be modified to take into account the actual length of
sleep, instead of the length of TIB. Other modifications involve
accounting for trait-like individual differences in parameters, such
as the sleep requirements for full performance, and providing an
estimate of the group variance (Rajaraman et al., 2008, 2009).
These modifications would help in building individual-specific
models.

We evaluated the ability of the unified model to fit and predict
TSD and CSR performance using five different PVT measures and
found that the quality of fits and predictions, as measured by
RMSE and R2, was similar across these PVT measures (with the
quality being slightly worse for median RT than the other
measures, as shown in Table 4). The five PVT measures we
considered are highly correlated with each other (Rajaraman
et al., 2012) and thus we would expect them to produce a
generally similar quality of fits and predictions. For all of the PVT
measures, we consistently found that the values of RMSE and R2

were both greater for TSD data fits than for CSR data fits; the
greater RMSE values for TSD data fits are due to greater variability
in TSD data (Fig. 3). The same pattern of greater RMSE and R2

values for TSD data than CSR data was also observed in the cross-
validation predictions, with the sole exception being a greater R2

value for the prediction of CSR performance using mean RT (0.27
CSR; 0.22 TSD).

The sleep parameters in the unified model, τLA and τs, were not
consistently estimated across TSD and CSR scenarios (Table 4).
These estimates of the lower asymptote time constant τLA and the
sleep time constant τs are closely connected and both of these
parameters are “invisible” to PVT data in the sense that their direct
effect on predicted performance occurs during sleep, when no
measurements can be taken. The differences between estimates of
τLA and τs between CSR and TSD may be due to the differences
between the two phases of Study C. During the CSR phase, there
were seven nights of 3-h TIB and three nights of 8-h TIB (i.e.,
2�10 data points) that were used to estimate τLA and τs. However,
in the TSD phase, there were only three nights of 8-h TIB recovery
sleep (i.e., 2�3 data points) from which to estimate these
parameters. Furthermore, different amounts of TIB (e.g., 3-h TIB
vs. 8-h TIB) could result in different estimates of τLA and τs.
Determining parameter estimates that are generalizable across
different studies for τLA and τs would likely involve incorporating
additional physiological measurements, such as EEG δ power, into the
estimation procedure.

In summary, this work introduces a new approach to model the
neurocognitive performance degradation of sleep-restricted indi-
viduals, as measured by PVT lapse data. The unified model
seamlessly bridges the continuum from CSR to TSD by modeling
TSD as a limiting case of CSR and it naturally converges to the well-
established two-process model when TIB approaches zero.
Furthermore, this model also explains the slow neurocognitive
recovery process after CSR and the improved neurocognitive
performance of sleep-banked subjects.
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