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INTRODUCTION

The psychomotor vigilance test (PVT) (Dinges and Powell,
1985) is a well-validated, widely used tool for assessing
neurobehavioral impairment due to both total sleep depriva-
tion and chronic sleep restriction (Dorrian et al., 2005).
Moreover, the PVT is not influenced by an individual’s
aptitude; its results are immune to practice effects, and track
accurately the interaction between the homeostatic drive for
sleep and the circadian rhythm of alertness. Therefore,
several metrics, including mean and median response times
(RTs), mean and median speeds (i.e. the reciprocal of RT)
and threshold-based lapses (e.g. number of RTs >500 ms),
have been proposed and used to quantify PVT performance.

© 2012 European Sleep Research Society

SUMMARY

We have developed a new psychomotor vigilance test (PVT) metric for
quantifying the effects of sleep loss on performance impairment. The new
metric quantifies performance impairment by estimating the probability
density of response times (RTs) in a PVT session, and then considering
deviations of the density relative to that of a baseline-session density.
Results from a controlled laboratory study involving 12 healthy adults
subjected to 85 h of extended wakefulness, followed by 12 h of recovery
sleep, revealed that the group performance variability based on the new
metric remained relatively uniform throughout wakefulness. In contrast,
the variability of PVT lapses, mean RT, median RT and (to a lesser
extent) mean speed showed strong time-of-day effects, with the PVT
lapse variability changing with time of day depending on the selected
threshold. Our analysis suggests that the new metric captures more
effectively the homeostatic and circadian process underlying sleep
regulation than the other metrics, both directly in terms of larger effect
sizes (4—61% larger) and indirectly through improved fits to the two-
process model (9-67% larger coefficient of determination). Although the
trend of the mean speed results followed those of the new metric, we
found that mean speed yields significantly smaller (~50%) intersubject
performance variance than the other metrics. Based on these findings,
and that the new metric considers performance changes based on the
entire set of responses relative to a baseline, we conclude that it provides
a number of potential advantages over the traditional PVT metrics.

However, despite nearly three decades of sleep loss
research using the PVT, there has been little attempt to
understand the merits and demerits of these PVT-derived
metrics. In particular, it has not been considered that the
existing metrics may capture the information generated in a
PVT session incompletely and, accordingly, only partially
reflect the neurobehavioral state of the individual being
tested. For example, the number of PVT lapses above a 500-
ms threshold, which is considered to be a well-validated PVT
performance metric, reflects only the proportion of the total
responses that are >500 ms without providing any informa-
tion about their relative frequency. Another related problem is
that PVT lapses map a continuous variable (i.e. RT) into a
discrete, binary variable representation (i.e. lapse/no lapse),
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potentially losing useful information in this process. In
contrast, while RT summary statistics, including mean and
median RTs and mean and median speeds, are inherently
more comprehensive at representing the information con-
tained in RTs than PVT lapses, they fail to capture the
information content of the shape of the RT density. Another
limitation of these PVT metrics is their inherent insensitivity to
baseline performance levels. That is, these metrics do not
directly assess an individual’s performance relative to the
individual’s well-rested performance, necessarily assuming
that baseline performance is invariant across individuals.

The objective of this paper is twofold: (1) to identify and
characterize ambiguities and gaps in inferences generated
by the existing PVT metrics and (2) to propose a new PVT
performance metric that addresses some of the aforemen-
tioned limitations in capturing performance impairment due to
total sleep loss.

METHODS

The proposed metric attempts to quantify PVT performance
more comprehensively than the existing metrics in two
important ways: (1) by accounting for the density of the
measured RTs in each PVT session and (2) by inherently
considering deviations relative to baseline performance
levels. This was achieved by estimating the probability
density function (PDF) of RTs for each PVT session,
establishing a baseline PVT session, and quantifying the
performance on a PVT session as the dissimilarity between
its RT PDF and that of the baseline session.

Empirical estimation of RT PDF

First-principles techniques have been proposed to describe
the RT PDFs for simple reaction tasks (Van Zandt, 2000).
However, these techniques require the censoring of
responses that are slower and faster than preset thresholds
before the density can be estimated with the remaining RT
data. Therefore, we adopted an empirical approach to
estimate the density of RTs measured in a PVT session
without discarding either slow or fast responses. A detailed
description of the empirical density estimation approach is
provided in the Appendix, Section I.

Identification of the baseline PVT session

Currently, there is no consensus in the definition of a baseline
PVT session. Because sleep loss increases both fast and
slow responses (Dorrian et al., 2005) which, in turn,
increases the skewness in RT densities, we defined the
baseline PVT session as the test session in which both tails
of the RT density were balanced or, equivalently, the session
in which the RT density was as close as possible to a normal
density. This hypothesis is supported by recent work by
Holden et al. (2009), who showed that the overall response
latency is a result of interaction between subsidiary compo-

nents of human cognition. During baseline conditions, the
level of interaction is the least, i.e. the subsidiary components
vary as independent, random variables, yielding response
latency that follows a normal density.

The new PVT metric

We propose a new PVT metric, termed the response time
divergence (RTD), which defines an individual’s performance
on a PVT session T as the dissimilarity between an
individual’s entire RT density at that session, p#(f), and the
RT density at baseline, pg, (). Mathematically, the proposed
metric is defined as follows:

Nt

VIn(2)

RTD(T) = sgn[pr(t), pec(t)] JSD[pr (1), ps(1)],

)

where Nrrepresents the total number of responses observed
in session T, sgn[p(f), ps.(f)] defines the direction of change
in performance from baseline to session T and JSD[pH1),
ps.(f)] represents the Jensen—Shannon divergence (Lin,
1991) between p+(t) and pg.(f). In egn (1), as p(t) diverges
from pg,(f), the metric increases, attaining a maximum value
Nr. Conversely, as the two densities converge, RTD(T)
approaches zero (Appendix, Section II).

Measures for comparing and contrasting PVT
performance metrics

We compared and contrasted the RTD metric against
existing PVT metrics in their ability to capture the homeostatic
and circadian processes underlying sleep regulation by:
(1) performing effect size analysis and (2) assessing the
goodness-of-fit of each PVT metric to Borbély’s two-process
model output. For the latter, we compared the coefficient of
determination (R?; Zar, 1999) and the degree of whiteness
(randomness) of the residual error, i.e. the difference
between the individualized two-process model fit and the
PVT metric (Appendix, Section lIl).

Laboratory study data

We used PVT data obtained from a laboratory study involving
12 subjects (mean age = 24.9 years, range = 19-39 years)
who were kept awake continuously for 85 h (Wesensten
et al., 2005). These subjects were administered PVTs once
every 2 h starting at 08:00 h on day 1 (00:00-24:00 h) and
extending through 18:00 h on day 4, for a total of 42 PVT
sessions. At 20:00 h on day 4, subjects initiated recovery
sleep for 12 h. Bi-hourly PVTs were resumed at 10:00 h on
day 5 and ended at 16:00 h. The study was approved by the
Walter Reed Army Institute of Research Human Use Com-
mittee (Silver Spring, MD, USA) and the US Army Medical
Research and Materiel Command Human Subjects Review
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Figure 1. Mean and standard deviation (SD) of psychomotor vigilance test (PVT) lapse measurements (n = 12) for three different thresholds:
(a) 1000 ms, (b) 500 ms and (c) 250 ms, and (d) for the response time divergence (RTD) metric. We used Pearson’s correlation coefficient (r) to
compute the correlation between the temporal profiles of the mean and SD as a function of wakefulness. The shaded region in each plot
represents the 12-h recovery sleep administered to the subjects immediately after 85 h of continuous sleep deprivation.

Board (Fort Detrick, MD, USA). Written informed consent was
obtained from all subjects prior to their participation.

RESULTS

We first analyzed the temporal profiles of the mean and
standard deviation (SD) across the 12 subjects for each metric.
Fig. 1a shows that the mean and SD of PVT lapses for RT
>1000 ms increased during the early morning and decreased
between late afternoon and early evening on all days of sleep
deprivation. The temporal profiles of these statistics over the
12 subjects was highly correlated (Pearson’s correlation
coefficient r= 0.96), exhibiting an almost perfect linear rela-
tionship. We found a similar correlation for RT >500 ms
(Fig. 1b), butto alesserextent (r = 0.89) than that observed for

© 2012 European Sleep Research Society

RT >1000 ms. Surprisingly, for RT >250 ms, the temporal
profiles of the mean and SD were correlated negatively
(r=-0.89; Fig. 1c), i.e. performance variability was lower
during the early morning hours than during the early evening
hours, contrary to the time-of-day effects shown in Fig. 1a,b.
We also found the correlations of these statistics for the mean
RT, median RT and mean speed to fall on both sides of the
spectrum. While for mean and median RT the group mean and
SD were correlated highly, with r = 0.97 and 0.92, respectively,
for mean speed they were correlated modestly negatively
(r=-0.53).

This suggests that the existing metrics, and PVT lapses in
particular, while directly not accounting for, are influenced by
changes in the RT densities. Indeed, we found that the RT
density may change significantly across wakefulness and
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Figure 2. Histograms of measured response time (RT) data (stacked bars) observed every 12 h, starting at 08:00 h on day 1 and extending to
18:00 h on day 4 of the total sleep deprivation routine, and their corresponding empirical probability density estimates (solid lines) for a subject

with an average sleep-loss phenotype (subject 12).

time of day. For example, Fig. 2 shows histograms of the
measured RT data and the corresponding density estimates
computed empirically at eight distinct time-points across
wakefulness for a subject with an ‘average’ sleep-loss
phenotype (subject 12; Table 2). Qualitatively, moving from
days 1-4 (Fig. 2, left), the empirical density fits at 08:00 h
reflected an increase in, or rather an elongation of, the right
tail of the density, reflecting a systematic increase in the
relative frequency of lapses with sleep deprivation. A similar
pattern was observed with the empirical density fits at
~20:00 h on days 1-4 (Fig. 2, right), but to a lesser extent
than those observed at 08:00 h on the corresponding days,
reflecting the influence of circadian effects on performance.
In fact, we also found that even the baseline RT densities of
the 12 subjects were significantly different in 82% (54 of 66)
of the possible distinct pairwise tests (two-sample Kolmogo-
rov—Smirnov test for P < 0.05).

Fig. 1d shows the mean and SD of the RTD metric for the
12 subjects. Unlike the PVT lapses shown in Fig. 1a—c, the

RTD metric did not express PVT performance variability
unequally at different times across wakefulness, indicated by
a relative lack of a correlation between mean and SD for this
metric (r = —0.32). Our analysis suggested that by estimating
performance relative to an individual’s baseline, the RTD
attenuates the large swings in intersubject variability across
different phases of the circadian rhythm observed in PVT
lapses (Appendix, Section V).

We also computed the RTD for specific portions of the RT
density (i.e. for RT >1000, 500 and 250 ms) and compared
them with PVT lapses (Fig. 1a—c). We found that regardless
of the chosen threshold, and unlike PVT lapses, for any
specific portion of the RT density the RTD metric yielded
approximately uniform intersubject variability, which was
independent of time of day (Appendix, Section V).

To compare and contrast the PVT metrics in terms of their
ability to capture the homeostatic and circadian processes
underlying sleep regulation, we first performed group (within-
subject) effect size analysis. We assessed the group effect

© 2012 European Sleep Research Society
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Table 1 Effect size scores between group performance at baseline (08:00-18:00 h, day 1) and those at 08:00—-18:00 h on days 2—4, for the
response time divergence (RTD), psychomotor vigilance test (PVT) lapses (500 ms), mean response time (RT), median RT and mean speed
metrics. The entries inside the parentheses denote the non-parametric 95% bootstrap confidence intervals (Cls) of the effect size scores,
where the 95% Cls were based on 1000 bootstrap samples

Effect size (95% CI)

Mean RT (ms)

Median RT (ms)

Mean speed (s™')

1.22 (1.0, 1.35)
0.88 (0.69, 1.03)
1.50 (1.05, 1.75)
1.15 (0.81, 1.38)
0.83 (0.61, 1.95)
1.06 (0.40, 1.36)

0.85 (0.72, 0.96)
0.75 (0.63, 0.86)
0.72 (0.61, 0.81)
0.46 (0.38, 0.56)
0.77 (0.61, 0.88)
0.58 (0.35, 0.77)

1.34 (1.09, 1.51)
1.14 (0.79, 1.38)
1.74 (1.23, 2.01)
1.37 (0.99, 1.65)
0.96 (0.58, 1.21)
0.86 (0.52, 1.12)

0.93 (0.62, 1.15)
0.67 (0.47, 0.89)
1.02 (0.72, 1.21)
0.68 (0.50, 0.87)
0.66 (0.53, 0.80)
0.52 (0.41, 0.67)

1.32 (1.14, 1.46)
1.30 (1.10, 1.47)
1.69 (1.32, 1.94)
1.70 (1.12, 2.05)
0.85 (0.64, 1.04)
1.06 (0.68, 1.33)

1.58 (1.45, 1.77)
1.46 (1.31, 1.61)
1.17 (0.94, 1.35)
0.97 (0.79, 1.11)
0.68 (0.56, 0.77)
0.76 (0.58, 0.92)

Time of day (h) RTD PVT lapses (500 ms)
Day 2
08:00 1.25 (0.89, 1.54) 1.20 (0.94, 1.37)
10:00 1.32 (0.78, 1.71) 1.13 (0.91, 1.25)
12:00 1.60 (0.91, 1.92) 1.47 (0.96, 1.76)
14:00 1.12 (0.83, 1.52) 0.90 (0.63, 1.10)
16:00 0.88 (0.58, 1.23) 0.59 (0.38, 0.75)
18:00 0.99 (0.39, 1.16) 0.72 (0.35, 0.96)
Day 3
08:00 1.51 (1.04, 1.80) 1.33 (1.16, 1.46)
10:00 1.56 (1.01, 2.04) 1.31 (1.17, 1.44)
12:00 1.25 (0.39, 2.64) 0.98 (0.75, 1.07)
14:00 0.82 (0.46, 1.39) 0.68 (0.55, 0.80)
16:00 0.63 (0.38, 1.21) 0.76 (0.58, 0.89)
18:00 0.94 (0.32, 0.83) 0.58 (0.40, 0.73)
Day 4
08:00 1.36 (0.99, 1.82) 1.15 (1.00, 1.21)
10:00 1.34 (0.82, 1.38) 1.09 (0.98, 1.17)
12:00 1.59 (1.09, 2.00) 1.15 (0.95, 1.31)
14:00 0.86 (0.49, 0.95) 0.94 (0.67, 1.14)
16:00 1.16 (0.70, 1.58) 0.79 (0.60, 0.93)
18:00 0.80 (0.25, 0.81) 0.47 (0.30, 0.61)
Overall
08:00 1.37 1.15
10:00 1.37 1.13
12:00 1.48 1.06
14:00 0.89 0.77
16:00 0.81 0.72
18:00 0.89 0.54

0.65 (0.56, 0.72) 0.70 (0.56, 0.86) 1.33 (1.20, 1.45)
0.77 (0.68, 0.84) 0.82 (0.63, 0.93) 1.20 (1.1, 1.32)
0.90 (0.74, 1.03) 1.24 (1.02, 1.44) 1.59 (1.31, 1.80)
1.03 (0.75, 1.18) 0.80 (0.66, 0.94) 0.85 (0.68, 0.99)
0.73 (0.58, 0.84) 1.31 (0.86, 1.48) 1.15 (0.89, 1.28)
0.45 (0.29, 0.61) 0.80 (0.54, 0.99) 0.64 (0.48, 0.86)
0.79 0.91 1.39
0.78 0.82 1.29
0.81 1.23 1.41
0.59 0.82 0.95
0.77 0.79 0.79
0.53 0.63 0.75

size as a function of time of day (i.e. the circadian phase) by
comparing performance on day 1 (i.e. the baseline day) with
performance on days 2, 3 and 4 for each session between
08:00 and 18:00 h using the effect size dj, in eqn (A5) in the
Appendix. The results suggest that across all sessions
between 08:00 and 18:00 h on days 2—4, the RTD metric
scored a larger effect size than those of PVT lapses, mean
RT, median RT and mean speed on 89, 78, 61 and 55% of
the cases, respectively (Table 1). The table also shows that,
overall, for each of the six sessions averaged across days 2—
4 using the effect size d in eqn (AB) in the Appendix, the RTD
metric scored a larger effect size than those of PVT lapses,
mean RT, median RT and mean speed on 100, 100, 100 and
67% of the cases, respectively. When we combined the effect
size scores for each metric across the six sessions, we found
that the RTD metric scored the largest average effect size
(1.14), ranging from 4 to 61% larger than those of the other
four metrics, followed by mean speed, PVT lapses, median
RT and mean RT.

In addition, we used the goodness-of-fit between each
metric and the corresponding individualized two-process
model output (Rajaraman et al, 2008, 2009) to assess
indirectly the ability of the metrics to capture the homeostatic

© 2012 European Sleep Research Society

and circadian processes underlying sleep loss. Figs 3, 4 and
5 show the PVT lapses for RT >500 ms and the RTD metric
for three subjects with resilient (subject 9), vulnerable
(subject 1) and average (subject 12) sleep-loss phenotypes,
respectively, and their corresponding individualized two-
process model fits (dashed line, both panels). The results
for the resilient sleep-loss phenotype (Fig. 3) suggest that, in
terms of A%, the variance explained by the two-process model
for the RTD metric was 8% larger than that for the PVT
lapses, and in terms of P-value for Bartels’s test of random-
ness of the residual error in the model fit, the results suggest
that the RTD metric (P = 0.12) provided a superior goodness-
of-fit to the two-process model of sleep regulation than the
PVT-lapse metric (P = 0.01), which could not be character-
ized adequately by the two-process model. When we fitted
the RTD and PVT-lapse data for the subjects with vulnerable
(Fig. 4) and average (Fig. 5) sleep-loss phenotypes, the RTD
also explained the variance (R?) (66 and 17%, respectively)
more clearly. For the P-value analysis, the results for the
vulnerable subject (Fig. 4) suggest that the RTD metric
provided a significantly better goodness-of-fit to the two-
process model than lapses (P = 0.52 versus P = 0.06) and
the results for the average subject (Fig. 5) suggest that both
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Figure 3. Psychomotor vigilance test (PVT) performance of a resilient individual (subject 9) over 82 h of continuous wakefulness measured
once every 2 h in terms of PVT lapses (open circles, top) and the response time divergence (RTD) metric (open circles, bottom). The dashed
line in each panel represents the individualized two-process model fit to the corresponding performance metric. We used the coefficient of
determination (R?) and the P-values based on Bartels’s test of randomness of the residual error to quantify the goodness-of-fit of the two-
process model to PVT lapses and the RTD metric. The shaded region in each plot represents the 12-h recovery sleep administered to the
subjects immediately after 85 h of total sleep deprivation.
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Figure 4. As Fig. 3 for a vulnerable individual (subject 1).

metrics provided statistically similar goodness-of-fit to the metrics (Table 2). For example, we found that the P-values
two-process model (P = 0.91 versus P = 0.71). for the RTD metric were larger than those for PVT lapses (RT

The overall trend for both A% and P-values indicates that >500 ms), mean RT, median RT and mean speed for nine,
the RTD metric provided a superior goodness-of-fit of the 11, seven and seven subjects, respectively. When we
two-process model (i.e. larger R? and P-values) across all performed pairwise comparisons between the RTD and each

© 2012 European Sleep Research Society
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Figure 5. As Fig. 3 for an average individual (subject 12).
of the four other metrics based on R? across the 12 subjects
) DISCUSSION

using the paired-sample t-test (Zar, 1999), we found that the
RTD results were statistically larger (P < 0.05) than those of
all other metrics.

Previously, Wesensten et al. (2005) and Lamond et al.
(2007) analyzed performance restoration after recovery sleep
at a group-average level. In this study, we analyzed the
performance restoration after 12 h of recovery sleep following
85 h of continuous wakefulness at an individual level and
found that recovery is individual-specific and possibly linked
to sleep-loss phenotype (Appendix, Section VI).

In this paper, we present a new metric (the RTD) for
quantifying performance impairment in PVTs due to total
sleep deprivation. The RTD has two important advantages
over conventionally used PVT metrics. First, it provides the
ability to uniquely capture and quantify changes in the entire
RT density as well as any specific portion of the density of
each PVT session across wakefulness (Fig. 2). In contrast,
PVT lapses can reveal changes only in the proportion of
responses that fall above a pre-specified threshold but not in

goodness-of-fit to the two-process model of sleep regulation

Table 2 Coefficient of determination (%) for the individualized two-process model fits for each of the 12 subjects using the five metrics. The
P-values are for Bartels’s test of randomness of the residual errors in the individualized model fits. Larger R and P-values indicate better

R? (P-value)

Subject Sleep-loss phenotype RTD PVT lapses (500 ms) Mean RT (ms) Median RT (ms) Mean speed (s™')
1 Vulnerable 0.78 (0.52) 0.47 (0.06) 0.29 (0.01) 0.44 (0.01) 0.67 (0.08)
2 Vulnerable 0.71 (0.81) 0.40 (0.02) 0.43 (0.01) 0.59 (0.67) 0.65 (0.85)
8 Resilient 0.60 (0.71) 0.33 (0.40) 0.27 (0.12) 0.42 (0.93) 0.51 (0.65)
4 Average 0.44 (0.13) 0.37 (0.46) 0.41 (0.21) 0.44 (0.36) 0.42 (0.20)
5 Average 0.37 (0.58) 0.32 (0.09) 0.35 (0.10) 0.31 (0.68) 0.35 (0.27)
6 Average 0.59 (0.05) 0.59 (0.00) 0.32 (0.00) 0.59 (0.03) 0.60 (0.05)
7 Average 0.80 (0.15) 0.74 (0.33) 0.45 (0.00) 0.38 (0.15) 0.70 (0.04)
8 Average 0.69 (0.69) 0.48 (0.09) 0.34 (0.03) 0.33 (0.09) 0.60 (0.54)
9 Resilient 0.37 (0.12) 0.34 (0.01) 0.25 (0.01) 0.33 (0.03) 0.35 (0.04)
10 Average 0.69 (0.43) 0.60 (0.99) 0.39 (0.01) 0.31 (0.14) 0.58 (0.54)
11 Vulnerable 0.81 (0.04) 0.72 (0.02) 0.59 (0.00) 0.62 (0.05) 0.82 (0.06)
12 Average 0.62 (0.91) 0.53 (0.71) 0.58 (0.79) 0.51 (0.30) 0.59 (0.83)

PVT, psychomotor vigilance test; RT, response time; RTD, response time divergence.
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their density. Secondly, unlike existing PVT metrics, the RTD
inherently accounts for deviations from a baseline perfor-
mance level and, therefore, has the potential to capture more
effectively the ‘true’ intersubject variability in PVT perfor-
mance (Appendix, Section 1V). This feature of the RTD metric
becomes more significant for sleep-deprivation studies where
the subjects’ baseline performance levels are expected to
vary. In particular, the RTD metric is expected to reflect
intersubject variability more clearly than the existing metrics
for study groups involving a wide age range, because it has
been observed by Philip et al. (2004) that, under well-rested
conditions (i.e. baseline), older adult subjects respond signif-
icantly slower than younger subjects on PVTs.

Using PVT data from a total sleep deprivation laboratory
study (Wesensten et al., 2005), we found that PVT lapses
over- and underemphasized performance variability system-
atically and selectively at different times across wakefulness,
and that this non-uniformity in performance variability, quan-
tified by the Pearson’s correlation coefficient r between the
group mean and SD, was dependent on the selected lapse
threshold, with r ranging from —0.89 to 0.96 (Fig. 1a—c). We
found that raising the threshold resulted in overaccentuating
individual performance differences near the trough of the
circadian rhythm of alertness (~04:00-08:00 h), whereas
lowering the threshold resulted in overaccentuating individual
performance differences near the peak of the circadian
rhythm of alertness (~16:00-20:00 h). This phenomenon
can be explained by noting that near the circadian trough the
RT densities across individuals vary most in their right tail,
whereas near the circadian peak the intersubject variation of
RT density is most evident around their central portion (results
not shown). Consequently, raising the threshold affects the
right tail of the density, accentuating intersubject variability
around the circadian trough, whereas lowering the threshold
accentuates intersubject variability around the circadian peak.
This suggests that the overall performance variability is
modulated almost entirely by the selected PVT threshold
and raises questions about the selection of the appropriate
threshold to quantify performance impairment for a given
population. We found the mean and median RT to overem-
phasize the intersubject variability selectively around the
circadian trough and the mean speed to vyield relatively
uniform variability at all times of day.

In contrast, the RTD metric obviated the need to select a
threshold and represented individual differences without
over- or underemphasizing them at different times across

wakefulness (Fig. 1d). Rather, performance variability
appeared constant across all times of day (r= —0.32). We
attribute this behavior of the RTD metric vis-a-vis PVT lapses
to the fact that the RTD estimates performance relative to an
individual’s baseline, thus attenuating the large swings in
intersubject variability across the different phases of the
circadian rhythm observed in PVT lapses (Appendix, Section
IV and Fig. A1). Even when computing the RTD for a portion
of the RT density above a specific threshold we found that,
unlike PVT lapses, the RTD yielded a more uniform variability
across each day, which was arguably independent of time of
day and threshold level (Appendix, Section V).

The RTD metric scored the largest effect sizes in capturing
the homeostatic and circadian processes underlying perfor-
mance changes due to sleep loss, followed by mean speed,
PVT lapses, median RT and mean RT (Table 1). In general,
the effect sizes of mean speed were slightly smaller than
those of the RTD metric, while the scores of the other metrics
were consistently and considerably smaller than those of the
RTD. Further investigation suggests that effect size analysis
favors the mean speed metric because of the non-linear,
reciprocal transformation of RTs involved in computing this
metric. This transformation necessarily deemphasizes the
right tail of the RT density—a major source of response
variability during prolonged wakefulness among different
sleep-loss phenotypes—and, as a result, reduces intersub-
ject variability in mean speed values for each PVT session
during wakefulness. Consequently, effect size scores of the
mean speed metric increases (Appendix, Section VII).

We assessed indirectly the ability of the metrics to capture
the homeostatic and circadian processes by using each
metric separately as a dependent variable to fit individual
data to the two-process model, which is based on electro-
encephalography data (Borbély, 1982), and has been
validated extensively on PVT data (Rajaraman et al., 2008,
2009; Van Dongen et al., 2007). Again, we found that, in
general, the RTD metric yielded consistently better fits than
the other four PVT metrics, both in terms of the coefficient of
determination (R?) and the whiteness of the residual errors
(Table 2). Because Borbély’s two-process model of sleep
regulation was not built for a particular performance metric, it
should not favor any of the metrics considered in this paper.
Hence, to the extent that the two-process model of sleep
regulation depicts performance impairment accurately across
total sleep deprivation, this indirect metric comparison sug-
gests that the RTD reflects more clearly the interaction

Table 3 Average (n = 12 subjects) Pearson’s correlation coefficient between the temporal profiles of each two of the following psychomotor
vigilance test (PVT) metrics: response time divergence (RTD), PVT lapses (500 ms), mean response time (RT), median RT and mean speed
Metric RTD PVT lapses (500 ms) Mean RT (ms) Median RT (ms) Mean speed (s™')
RTD 1.00 0.84 0.73 0.85 0.94
PVT lapses (500 ms) 0.84 1.00 0.87 0.90 0.94
Mean RT (ms) 0.73 0.87 1.00 0.88 0.87
Median RT (ms) 0.85 0.90 0.88 1.00 0.94
Mean speed (™) 0.94 0.94 0.87 0.94 1.00

© 2012 European Sleep Research Society



New metric for quantifying performance impairment 667

between homeostatic and circadian processes than the other
four PVT metrics.

Because all PVT metrics are derived fundamentally from
RT measurements, we analyzed the extent to which the four
existing metrics are correlated with each other as well as
their correlation with the RTD metric on the basis of the
presented study. For the five metrics we considered in this
paper, we calculated an average Pearson’s correlation
coefficient (r) between each pair of metrics as follows. For
each subject k, we calculated the values of each metric for
each of the 42 trials, and then computed the subject’s
Pearson’s correlation coefficient (r,) over those 42 data
points between all metric pairs. We then took the mean of
the values of r, over the 12 subjects to determine r. Overall,
the correlations between metrics range from 0.73 to 0.94.
Table 3 reports the value of r for each pair of metrics and
indicates that mean speed is correlated highly with each of
the other four metrics, and that our proposed RTD metric is
correlated less with the other metrics than the other metrics
are with each other. We hypothesize that the high correla-
tion of mean speed with all of the other metrics is a result of
the non-linear reciprocal transformation used to determine
mean speed’s value. In our PVT data, high variability in a
trial manifests itself as a ‘long right tail’ of slow responses.
When the reciprocal transformation is applied to this long
tail, the size of the variance is diminished greatly because a
variable that can grow arbitrarily large (i.e. RT) is converted
into a variable (i.e. speed) that is bounded both below by
zero and above by a finite positive number, as RTs
<100 ms are, typically, considered as anticipations and
are not included in PVT data analysis. As a result of this
non-linear reduction in variance, the spread of the data
points across wakefulness is greatly decreased, resulting in
a larger value of Pearson’s correlation coefficient. The
lesser correlation between the RTD and the other metrics is
a result of RTD’s construction as a whole-distribution metric.
The three other metrics capture only a portion of the entire
distribution: the PVT lapse metric captures only the right tail
of the distribution, while mean RT and median RT are
measures of central tendency, not of the entire distribution.
We believe that the relatively low correlation between RTD
and these metrics is a favorable characteristic of the metric,
as it indicates that by calculating a metric using the entire
distribution we are capturing not only the aspects captured
by PVT lapses, mean RT and median RT, but also other
features of the distribution that might be lost when those
metrics are applied.

We hypothesize that the new metric may also be indicative of
activity inthe ‘defaultmode’ brain network (Raichle et al.,2001),
which has been shown through functional magnetic resonance
imaging studies to be associated with the occurrence of slow
RTs in PVTs (Drummond et al., 2005) under both well-rested
andtotal sleep-deprived conditions. Thisis because, undertotal
sleepdeprivation, the entire RT distribution changes due mainly
to changes in the number and magnitude of slow RTs and due
minimally to changes in the number and magnitude of fast RTs
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(Doran et al.,2001), effectively inducing changesin the right tail
of the RT distribution. Accordingly, these changes affect the
RTD metric to almost the same extent as the metrics that
particularly characterize lapses.

The literature is inconclusive as to what extent sleep-
deprived individuals can restore their performance after
recovery sleep. Lamond et al. (2007) suggest that the
conclusions are metric-dependent. Separately, Rosenthal
et al. (1991) concluded that, after an enforced 24-h time in
bed following a 48-h total sleep deprivation routine, subjects
could recover only 42% of their total amount of sleep lost, as
inferred from polysomnographic recordings. Our own analy-
ses support both possibilities and yield another plausible
hypothesis that recovery could be dependent upon the
individual’s sleep-loss phenotype. Any such analysis, how-
ever, is limited by the large variability in PVT results and the
lack of statistical power afforded by the small number of
observations following recovery sleep. Based on the RTD
metric, as well as the mean RT, median RT and mean speed,
the results were mixed, suggesting that recovery is individual-
specific and possibly linked to sleep-loss phenotype. While
all resilient phenotypes recovered, only some of the vulner-
able and average ones recovered.

The proposed PVT metric also has some potential limita-
tions. First, to some extent, the utility of the RTD metric
depends on the quality and accuracy of the RT density
estimates. Although the kernel density technique yielded
satisfactory estimates of the RT PDFs, this and other
techniques may fail to obtain accurate estimates when the
RTs observed in a session are few in number. This may occur
in short PVT sessions, e.g. <10 min, or with increased
sleepiness, as the total number of stimuli presented to a
subject in a session decreases with increasing RTs. Sec-
ondly, there is no consensus definition of what constitutes
baseline data. Nevertheless, we found the proposed metric to
be only mildly sensitive to the selection of baseline data. For
example, when we defined baseline density alternatively as
the density of the aggregate RT values of four sessions
(14:00, 16:00, 18:00 and 20:00 h) on day 1 and recomputed
the RTD for each of the 46 (42 plus four) PVT sessions, we
found that in 94% (43 of 46) of the sessions the results were
statistically indistinguishable (based on paired-sample t-test,
P < 0.05) from those obtained when we selected baseline
densities as those which were as close as possible to
Gaussian. This suggests that reasonable alternative defini-
tions of what constitute baseline data should provide similar
results. Another potential limitation of the RTD metric is its
complexity. In an attempt to alleviate such limitation, we made
available the set of MATLAB computer programs used for
computing the proposed metric, which can be downloaded
from http://bhsai.org/bic/papers/RTD_suite.zip.

In summary, we conclude that the RTD metric provides a
number of advantages over the traditional PVT metrics for
quantifying PVT performance impairment due to sleep loss:
the RTD does not pose a quandary in the selection of an
appropriate threshold, it does not over- or underemphasize
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performance variability at different times of day and it
captures more accurately the interaction between the sleep
homeostatic and circadian processes. We also conclude that
as the existing PVT metrics lack the ability to reflect
performance deviations relative to a baseline level, they
may not properly account for intersubject variability in
performance impairment. In addition, this work raises an
intriguing question: for the threshold-based metrics, is the
observed dependency between the threshold value and the
corresponding correlation between performance variability
and the circadian phase a true characteristic of a subject’s
cognitive state, or is it simply an idiosyncrasy of the PVT
threshold metric itself? We argue that the answer to this
question should not be metric-dependent and that the
quantitative analyses reported here provide evidence for a
more careful interpretation of PVT data and their implications
on performance impairment.
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APPENDIX

Section I. Empirical estimation of response time (RT)
probability density function (PDF)

Among the most widely used techniques to estimate PDFs
empirically are those that are based on kernel density
estimation (Silverman, 1986) in which a kernel (or weighting)
function, usually represented by a standard Gaussian density
and characterized by a smoothing parameter, is used to
approximate the density around each observation in the
sample. Mathematically, the density function estimate g(z) of
a series of N independent and identically distributed RT
samples {t,,}?’ observed in a psychomotor vigilance test
(PVT) session can be expressed as follows:
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N —
o0 = g K5, (A1)

where his a positive, real number smoothing parameter and
K{(') is a kernel function. Here, we used a standard Gaussian
density for K(:). In this formulation, as h approaches zero, the
density estimates exhibit larger values around the observa-
tions t,, whereas as h becomes larger the density estimates
become smoother, approaching a flat, uniform density
function.

Naturally, for a long-tailed (especially the right tail) RT
density, such as those observed during sleep deprivation, the
density estimates from eqn (A1) result in either unders-
moothed tails or oversmoothed central portions of the RT
density (Silverman, 1986). To address this problem, we used
an alternate technique for inferring g(z) in which we first
transformed the RT data through the Box—Cox family of
transformations (Box and Cox, 1964). This technique
attempts to map monotonically the original (measured) RT
data set {tn}ﬂv , for each PVT session of each subject, into a
transformed, normally distributed (to the maximum extent
possible) data set {7, }7 Assuming that {7, }?f was sufficiently
distributed normally (at least the skewness and excess
kurtosis were reduced), we used eqn (A1) to compute the
corresponding empirical density estimate g'(¢), where the
smoothing parameter h was computed separately for each
PVT session of each subject using egn (A1) (Silverman,
1986). We then computed g(¢) by converting ' (¢') through the
corresponding inverse transformation. While the proposed
method allows for the estimation of the RT density using the
entire set of RTs obtained during a PVT session, it can be
modified readily to estimate the density of any portion of the
RT data.

Section Il. Quantification of the dissimilarity between two
RT PDFs

We used the Jensen—Shannon divergence (JSD; Lin, 1991),
which is derived from the Kullback—Leibler divergence (KLD;
Kullback and Leibler, 1951), to quantify the dissimilarity
between any two RT PDFs, e.g. ps(f) and po(f), where
t represents a random variable (i.e. the RT). The JSD is
defined mathematically as follows:

JSDps (1), p2(t)] = KLD(m(t),M)

+ SKLD (m(t%M). (A2)

- N =

In this formulation, as p4(f) converges to p,({) or vice versa,
the JSD[p4(f), p=(f)] approaches zero. Conversely, as ps({)
diverges from po({), the JSD[p;(f), p=(f)] increases, attaining a
maximum value of In(2), where In(") is the natural logarithm.
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The /JSDIpi(t),p2(¢)] has been established recently as a

formal metric for quantifying the distance between two PDFs
because it possesses all the necessary attributes of a robust
dissimilarity metric, which are missing in the KLD (Endres
and Schindelin, 2003).

To compute the dissimilarity between two PDFs for a
desired portion of the observed responses (akin to PVT
lapses), eqn (A2) can be rewritten in a more general form as
follows:

JSDIp 1) pa(t)] = 5 KLD (m«)/mﬂpﬂf)/h ;pzm/kz})
+ %KLD (pg(t)/kg, [pa(1)/ ke ZM (t)/kd)

(A3)

where [a-b], with 0 < a< b<, represents the interval
containing the portion of responses we want to compare
between the two PDFs, k4 = f:p1 (¢) dt and kp = ffpg(t) dt.
Note that as a approaches 0 and b approaches oo, both k;
and k, converge to 1 and egn (A3) converges to eqn (A2).

As any distance metric, the JSD quantifies only the
dissimilarity between the entire set of RTs observed during
any two PVT sessions but does not convey whether
performance in one session is better or worse than that in
the other session. To account for the direction of the change
in performance from one session to the other, we analyzed
whether the RTs in one PVT session were statistically greater
than, equal to or less than the RTs in the other session and,
accordingly, determined whether performance deteriorated or
improved from session to session. The expression for the
RTD for the portion of responses within the interval [a—b] at
PVT session T is as follows:

Nt

RTD(T) = sgn[pr(t), pae(t)] @)

JSD [pr(t), peL ()],

(A4)

where Nrrepresents the total number of responses observed
in PVT session T, pr(f) and pg,() represent the RT PDFs at
session T and the baseline session, respectively and
sgn[p#(f), ps.(f)] represents a function that takes the value
of 1.0 when the RTs in PVT session T are statistically greater
than those in the baseline session and —1.0 otherwise. This
allowed us to identify whether performance at T was worse
{i.e. sgn[pr(f), pe.(f)] = 1.0} or as good as or better than
{san[p(t), pe.(f)] = —1.0} the baseline performance level,
where we used the two-sample Kolmogorov—Smirnov (KS)
test (Zar, 1999) to determine the value of sgn[p{(f), ps.(f)].
The proportionality constant N7/+/In(2) in eqn (A4) was used
so that the magnitude of the proposed RTD metric varied
within the same range as PVT lapses, i.e. from zero to Nr,
facilitating direct comparisons between the two metrics.
Based on this definition, the proposed PVT metric would
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have negative values when performance is better than or
equivalent to the baseline level and positive values when
performance is worse than the baseline level.

Section lll. Measures for comparing and contrasting PVT
performance metrics

In this section, we describe the measures used for comparing
and contrasting the PVT performance metrics in their ability
to capture the homeostatic and circadian processes under-
lying sleep regulation.

Effect size

To assess the effect size of sleep deprivation on performance
within subjects (or repeated measures) for a group of
individuals, we considered the difference in performance
between well-rested and sleep-deprived conditions for each
individual first, and then averaged these pairwise differences
across the group (Morris and DeShon, 2002). Here, we
followed the procedure proposed by Basner and Dinges
(2011), using the expressions defined in Morris and DeShon
(2002) to compute the effect size dp, for a group of
individuals between performance at sessions b (at the
baseline) and p (post-baseline), so that:

Yo — Vb ’ (45)

App = -
\/1m > Wom = Yom — (Vp — Yb)]z

m=1

where y,m and y,, represent the PVT performance mea-
surements of the mth individual at the post-baseline and
baseline sessions, respectively, and y, and y, denote the
mean PVT performance computed over the M individuals at
the post-baseline and baseline sessions, respectively. To
compute the overall (average) effect size over P PVT
sessions, we used the following expression (Hedges and
Olkin, 1985):

L — (A6)

where w,,, represents the inverse of the sampling variance of
dpp, Which was estimated by bootstrapping (Efron and
Tibshirani, 1993).

Goodness of two-process model fit

To assess the goodness-of fit-of each metric to Borbély’s two-
process model output (Borbély, 1982), we used two goodness-
of-fit measures. The first was the coefficient of determination
R?, which quantifies the proportion of the variance in an

individual’s performance data explained by a model (Zar,
1999); in this case, the individualized two-process model fit of
performance impairment (Rajaraman et al., 2008, 2009). For
the mth individual across J PVT sessions, this measure was
expressed mathematically as follows:

J 2
2 Wm = Fim)

RP=1-2 = (A7)
> Yjm = Ym)

-
I
N

where y;, and P, represent the PVT performance measure-
ment and corresponding two-process model fit, respectively,
for the fth PVT session of the mth individual, and 3,
represents the mth individual’s mean performance across J
PVT sessions administered during wakefulness. In this
formulation, R? ranges from negative ~ to 1.0, and the
higher the R? value, the better the data fit the model.

The second goodness-of-fit measure was the degree of
whiteness (randomness) of the residual error, i.e. the
difference between the individualized two-process model fit
and the performance measurements, where the more
random the residual error, the more accurate the model
describes the data, regardless of its scale (Chatfield, 2004).
Here, we used Bartels’s rank test (Bartels, 1982; P < 0.05) to
determine the degree of randomness of the residual error,
where we tested the null hypothesis that the residual error
was a random signal versus the alternative hypothesis that it
was a non-random signal.

Section IV. The effect of considering baseline in
quantifying PVT performance

We hypothesize that by estimating performance relative to an
individual’s baseline, the RTD attenuates the large swings in
intersubject variability across different phases of circadian
rhythm in PVT lapses. To test this hypothesis, we analyzed the
intersubject variability between two subjects with ‘resilient’ and
‘vulnerable’ sleep-loss phenotypes in two scenarios: (1) during
the early evening hours, where PVT lapses (RT >500 ms)
suppress intersubject variability and (2) during the early
morning hours, where PVT lapses accentuate intersubject
variability. Figs 3 and 4 (main text) show the PVT lapses for RT
>500 ms (open circles, top) and the RTD metric (open circles,
bottom) for the two subjects with resilient (subject 9; Table 2,
main text) and vulnerable (subject 1; Table 2) sleep-loss
phenotypes, respectively. We estimated an individual’s sleep-
loss phenotype as the sum of the individual’s homeostatic
component [«S(f) (in Rajaraman et al., 2008, 2009)] at 82 h of
wakefulness and the circadian amplitude (), both estimated
from the two-process model fit (Rajaraman et al., 2008, 2009)
to the individual’s RTD data. We categorized the individuals
with values within the mean + standard deviation (SD) as
average sleep-loss phenotypes, and those above and below
this range as vulnerable and resilient, respectively (Table 2).
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Figs 3 and 4 show that at 37 h of wakefulness (early
evening hour, 20:00 h, day 2) the lapses for the two subjects
were nearly identical (four for subject 9 and six for subject 1),
whereas the RTD values for these subjects were significantly
different (17 for subject 9 and 49 for subject 1). To investigate
the reason behind this discrepancy, we analyzed the RT
densities for the two subjects at 37 h of wakefulness. Fig. A1
(top) shows the empirical RT density estimates at 37 h of
wakefulness for subject 9 (thin solid blue line) and subject 1
(thin dashed red line), which appeared to be very close to
each other in the region to the right of 500 ms, corroborating
the nearly identical results for PVT lapses. Fig. A1 (top) also
shows that for subject 9 the dissimilarity between the entire
RT PDF at baseline and at 37 h (solid blue lines) was
relatively significantly smaller than the corresponding dissim-
ilarity for subject 1 (dashed red lines), illustrating why the
RTD values for these subjects were significantly different (17
versus 49) at 37 h. Conversely, at 47 h of wakefulness (early
morning hour, 06:00 h, day 3) shown in Figs 3 and 4 (main
text), we found that while the difference in lapses between the
two subjects was significant (50 for subject 9 and 22 for
subject 1), the RTD attenuated this difference (59 for subject
9 and 70 for subject 1). This is illustrated in Fig. A1 (bottom),

which shows that the dissimilarity between the RT PDFs at
47 h relative to their baselines was somewhat equivalent for
the two subjects, while the differences for RTs >500 ms were
more significant. We concluded, therefore, that by estimating
performance relative to an individual’s baseline, the RTD
attenuated the large swings in intersubject variability [differ-
ences of 32 (49-17) at 37 h and of 11 (70-59) at 47 h], which
were accentuated by PVT lapses [differences of 2 (6—4) at
37 h and of 28 (50-22) at 47 h] at early evening and morning
hours.

Section V. Head-to-head comparison between PVT
lapses and the RTD metric

To facilitate head-to-head comparisons between PVT lapses
(see Fig. 1a—c, main text) and the RTD metric, we computed
the RTD for specific portions of the RT density corresponding
to the associated thresholds. Fig. A2 shows the mean and
SD of the RTD metric results for: (a) RT >1000 ms, (b) RT
>500 ms and (c) RT >250 ms, obtained from eqn (A4) by
setting a to 1000, 500 and 250 ms, respectively, and b to
600,000 ms. Fig. A2a shows that the mean RTD results for
RT >1000 ms failed to describe the homeostatic build-up and
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Figure A1. The empirical probability density estimates of the response time (RT) measurements for a resilient subject (no. 9; solid blue lines)
and a vulnerable subject (no. 1; dashed red lines) at 37 h (early evening hour; top) and at 47 h (early morning hour; bottom) of wakefulness. At
37 h, subject 9 had lapses (>500 ms) = 4 and response time divergence (RTD) = 17, while subject 1 had lapses = 6 and RTD = 49. The small
difference in lapse values of the two subjects is reflected by the overlap of their 37-h densities for RT >500 ms, while the relatively large
difference in RTD is reflected by the dissimilarity of the corresponding densities at baseline and 37 h of wakefulness. At 47 h, subject 9 had

lapses = 50 and RTD = 59, while subject 1 had lapses = 22 and RTD =
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Table A1 Differences in mean performance between averages over sessions at 10:00, 12:00, 14:00 and 16:00 h on day 5 and the corre-
sponding sessions on day 1, for the response time divergence (RTD), psychomotor vigilance test (PVT) lapses (500 ms), mean response
time (RT), median RT and mean speed metrics for each of the 12 subjects. (Note that the direction of change of mean speed is opposite to
those of the other metrics.) The P-values are for the paired-sample t-tests, where smaller P-values indicate a larger statistical significance of
the differences in mean performances
Difference of the means (day 5 - day 1) (P-value)
Subject RTD PVT lapses (500 ms) Mean RT (ms) Median RT (ms) Mean speed (s™')
1 38.88 (0.00) 2.75 (0.56) 67.90 (0.00) 70.88 (0.01) —0.61 (0.00)
2 11.85 (0.48) —0.50 (0.39) 9.48 (0.41) 15.75 (0.09) —-0.15 (0.19)
S 4.18 (0.81) 1.50 (0.19) 2.96 (0.91) 5.50 (0.81) —0.05 (0.80)
4 —-21.04 (0.31) —-1.25 (0.06) —25.85 (0.28) —24.88 (0.10) 0.26 (0.23)
5 —28.00 (0.04) —1.00 (0.92) -21.13 (0.02) —23.13 (0.00) 0.29 (0.01)
6 8.12 (0.42) 1.75 (0.12) 12.00 (0.40) 9.50 (0.57) —0.09 (0.55)
7 44.60 (0.03) 27.25 (0.06) 151.59 (0.07) 88.50 (0.07) —0.54 (0.08)
8 —-10.76 (0.33) —0.25 (0.65) —-17.03 (0.42) —-11.00 (0.38) 0.12 (0.44)
9 —43.30 (0.00) —-3.25 (0.01) —41.43 (0.00) —-32.75 (0.00) 0.30 (0.00)
10 12.17 (0.00) 8.25 (0.06) 46.33 (0.10) 32.75 (0.01) —-0.21 (0.00)
11 —-1.93 (0.92) 1.50 (0.39) 13.22 (0.69) 1.63 (0.94) —0.06 (0.81)
12 28.97 (0.00) 12.25 (0.39) 82.32 (0.00) 65.50 (0.01) —-0.51 (0.01)
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Figure A2. Mean and standard deviation (SD) of the response time divergence (RTD) metric (n = 12) computed from the empirical density
estimate for three different thresholds: (a) 1000 ms, (b) 500 ms and (c) 250 ms. We used Pearson’s correlation coefficient (r) to compute the
correlation between the temporal profiles of the mean and SD as a function of wakefulness. The shaded region in each plot represents the 12-h
recovery sleep administered to the subjects immediately after 85 h of total sleep deprivation.
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circadian rhythm underlying performance impairment.
Rather, it varied inconsistently across wakefulness, suggest-
ing that for RT >1000 ms the dissimilarity in RT densities is
random (i.e. originating chiefly from intra-individual variabil-
ity). Moreover, we observed that the SD of the RTD results
was approximately constant across wakefulness, with no
significant correlation with the mean (r = —0.51). Similarly, we
found that the mean RTD results for RT >500 ms (Fig. A2b)
also varied randomly with wakefulness but to a lesser extent
than that for the RT >1000 ms threshold, again with no
significant correlation with the corresponding SD (r = —0.26).
Conversely, we found that the mean RTD results for RT
>250 ms (Fig. A2c) captured more effectively the homeo-
static and circadian processes, with the corresponding SD
varying uniformly across wakefulness and having no signif-
icant correlation with the mean (r=0.11). These results
suggest that the information about the cognitive state of an
individual described by a portion of the density above a
threshold increased as we lowered the threshold. This is
consistent with the notion that the entire density of RTs
should be used to characterize and assess performance
decrements due to sleep loss. As we lowered the threshold,
we included a larger portion of the RT density in computing
the RTD metric, thereby quantifying PVT performance more
comprehensively. For example, group RTD results for RT
>0 ms (Fig. 1d, main text) were statistically indistinguishable
from group RTD results for RT >125 ms (results not shown),
as inferred from the paired-sample ttest (Zar, 1999;
P < 0.05) performed across the two group measures for
each PVT session. That is, we found no apparent change in
the group PVT performance as we lowered the threshold
below 125 ms.

Section VI. Performance restoration after recovery sleep

To assess the extent of performance restoration to pre-sleep
deprivation levels after recovery sleep for each subject, we
tested the significance of the differences in performance at
the four sessions after the 12-h recovery sleep, i.e. at 10:00,
12:00, 14:00 and 16:00 h on day 5 and the corresponding
sessions on day 1, for all five PVT metrics, using the paired-
sample t-test (Zar, 1999). The entries in Table A1 show the
difference of the means (mean day 5—-mean day 1) and their
corresponding P-values for the five metrics for each of the 12
subjects. (Note that the direction of change of mean speed is
opposite to those of the other metrics.) In stark contrast to the
other metrics, for PVT lapses, only subject 9 (Table 2, main
text) had a significant difference in the means (P <0.05);
however, the difference was negative (-3.25; Fig. 3, main
text), indicating that performance was restored for all subjects
after 12 h of recovery sleep. For the RTD as well as for the
mean RT, median RT and mean speed the results were
mixed, suggesting that recovery is individual-specific and
linked possibly to sleep-loss phenotype. Based on these
metrics, between eight and 10 subjects seemed to have
recovered, as they had either no significant differences in the
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Figure A3. Comparison of the magnitude of the intersubject perfor-
mance differences between each of the 66 (12 x 11 + 2) possible
distinct pairs of individuals for each of the 42 psychomotor vigilance
test (PVT) sessions during wakefulness for: (a) PVT lapses [re-
sponse time (RT) >500 ms] versus the response time divergence
(RTD) metric, (b) normalized mean speed versus the RTD metric and
(c) normalized mean speed versus PVT lapses. In each panel, the
solid line has a slope = 1, whereas the dashed lines above and be-
low the solid line have slopes equal to 2 and 1/2, respectively.

means or when the difference in the means was significant
(P < 0.05) it was negative for RTD, mean RT and median RT
and positive for mean speed (e.g. subjects 5 and 9).
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Reassuringly, all but the PVT lapse metric provide strong
statistical support that subjects 1 and 12, with vulnerable and
average sleep-loss phenotypes, respectively, did not recover,
while the two resilient subjects (no. 3 and no. 9) recovered.

Section VII. How effect size analysis favors the mean
speed metric

We found that the effect size analysis favors the mean speed
metric. This is possibly because the non-linear, reciprocal
transformation involved in computing mean speed necessar-
ily de-emphasizes the right tail of the RT density, which
contains the majority of response variability during prolonged
wakefulness among sleep-loss phenotypes. This results in
the reduction of intersubject variability in mean speed values
for each PVT session during wakefulness. Consequently, the

variance of the pairwise (i.e. within-subject) differences in
mean speed across a group of individuals also decreases,
reducing the denominator in egn (A5) and effectively increas-
ing the effect size scores of the mean speed metric. To
investigate further this observation, we performed an addi-
tional analysis where, for each metric, we computed the
intersubject performance differences between each pair of
subjects for each of the 42 PVT sessions. As illustrated in
Fig. A3, where we compare the magnitude of the intersubject
performance differences between PVT lapses, RTD and
normalized mean speed, mean speed yielded a ~50%
smaller intersubject performance difference when compared
with those of PVT lapses and the RTD metric (Fig. A3b,c).
This supports our finding that, by construction, the mean
speed metric reduces intersubject variability significantly,
thus favoring effect size analysis.
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