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HISTORICALLY, BIOMATHEMATICAL PERFORMANCE 

PREDICTION MODELS HAVE FOCUSED ON PREDICT-

ING GROUP-AVERAGE PERFORMANCE IMPAIRMENT.1-3 

This modeling strategy necessarily de-emphasizes individual 

differences in resilience and vulnerability to sleep loss and con-

tradicts recent findings that indicate significant and systematic 

differences among individuals.4-7 For example, on a psychomo-

tor vigilance test (PVT) scale,8 restricted-sleep laboratory stud-

ies show that interindividual differences account for nearly 70% 

of the total variance in performance among a group of individu-

als, and that the differences are trait-like, stable, and innate to 

an individual.5 Hence, even if a group-average model were ca-

pable of accurately predicting mean-group performance, such 

a model would be of limited benefit without knowing how this 

translates into predictions at an individual level.9

Recently, two methods have been proposed for developing in-

dividual-specific performance prediction models for individuals 

subjected to total sleep loss with uncertain initial states (i.e., ini-

tial homeostatic pressure to sleep and circadian phase).10,11 Both 

methods employ the two-process model of sleep regulation12,13 

as the underlying parametric model structure and, because of 

the absence of quantitative individual biomarkers of perfor-

mance,14,15 use previously collected PVT data from an individual 

to customize the model for that individual. These methods, which 

involve the minimization of the error between the model fit and 

a set of performance measurements from a specific individual, 

nonetheless differ in the techniques used to adapt the two-pro-

cess model parameters to an individual. The method proposed by 

Van Dongen et al.10 is conceptually based on the earlier work of 

Olofsen et al.,16 with the original exponential model substituted 

by the two-process model of sleep regulation. Using a mixed-

effects regression framework, they separate out inter- and intra-

individual variability in previously recorded performance data 

from a group of individuals and, using the maximum likelihood 

principle, estimate the group-average model parameters and 

their corresponding variances. Thereafter, as new PVT perfor-

mance measurements for an individual, not necessarily studied 

previously, become available, a Bayesian framework makes use 

of the learned inter-individual variability of the group and the 

individual’s performance data to continuously adapt the model 

parameters (and the model) to that individual. In contrast, the 

method proposed by Rajaraman et al.11 adapts the two-process 

model parameters for an individual based solely on the individ-

ual’s performance data, without requiring inter- and intra-indi-

vidual variability information from a group of individuals. After 

an initial set of performance data for an individual is collected, 

as each new performance datum becomes available, the param-

eters of the two-process model are continuously adapted to that 

specific individual by solving a constrained, linear least squares 

(LS) problem, in which the constraint provides a trade-off be-

tween the goodness of the model fit and the requirement that the 

solution follows the two-process model. If a new performance 

measurement is unavailable at the “expected” sampling period, 
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both methods bypass model adaptation and estimate future per-

formance levels using the most recent parameter values.

Both of these methods have advantages and limitations. 

The method by Van Dongen et al.10 enables adaptation of the 

two-process model parameters using only a few performance 

measurements from an individual. Moreover, based on the 

probability distributions of the model-parameter estimates, 

the adopted Bayesian framework allows for the empirical es-

timation of 95% confidence intervals around the predictions. 

Although these empirically computed confidence intervals 

are not validated through Monte Carlo simulations, and their 

soundness has been questioned,17 they provide a first step in 

addressing a desired capability of performance models that, 

until now, has been lacking. However, some limitations do 

exist: Because of the nonlinearity of the two-process perfor-

mance model with respect to its parameters,13 the LS solution 

for finding the best estimates of the parameters involves solv-

ing a nonlinear programming (NLP) problem. In such prob-

lems, unless the objective function (i.e., the LS equation) is 

known to be convex, the NLP solution may be a local mini-

mum. Therefore, the proposed Bayesian framework10,16 cannot 

guarantee unique (optimal) estimates of the model parameters. 

This implies that the proposed method may negate a key con-

vergence property of adaptive, or learning, algorithms in that 

the model-parameters’ estimates must converge asymptoti-

cally to their underlying true (unknown) values as the number 

of measurements increases and as the amount of uncertainty 

in the measurements decreases.17,18 Furthermore, obtaining the 

optimal parameter estimates through their proposed Bayesian 

framework is computationally expensive, involving a brute-

force, grid-search procedure in which the computational cost 

increases as the desired accuracy of the resulting parameter 

estimate increases.

The method proposed by Rajaraman et al.11 addresses some 

of these limitations. It recasts the otherwise nonlinear opti-

mization problem into a set of linear optimization problems, 

whose solution, if it exists, is guaranteed to be unique. The 

model-parameter estimates are obtained by solving regular-

ized linear LS problems,11 avoiding the computationally cost-

ly grid-search optimization. More importantly, this method 

ensures that the model parameters asymptotically converge 

to their true values as the number of measurements increases 

and the amount of noise in the observed measurements de-

creases to zero. Despite these advantages, Rajaraman et al.11 

did not address two shortcomings. First, their method requires 

the accumulation of a minimum number of past performance 

measurements of an individual before model-parameter esti-

mates and performance predictions can be made. In theory, 

at least 13 measurements are required. However, in practice, 

due to noise in the measured performance data, a larger num-

ber of measurements are generally needed. This limitation 

precludes application of the method to partial/ chronic sleep 

restriction scenarios, in which, because of intermittent sleep/

wake periods, accumulation of large consecutive performance 

measurements is not possible. Second, they failed to com-

pute any measure of reliability of the model predictions. Such 

measures would provide statistical error bounds within which 

model predictions may be trusted for a predefined coverage 

probability, say, 95%.

In this paper, we extended our previous work by proposing 

solutions to these two shortcomings. To overcome the require-

ment that a minimum number of performance data points be col-

lected from an individual before the model can be customized 

and used to make predictions, we employed a Bayesian-like ap-

proach akin to that of Van Dongen.10 In this approach, we com-

bined a priori performance information with the information 

contained in the individual’s measured performance data. As 

a result, the proposed method leveraged a priori performance 

information and started adapting the model parameters and 

making predictions for a specific individual as soon as the first 

performance measurement from that individual became avail-

able. However, by retaining the strategy of transforming the 

nonlinear optimization problem into a series of linear problems, 

whose solution is the exact solution of the original nonlinear 

problem, the proposed method guaranteed unique, optimal es-

timates of the two-process model parameters, avoiding a brute-

force, grid-search procedure for computing the estimates. To 

quantitatively estimate the reliability of the model predictions, 

we reformulated the two-process model, using its linear repre-

sentation,11 into an autoregressive (AR) model framework,19-22 

which directly provides analytical expressions for computing 

statistically based error bounds around the model predictions in 

the form of prediction intervals (PIs).

We used two distinct data sets to evaluate the proposed 

method. The first consisted of simulated performance data on a 

PVT scale generated from the two-process model with known 

parameters and superimposed white Gaussian noise. Simulated 

data allowed us to verify the convergence of the model-param-

eter estimates to their true values, analyze the trade-off between 

a priori performance information and measured performance 

data, and qualitatively and quantitatively assess the PIs. We 

found that the proposed method yielded parameter estimates 

that asymptotically converged to their true values as the num-

ber of performance measurements for an individual increased 

and the amount of uncertainty (noise) in the measurements de-

creased. Moreover, the new method yielded improvements in 

parameter-estimate accuracy of up to 90% over our previous 

method.11 In addition, the soundness of the computed PIs was 

validated through Monte Carlo simulations.

The second data set consisted of PVT lapses obtained from a 

laboratory study of individuals subjected to 82 h of total sleep 

loss. The laboratory data allowed testing of the proposed ap-

proach within the context of the inter- and intra-individual 

variability encountered in actual performance data and making 

comparisons between individualized predictions and group-

average model predictions. For individuals representing three 

distinct sleep-loss phenotypes (“vulnerable,” “average,” and 

“resilient”), we found that the new method yielded individual-

ized predictions were up to 43% more accurate than the group-

average model predictions and better captured the circadian and 

homeostatic variation of the performance data. Moreover, pre-

diction accuracy improved, on average, by 10% compared with 

the previous method.

METHODS

In this paper, we proposed a new method that employed 

the two-process model of sleep regulation12,13 as the underly-
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ing model structure to enable individualized prediction of per-

formance impairment due to total sleep loss. This method is 

based on our previous work,11 in which, by taking advantage 

of the linear representation of the two-process model, we esti-

mate unique performance model parameters for an individual 

after collecting a minimum number of data points. Here, we 

improved upon the previous work by circumventing the re-

quirement that a minimum number of previously collected data 

points be available before model-parameter estimation and per-

formance predictions can commence. With this new method, 

model individualization was started as soon as the first per-

formance measurement became available. This was achieved 

through Bayesian inference, in which a priori performance in-

formation was combined with the information available from 

the individual’s measured performance data. The a priori per-

formance information was obtained from two-process model 

predictions generated using a priori model-parameter values. 

As each new performance measurement became available, it 

was added to the individual’s past performance data and togeth-

er used to update and further individualize the model-parameter 

estimates. Based on the most recent parameter estimates, we 

made predictions in accordance with a desired prediction ho-

rizon. We took further advantage of the linear representation 

of the two-process model to reformulate it into an AR model 

framework, which provides a direct analytical estimation of the 

reliability of the model predictions in terms of PIs.19

Two-Process Model of Sleep Regulation

The two-process model of sleep regulation consists of two 

separate processes:12 Process S (sleep homeostasis), which is 

dependent on sleep/wake history, increases exponentially with 

wake time and decreases exponentially with sleep/recovery time 

to a basal value,13 whose rates of increase/decrease are individ-

ual-specific, assumed to be constant, and have unknown values; 

and Process C (circadian), which is independent of sleep/wake 

history and represents a self-sustaining oscillator with a 24-h 

period.23 The equations comprising the two-process model at 

discrete sampling time index k can be expressed as13,24

( ),)1(1)/exp(1)( −−−−= kSTkS rs τ  during wakefulness, (1)

( ),)1()/exp()( −−= kSTkS ds τ  during sleep, (2)
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where S(k) denotes the value of the sleep homeostat at time k, 

usually scaled between 0 and 1;24 C(k) denotes a five-harmonic 

sinusoidal equation that approximates the circadian oscillator 

under entrained conditions;25 T
s
 represents the sampling period; 

τ
r
 and τ

d
 represent the time constants of Process S during wake-

fulness and sleep, respectively; τ denotes the time period of the 

circadian oscillator (~24 h); a
i
, where i = 1,…,5, represents the 

amplitude of the five harmonics of the circadian process (a
1
 = 

0.97, a
2
 = 0.22, a

3
 = 0.07, a

4
 = 0.03, and a

5
 = 0.001); and φ de-

notes the initial circadian phase.23

As suggested by Achermann and Borbély,26 we formulated 

the temporal pattern of cognitive performance as the additive 

interaction of Processes S and C. Accordingly, performance 

P(k) at time k was expressed by

),()()( kCkSkP βα +=  (4)

where α and β are real-valued positive parameters that control 

the trade-off between the two processes of the model. For total 

sleep deprivation, Eq. (4) can be rewritten as
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where γ = exp(-ρT
s
), with ρ = 1/τ

r
, ω = 2π/τ and ā

i
 = βa

i
. Equa-

tion (5) is a function of five unknown parameters, α, γ, β, S(0), 

and φ, of which α, γ, and β have been termed trait parameters, 

and S(0) and φ have been termed state parameters.10,11

Individual-Specific Model Development Based on Performance 

Measurements

In our previous work,11 we showed that performance P(k) in 

Eq. (5) is composed of a linear combination of three basic com-

ponents, a constant signal α, an exponential signal αS(0)γk-1, and 

five sinusoidal signals ( )[ ] .5,...,1 where,)1(sin =+− iTkia si φω  

Moreover, we note that, if x(k) denotes the value of time series 

x at time k, a shift operator Z can be defined such that Zn{x(k)} 

= x(k+n). Accordingly, we establish three linear operators, Z-γ, 

Z-1 and 
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ω

so that when each operator is individually applied to perfor-

mance P(k) in Eq. (5), it eliminates one of the three basic com-

ponents. Hence, by successively applying the three operators in 

any order to P(k) in Eq. (5),
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we eliminate all three basic components of P(k) and obtain 

an identically zero equality. The expression within the brack-

ets can be expanded into a 12th-order polynomial in Z, which, 

given the definition of Z, represents a 12th-order linear, forward-

difference equation. That is, for any set of values for the five 

parameters [α, γ, β, S(0), and φ], P(k) in Eq. (5) is a solution of 

the 12th-order difference equation represented by Eq. (6).

To adapt these parameters and develop individual-specific 

models, our previous method only makes use of current and 

past performance measurements, such as PVT lapses, from the 

individual being modeled. In this formulation, the relationship 

between PVT performance measurements y(k), with k = 1, …, 

N, and P(k) in Eq. (5) with unknown parameter values can be 

written as

),()()( kkPky ε+=  (7)

where ε(k) denotes a normally distributed error (measurement 

noise) with zero mean and variance σ2. We uniquely estimate 

P(k), or equivalently, the five parameters of the two-process 

model in Eq. (5) from y(k), by successively applying a pair of 

the three linear operators to y(k) and solving the three resulting 

linear constrained LS problems: the first LS problem solves for 
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discussed above. For example, γ was estimated by solving the 

two-step constrained linear LS problem
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minargminarg
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where ỹ denotes the M x 1 vector of prior performance data 

ỹ(k);μ is a positive real number; and P represents the (N + M) x 

1 vector of the performance fit P (k), with k = 1-M, 2-M,…, N, 

whose first M elements are represented by P
~
   and the remaining 

N elements are represented by P. In other words, P denotes the 

concatenation of vectors P
~
   and P.

The first term in Eq. (9) quantifies the fit of the solution of P 

to the individual’s measured performance data y, whereas the 

second term quantifies the fit to a priori generated performance 

data ỹ, with degree µ2. Accordingly, µ2 provides a mechanism 

to obtain a solution of P that provides a trade-off between our 

trust in the measured performance data and the a priori perfor-

mance information. As µ2 decreases, we increase our trust in 

the measured data and emphasize the fit of P to y, giving less 

weight to the prior information. This shift in emphasis increases 

the variance of the solution of P (i.e., it increases the trace of 

the covariance of P), since the y measurements are noisy.29 In 

the limit where µ2 = 0.0, the a priori performance information 

is not considered, and the last N elements of the solution of 

P in Eq. (9) are identical to P obtained from solving Eq. (8). 

Conversely, as µ2 increases, we increase our trust in the prior 

information and the model-parameter estimates obtained from 

the solution of P converge to the a priori selected values.

The optimal value for µ2 was computed by the algorithm de-

scribed in Appendix A and is a function of a user-provided es-

timate of the uncertainty (i.e., noise level) 2 in the measured 

performance data y. The computed µ2 was optimal in the sense 

that, given 2, it minimized a cost function that simultaneously 

accounted for the fit to the measured data and the fit to the prior 

information. Accordingly, as the provided uncertainty in the mea-

sured data 2 decreased, the optimal µ2 decreased, accentuating 

the trust in the measured data, and vice versa. The algorithm for 

the optimal selection of µ2 endowed another desired feature of 

Bayesian estimation algorithms30 in that the trust in the measure-

ments (i.e., observations) outweighs the trust in the a priori infor-

mation as the number of measurements provided to the algorithm 

increases. As a result, the optimal µ2 decreased asymptotically as 

the number of performance measurements N from an individual 

increased. That is, as more and more performance measurements 

were attained for an individual, the algorithm placed more and 

more trust in the measurements, de-emphasizing the prior infor-

mation. The rate of decrease of µ2, however, became faster or 

slower as the user-provided uncertainty 2 in the measurements y 

decreased or increased, respectively.

We solved Eq. (9) for the optimal estimate of γ following 

steps similar to those used in solving Eq. (8) discussed above. 

We performed this procedure over the entire range 0 ≤ γ < 1 to 

estimate the optimal γ. Next, using the optimal γ and the cor-

responding solution of P, we uniquely estimated the other four 

parameters of the two-process model by solving the associated 

constrained LS problems. As new performance measurements 

from the individual became available, they were combined with 

the previous measurements y and used together with the prior 

γ, the second for α and S(0), and the third for β and φ.11 For 

example, we estimate a unique value for γ by solving the fol-

lowing two-step constrained linear LS problem

[ ]{ },minargminarg
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where y denotes the N x 1 vector of performance measure-

ments y(k), with k = 1, …, N; P represents the corresponding 

N x 1 vector of the performance fit P(k); L
γ
 denotes the N-12 

x N matrix that represents the expression within the brackets 

in Eq. (6); and λ2 is a positive real number. To minimize Eq. 

(8), we first fix the value of γ (0 ≤ γ < 1) and, through con-

strained LS,11 find P that minimizes the expression within 

the brackets, for a chosen λ2. In this formulation, λ2 provides 

a trade-off for the solution of P between fitting the perfor-

mance measurements y (the first term inside the brackets) 

and satisfying the constraint imposed by L
γ
 (the second 

term),27 which requires that P follows the two-process mod-

el in Eq. (5). By setting λ2 to an arbitrarily large value, we 

forced the solution of P to follow the two-process model, 

while simultaneously fitting the measurements y. To avoid 

potential numerical problems with this procedure, we trans-

formed Eq. (8) to its standard form,28 solved it with λ2 set to 

an arbitrarily large value, and transformed its solution back 

to the original problem. Next, we change the value of γ and 

repeat this process over the entire range of possible values, 0 

≤ γ < 1, to estimate the optimal γ, which minimizes Eq. (8). 

Using the optimal γ and the corresponding solution of P from 

Eq. (8), we estimate the other four parameters of the two-

process model by solving two additional constrained linear 

LS problems.11 As new performance measurements from the 

individual being modeled become available, they are com-

bined with the previous measurements y and together used to 

adapt the model parameters for that individual by repeating 

the above procedure.

A limitation of this method is the requirement that a mini-

mum number of past performance measurements be available 

for the individual before model-parameter estimation and per-

formance prediction can begin. In theory, at least 13 measure-

ments are required; however, in practice, due to noise in the 

measurements y, a larger number of measurements is generally 

needed.

Individual-Specific Model Development Based on A priori 

Knowledge and Performance Measurements

To overcome this limitation and permit model individualiza-

tion and performance prediction as soon as the first measured 

performance datum becomes available, we modified the above 

approach by considering a priori performance information 

in addition to the information available from the individual’s 

measured performance data. The a priori performance infor-

mation was obtained from performance data generated from 

the two-process model in Eq. (5), with its model parameters 

set to a priori estimated values. This Bayesian approach was 

mathematically implemented by adding a term to Eq. (8), which 

accounted for M a priori data ỹ(k) = 1-M, 2-M,...,0,
 
and solving 

the augmented expression through the series of optimizations 

Individualized Performance Prediction—Rajaraman et al
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(5) with its parameters set to selected values and superimposing 

random noise to emulate the uncertainty present in measured 

performance data. Simulated data enabled verification of key 

convergence properties of the proposed approach, sensitivity 

analyses of the trade-off between prior information and mea-

sured data, and quantitative and qualitative assessment of the 

analytically computed PIs.

The second data set consisted of PVT lapse measurements 

from nine healthy individuals who had participated in a 82-h to-

tal sleep deprivation study under laboratory conditions.11,35 The 

laboratory data set allowed testing of the proposed approach 

within the context of the inter- and intra-individual variabil-

ity that characterizes measured performance data and compar-

ing the individualized predictions versus those obtained with 

group-average prediction models.

Simulated Data Set

We generated simulated data sets by running the two-process 

performance model in Eq. (5) with known parameters and su-

perimposing white (i.e., uncorrelated) Gaussian noise to emu-

late the variability observed in measured performance data. By 

sampling from the group-average distribution of parameters es-

timated by Van Dongen et al.,10 we set the three trait parameters 

in Eq. (5) to α = 30.30, β = 6.35, and ρ = 0.03 h-1 (γ = 0.94), 

whereas by sampling from uniform distributions with support 

[0 1] and [0 24], respectively, we set the state parameters S(0) 

= 0.82 and φ = 6 h. In each simulation, performance data were 

generated for 82 h of total sleep deprivation and sampled once 

every 2 h to emulate the sampling rate of performance mea-

surements in typical sleep studies. Data from each simulation 

were superimposed with white noise sampled from a Gaussian 

distribution with zero mean and one of three levels of variance: 

16, 4, or 1. These variances at 82 h of wakefulness correspond-

ed to a signal-to-noise ratio (SNR) of 3.70 (59.10/16), 14.77 

(59.10/4), and 59.10 (59.10/1), respectively, where 59.10 was 

the variance of the performance data generated by running Eq. 

(5) with the abovementioned parameters for 82 h. The SNR is 

defined as the ratio of the variance of a signal to the variance of 

the white noise corrupting that signal. In each simulation, the a 

priori values of the trait parameters, α
pr

 = 29.70, β
pr

 = 4.30, and 

ρ
pr

 = 0.03 h-1 (γ
pr

 = 0.94), were chosen to match Van Dongen’s 

estimates of their group-average model parameters,10 whereas 

the a priori values of the state parameters, S(0)
pr

 = 0.92 and 

φ
pr

 = 12.6 h, were randomly chosen by sampling from uniform 

distributions, as above. These same parameters were used in 

the group-average model predictions for all simulations. Based 

on these values, we employed Eq. (5) to generate 13 prior per-

formance data points. Thirteen is the minimum number of data 

points required to recover the two-process model-parameter 

values, since the model is the solution of the 12th-order dif-

ference equation [i.e., Eq. (6)]. Although a greater amount of 

previously collected data may be used, we empirically found 

that 13 data points provided the fastest rate of convergence of 

the model-parameter estimates to their true values.

To make the first prediction, the 13 a priori data were com-

bined with the first performance measurement y(1) to estimate 

the homeostatic-rate parameter ρ, or equivalently γ, by mini-

mizing Eq. (9). We set λ2 to 21024 (the largest-possible double 

information ỹ to adapt the model-parameter estimates and make 

new predictions.

Prediction Uncertainty Quantification

Under certain conditions, individualized predictions may be 

of limited value unless they are accompanied by measures of 

reliability of prediction in the form of statistically based error 

bounds, such as PIs.31 One way to estimate these PIs within 

the context of the two-process model is to first compute con-

fidence intervals for the model-parameter estimates and then 

translate them into PIs through Eq. (5). However, the nonlin-

ear relationship between the two-process model and its param-

eters13 precludes the derivation of analytical functions that map 

confidence intervals of the parameters’ estimates onto PIs for 

the model predictions.32 Rather, PIs are often estimated through 

computationally expensive Monte Carlo simulations.33

Here, we analytically computed PIs about the model predic-

tions by taking advantage of the linear representation of the 

two-process model in Eq. (5). Using the property that P(k) in 

Eq. (5) is a solution of the 12th-order difference equation in 

Eq. (6),11 we considered P(k) as a 12th-order autoregressive 

(AR) process (see Appendix B) in which, for each time k, P(k) 

is expressed as a linear combination of previous performance 

measurements,19, 22, 34 such that

,)()(
12

1

∑
=

−=
i

i ikPbkP  (10)

where b
i
, with i = 1,…,12, denotes the AR-model coefficients. 

By considering the correspondence between Eqs. (10) and (6) 

[see Appendix B], we obtained b
i
 as the coefficients of the 12th-

order polynomial given by the expression within the brackets 

in Eq. (6). Finally, by taking advantage of the availability of an 

analytic expression to compute statistically based error bounds 

for AR-model predictions,19 we obtained the following equation 

for computing PIs with a coverage probability of 100(1-θ) %

,ˆ)()( 2

2/)%1(100
σ

θθ
+±=

−

TZkPkPI bb�  (11)

where θ represents the significance level; Z
θ/2

 represents the 

percentage point of a standard normal distribution with a pro-

portion θ/2 above it; b denotes the 1 x 12 vector of coefficients 

b
i
, with i = 1,…,12; P(k) denotes the performance prediction at 

time k given previous measurements y(k-1), y(k-2),…;Σ denotes 

the covariance matrix of P(k-1),...,P(k-12), obtained by solving 

Eq. (9); and 2 denotes the user-provided noise-level estimate of 

the performance measurements y. We computed P(k) through 

Eq. (10), where P(k-i), i = 1,...,12,
 
were obtained from the solu-

tion of P in Eq. (9). To compute PI
100(1-θ)%

(k-n),
 
for n ≥ 1, we 

recursively applied Eq. (10) to generate predictions at k + m, 

with m = 1,2,…,n, followed by Eq. (11) for computing the cor-

responding PIs.

RESULTS

We employed two data sets to validate our proposed ap-

proach. The first consisted of simulated performance data ob-

tained from running the two-process performance model in Eq. 

Individualized Performance Prediction—Rajaraman et al
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lization of intermediate measurements with low SNR could re-

sult in incorrect model-parameter estimates that, while yielding 

a good fit to the measurements, result in poorer predictions.18 As 

a result, low SNR measurements could yield predictions over a 

longer horizon with smaller RMSEs than ones over shorter ho-

rizons. Nonetheless, as the number of measurements increases, 

the model parameters estimates should converge to their true 

(unknown) values, and the RMSEs should be approximately the 

same regardless of the prediction horizon.11

For the simulation in Figure1, Figure 2 shows the param-

eter estimates (solid squares), their true values (dashed lines), 

and a priori values (solid lines) of the five model parameters 

as a function of the number of available performance measure-

ments, starting with the first PVT measurement at time zero. At 

first, the parameter estimates oscillate due to the low SNR in the 

simulated performance data during this initial period. Later, as 

additional measurements became available and the variance in 

the data increased, achieving a SNR = 14.77 at 82 h of wakeful-

ness, each of the parameters asymptotically converged to their 

true values, attaining 95% accuracy after ~50 h of wakeful-

ness.

To verify the ability of the algorithm to consistently improve 

the estimation of the model parameters as a function of data 

uncertainty 2 and the number of performance measurements 

N, we performed three sets of simulations. Each consisted of 

100 trials, in which each trial in a set was superimposed with 

white noise sampled from one of the three Gaussian distribu-

tions with mean zero and variances that, at 82 h of wakefulness, 

corresponded to SNRs of 59.10 (σ2 = 1), 14.77 (σ2 = 4), and 3.70 

(σ2 = 16). In this way, we observed the impact of each noise 

level on parameter estimation. Table 1 shows the mean, the 

variance, and the mean squared error (MSE), i.e., the square of 

the bias plus variance, for each of the five parameter estimates 

over the 100 trials for the three sets of simulations. The MSE, 

which accounts for both estimation accuracy (bias) and estima-

tion precision (variance), is the most statistically meaningful 

precision floating point number) and, given the user-provided 

uncertainty 2 in y(1), estimated the optimal µ2 as discussed 

in the Methods Section. The remaining four parameters of the 

two-process model [α, S(0), β, and φ], were estimated by solv-

ing the associated LS problems,11 with P taken as the solution of 

Eq. (9). Thereafter, as new performance measurements became 

available, they were added to previous measurements, one at a 

time, and, by following the procedure above, the model param-

eters were adapted to take into account the entire set of mea-

surements up to the last datum. Using the most recent estimates 

of the parameters, we made performance predictions for a de-

sired prediction horizon. For example, a 6-h-ahead prediction 

at time index k was made using the model-parameter estimates 

obtained at time index k-3.

Figure 1 shows a representative realization of the perfor-

mance profile of a simulated individual, with SNR = 14.77 at 82 

h of wakefulness (i.e., σ2 = 4), and individualized performance 

predictions for three selected prediction horizons of 2, 6, and 10 

h. The performance units were normalized to emulate results of 

typical 10-min PVT laboratory studies. The root mean squared 

error (RMSE) was used as a metric to quantify the accuracy of 

the predictions (the smaller the RMSE between the predicted 

and the true underlying performance signal, the better is the 

resulting prediction).19 For consistency, RMSEs were computed 

across overlapping prediction time intervals spanning from 10 

to 82 h. As shown in Figure 1, the individualized model was con-

sistently more accurate than the group-average model, yielding 

a two- to three-fold reduction in prediction errors. Moreover, 

we note that the group-average model predictions (solid line) 

were out of phase with the simulated performance profile (solid 

circles). As expected, the RMSEs increased monotonically with 

increasing prediction horizons. This should be expected because 

the model parameters were not updated over the prediction ho-

rizon, preventing longer-horizon predictions from employing 

intermediate measurements to adapt the model parameters and 

improve the predictions. However, it should be noted that uti-
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Figure 1—Simulated performance data, normalized to a psychomotor vigilance task scale, for 82 h of total sleep deprivation with a signal-to-

noise ratio of 14.77. The solid circles show the simulated performance lapses every 2 h. The dotted, dash-dotted, and dashed lines represent 2-, 6-, 

and 10-h-ahead predictions, respectively, based on individualized models with prior parameter values as those used in the group-average model 

and noise-level estimate set to the correct value (σ2 = 4). The solid line represents the group-average model predictions. We used the root mean 

squared error between the predicted and the simulated performance data, calculated from 10 through 82 h, as a comparative metric.
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This anomaly usually occurs during the early phases of model-

parameter estimations and when the SNR is large. In this case, 

the algorithm de-emphasizes the prior performance information 

and only trusts the measured data, which do not contain suffi-

cient information for model-parameter estimation. As a result, 

the estimates have large uncertainty, occasionally causing the 

MSE to be larger than expected.

We also compared the results from our previous work11 

with the present results. For the particular representative re-

alization of the simulated performance profile in Figure 1, we 

metric,36 and can be quantified in simulated data where the bias 

in the estimate can be determined. The parameter estimates are 

shown at four points in time, at 22, 42, 62, and 82 h of wakeful-

ness, for each of the three SNRs. For each of the parameters, 

the results consistently indicated that, for a fixed time point, 

the MSE increased as the SNR decreased and, for a fixed SNR, 

the MSE decreased as the number of available performance 

measurements increased. The only exception was for α at 22 h 

of wakefulness, when the MSE for SNR = 59.10 (104.44) was 

larger than the corresponding value for SNR = 14.77 (98.49). 

Individualized Performance Prediction—Rajaraman et al

Figure 2—Estimates (solid squares), the true value (dashed lines), and the prior values (solid lines) of the five parameters of the two-process 

model. These correspond to the simulated performance data in Figure 1 and show that the model-parameter estimates asymptotically ap-

proached their true values as they were adjusted every 2 hours, as new measurements became available.
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analytically computed 95% PIs. To corroborate these estima-

tions, we empirically computed the 95% PIs (dash-dotted lines) 

through 100 Monte Carlo simulations. The results indicated 

that while the analytically computed 95% PIs were initially un-

derestimated, for each of the three SNRs, they converged to the 

corresponding empirically calculated values as the number of 

performance measurements increased. This is attributed to the 

Bayesian aspect of our method, where during the early phases 

of the model-parameter estimates the algorithm places greater 

trust on the prior performance information than the measured 

data, resulting in PIs that are narrower than expected. However, 

as the number of performance measurements for an individual 

increased, the 95% PI converged to the corresponding Monte 

Carlo simulated values, covering almost entirely the individu-

al’s performance measurements. The results also indicated that, 

as expected, the width of the analytically computed 95% PIs 

decreased from the top to the bottom panels as the SNR in the 

simulated performance data increased.

To analyze the sensitivity of the a priori chosen values of the 

two-process model parameters on the performance prediction, 

we compared and contrasted predictions for three simulated in-

dividuals, each representing a different sleep-loss phenotype. 

Figure 4 shows simulated performance profiles (solid circles), 

observed significant prediction and parameter-estimate im-

provements with the current method. In particular, the average 

prediction RMSE over the three horizons, computed between 

52 and 82 h of wakefulness, was 80% smaller with the current 

method. The average MSEs over the five parameters shown 

in Table 1 at 62 h of wakefulness were 50%, 90%, and 93% 

smaller with the new method when the SNR was set at 59.10, 

14.77, and 3.70, respectively, whereas at 82 h of wakefulness, 

the corresponding values were 45%, 50%, and 89% smaller 

with the new method. These two time points (62 and 82 h of 

wakefulness) were the only common points to both studies. 

The simulation results indicated that the proposed method’s 

improvements in predictions and parameter estimations were 

more significant when 2 in the performance data was high and 

the number of available measurements for parameter estima-

tion was small.

Figure 3 shows the performance profile, the 10-h-ahead pre-

dictions, and their corresponding 95% PIs for the simulated in-

dividual in Figure 1with SNRs set at 3.70 (top), 14.77 (middle), 

and 59.10 (bottom). The 10-h-ahead predictions at any sam-

ple index k were actually computed at sample index k-5 and 

are illustrated in all three panels by dashed lines. The dotted 

lines represent the corresponding upper and lower limits of the 
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Table 1—Parameter Estimates of One Individual for Three Monte Carlo Simulations of 100 Trials, Each with Three Different Signal-to-Noise 

Ratios (59.10, 14.77, and 3.70)

  α (lapses) ρ (h-1) β (lapses) S(0) φ (h)

 True values 30.30 0.03 6.35 0.82 6.00

 Signal-to- Time     

 noise-ratio awake (h)     

 59.10

 22 29.02 (SD = 10.14) 0.04 (SD = 0.03) 6.39 (SD = 0.50) 0.81 (SD = 0.06) 6.12 (SD = 0.33)

  MSE = 104.44 MSE = 0.00 MSE = 0.25 MSE = 0.00 MSE = 0.12

 42 30.43 (SD = 3.88) 0.03 (SD = 0.01) 6.25 (SD = 0.33) 0.83 (SD = 0.02) 6.02 (SD = 0.22)

  MSE = 15.10 MSE = 0.00 MSE = 0.12 MSE = 0.00 MSE = 0.05

 62 30.29 (SD = 1.50) 0.03 (SD = 0.00) 6.29 (SD = 0.27) 0.83 (SD = 0.02) 6.01 (SD = 0.18)

  MSE = 2.25 MSE = 0.00 MSE = 0.08 MSE = 0.00 MSE = 0.03

 82 30.20 (SD = 0.77) 0.03 (SD = 0.00) 6.29 (SD = 0.24) 0.83 (SD = 0.02) 5.99 (SD = 0.14)

  MSE = 0.60 MSE = 0.00 MSE = 0.06 MSE = 0.00 MSE = 0.02

 14.77

 22 28.48 (SD = 9.76) 0.05 (SD = 0.08) 6.36 (SD = 0.90) 0.82 (SD = 0.09) 6.19 (SD = 0.60)

  MSE = 98.49 MSE = 0.01 MSE = 0.81 MSE = 0.01 MSE = 0.40

 42 30.28 (SD = 5.91) 0.03 (SD = 0.01) 6.06 (SD = 0.67) 0.83 (SD = 0.04) 6.07 (SD = 0.44)

  MSE = 34.98 MSE = 0.00 MSE = 0.53 MSE = 0.00 MSE = 0.20

 62 30.26 (SD = 2.63) 0.03 (SD = 0.01) 6.20 (SD = 0.54) 0.83 (SD = 0.03) 6.03 (SD = 0.35)

  MSE = 6.93 MSE = 0.00 MSE = 0.32 MSE = 0.00 MSE = 0.13

 82 30.14 (SD = 1.44) 0.03 (SD = 0.00) 6.19 (SD = 0.47) 0.83 (SD = 0.03) 5.99 (SD = 0.28)

  MSE = 2.11 MSE = 0.00 MSE = 0.25 MSE = 0.00 MSE = 0.08

 3.70

 22 26.63 (SD = 10.19) 0.06 (SD = 0.05) 6.21 (SD = 1.69) 0.83 (SD = 0.15) 6.41 (SD = 1.15)

  MSE = 117.33 MSE = 0.00 MSE = 2.87 MSE = 0.02 MSE = 1.49

 42 28.66 (SD = 5.88) 0.04 (SD = 0.02) 5.56 (SD = 1.30) 0.85 (SD = 0.09) 6.28 (SD = 0.91)

  MSE = 37.24 MSE = 0.00 MSE = 2.31 MSE = 0.01 MSE = 0.90

 62 29.81 (SD = 3.44) 0.03 (SD = 0.01) 5.88 (SD = 1.09) 0.85 (SD = 0.07) 6.18 (SD = 0.77)

  MSE = 12.09 MSE = 0.00 MSE = 1.41 MSE = 0.01 MSE = 0.62

 82 29.93 (SD = 2.21) 0.03 (SD = 0.01) 5.89 (SD = 0.95) 0.84 (SD = 0.06) 6.05 (SD = 0.59)

  MSE = 5.03 MSE = 0.00 MSE = 1.12 MSE = 0.00 MSE = 0.35

The estimates’ mean, standard deviation (SD), and mean squared error (MSE), i.e., the square of bias plus variance, are shown at four time 

points: 22, 42, 62, and 82 h of wakefulness.
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to an individual’s true (unknown) parameters, the more accu-

rate the individualized predictions were for that individual.

Except in simulations, one does not know the noise level σ2 

in performance data. Hence, to analyze the robustness of the 

proposed individualized prediction method against errors in 

noise-level estimates 2, we compared the predictions for a sim-

ulated individual using three different  2. Figure 5 shows three 

10-h-ahead predictions for the “average” individual in Figure 

4 with SNR equal to 14.77. In each prediction, the noise-level 

estimate 2 was set to one-hundredth (dotted), equal to (dashed), 

and 100 times (dash-dotted) the true noise level (σ2 = 3.38) used 

in simulating performance profile.

10-h-ahead predictions (dashed lines), and group-average mod-

el predictions (solid lines) for representative “average” (top), 

“vulnerable” (middle), and “resilient” (bottom) individuals with 

SNRs set to 14.77. We computed the group-average predictions 

using the same parameter values as those used for generating a 

priori performance data. The figure shows that the accuracy in 

the 10-h-ahead predictions, measured in terms of RMSE, var-

ied between individuals, in that the larger the RMSE between 

the group-average model predictions and the true underlying 

performance of an individual, the larger the error in the indi-

vidualized performance predictions for that individual. In other 

words, as expected, the closer the prior parameter values were 
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Figure 3—Ten-hour-ahead performance predictions (dashed lines) and their corresponding analytically computed 95% prediction intervals (dot-

ted lines) for the simulated performance data shown in Figure 1, with signal-to-noise ratio (SNR) set at 3.70 (top), 14.77 (middle), and 59.10 (bot-

tom). The dash-dotted lines in each of the three panels represent the 95% prediction intervals computed through 100 Monte Carlo simulations.
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correct noise-level estimate. This was because the two-process 

model is composed of sinusoidal and exponential components, 

which do not possess enough flexibility to yield performance 

signals that exactly fit a set of noisy performance measurements. 

Hence, underestimation of the noise level, which increased the 

trust on the measured performance data, did not allow the algo-

rithm to overfit the performance data. Although, for a particular 

Inherently, the proposed algorithm followed a key property 

of learning algorithms,18 assigning greater trust to the measured 

performance data as the user-provided noise-level estimate ( 2) 

decreased to zero, and vice versa. Figure 5 shows that, while 

over-estimation of the noise level results in predictions closer to 

the group-average model predictions, underestimation results in 

predictions with RMSEs equivalent to those obtained using the 
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Figure 4—Individualized model predictions for three simulated individuals, each representing three different sleep-loss phenotypes [average 

sensitivity to sleep loss (top), vulnerable to sleep loss (middle), and resilient to sleep loss (bottom)]. The solid circles in each of the panels 

represent the simulated performance data with a signal-to-noise ratio of 14.77. The dashed lines represent 10-h-ahead predictions using the 

group-average model parameter values as the prior and using the correct noise level. The solid lines in each panel represent the group-average 

model predictions.
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the present study, we tested a subset of 11 subjects who had 

not been administered active fatigue countermeasures, and for 

whom PVT measures were collected every 2 h, for a total of 42 

measurements. Figure 6 shows the mean performance profile 

(solid circles) and the standard deviation of the 11 subjects over 

the 82 h of PVT data collection and the group-average model 

predictions (solid lines). Overall, the trend suggested that both 

PVT lapses and variance (70% of which could be attributable 

to inter-individual variability5) increased over time. Moreover, 

the figure shows that the group-average model does not even 

predict the mean-group performance well.

For comparison purposes, we selected the same three sub-

jects as in the previous study,11 each representing one of three 

different sleep-loss phenotypes: relatively vulnerable to sleep 

realization of noise in the performance data, predictions with 

under-estimation of the noise level may yield smaller RMSEs 

than those with the correct noise-level estimate, predictions av-

eraged over a number of noise realizations should yield smaller 

RMSEs when 2 is closer to the true noise level in the measured 

data.

Laboratory Data Set

The second data set used to test the proposed approach 

was collected from a controlled laboratory study in which 48 

healthy adults were kept awake for 85 consecutive hours to 

determine the effects of fatigue countermeasures on perfor-

mance and alertness during prolonged sleep deprivation.35 In 
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Figure 5—Individualized model predictions for the average sleep-sensitivity phenotype in Figure 4 (top). The solid circles represent the 

simulated performance data with a signal-to-noise ratio of 14.77. The dotted, dashed, and dash-dotted lines represent the 10-h-ahead predic-

tions based on noise-level estimates 2 set to one-hundredth, equal to, and 100 times, respectively, the true noise level (σ2 = 3.38). The prior 

parameter values were the same as those used in the group-average model.

Figure 6—Mean and standard deviation of psychomotor vigilance task (PVT) lapse measurements collected every 2 hours for 11 individuals 

during 82 h of total sleep deprivation. The solid line shows the performance predictions obtained with the group-average model.
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nerable (middle), and resilient (bottom) subjects along with 

the group-average model predictions (solid lines), the 10-h-

ahead predictions (dashed lines), and their corresponding 95% 

loss, relatively average sensitivity to sleep loss, and relatively 

resilient to sleep loss. The three panels in Figure 7 show the 

observed PVT lapses (solid circles) for the average (top), vul-
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Figure 7—Individualized model predictions for three subjects with different behavioral phenotypes [average sensitivity to sleep loss (top), 

vulnerable to sleep loss (middle), and resilient to sleep loss (bottom)], with prior parameter values equal to those used in the group-average 

model and noise-level estimate 2 set to 77.60. The solid circles in each of the panels represent the measured psychomotor vigilance task 

(PVT) lapses, measured every 2 hours. The dashed lines represent the 10-h-ahead predictions, whereas the dotted lines represent the corre-

sponding analytically computed 95% prediction intervals. The solid lines in each panel represent the group-average model predictions.
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performance predictions made over shorter horizons were more 

accurate than predictions made over longer horizons. This ob-

servation is because of the more frequent use of intermediate 

performance measurements by shorter horizons in updating the 

model-parameter estimates. However, intermediate measure-

ments with low SNR could result in inaccurate models that, 

while yielding a good fit to the measurements, predict poor-

ly.18 We also analyzed the analytically computed 95% PIs and 

found, as expected, that their width was positively correlated 

with the amount of noise in the performance data. Moreover, 

as more performance measurements were available to the algo-

rithm, the PIs converged to those empirically obtained through 

Monte Carlo trials, validating the accuracy of the PIs computed 

by the new method. Employing PVT data from a laboratory 

study, the proposed method yielded individualized predictions 

for three sleep-loss phenotypes that were up to 43% more ac-

curate than group-average model predictions. Additionally, the 

corresponding 95% PIs almost entirely covered the entire set of 

measurements.

When comparing the results of the proposed method with 

those from our previous approach on the same simulated data, 

we observed average improvements in the accuracy of the 

model-parameter estimates of 70% and in the accuracy of the 

performance predictions of 80%. In particular, we found that 

the improvements in parameter estimation accuracy were more 

pronounced during the early phases of parameter estimation 

(typically, before obtaining 13 measurements) and when the 

SNR was low. This was because the algorithm places more trust 

on the a priori information during the early stages of adapta-

tion (i.e., before the performance impairment trend could be 

completely learned) and when the estimated amount of noise 

in the data was large. Similarly, on the laboratory data set, the 

new method yielded a 10% average reduction in the prediction 

error.

We found the accuracy of the model-parameter estimates and 

of the performance predictions to be a function of the a priori 

selected values for the model parameters and the noise-level 

estimate of the performance measurements. We empirically ob-

served that, as expected, the closer the a priori parameter values 

were to the true values underlying an individual, the more accu-

rate were the predictions for that individual. Additionally, over-

estimation of the noise level in the measurements resulted in 

predictions biased toward the a priori information, whereas un-

derestimation of the noise level did not yield necessarily worse 

predictions than the ones based on the correct value of the noise 

level. This was because the two-process model of sleep regu-

lation is composed of sinusoidal and exponential components, 

which prevent a perfect fit of the model to non-smooth signals, 

such as additive white noise in the performance measurements. 

This precludes model overfitting and resulting deterioration of 

model predictions.

Despite the advances made by the new method for individu-

alized performance prediction of sleep-deprived individuals, it 

does have limitations. In particular, this method suffers from 

the same limitations as any Bayesian approach, where a “good” 

choice of a priori parameter values and a “reasonable” estimates 

of the noise-level in performance data are key for obtaining opti-

mal results.18 Another limitation relates to the underlying assump-

tion that measures of performance, such as PVT lapses, would be 

PIs (dotted lines). In these calculations, we set the noise-level 

estimate 2 = 77.60, as in Van Dongen.10 For consistency, the 

RMSEs were computed between 10 and 82 h, and they indi-

cated that the individualized predictions were up to 43% more 

accurate than the group-average model predictions for all three 

subjects, with the measurements falling almost completely 

within the corresponding analytically computed 95% PIs. We 

also compared the 10-h-ahead predictions with our previous 

method11 and found that, on average, the new method reduced 

the prediction error by 10%.

DISCUSSION

In this paper, we presented a new method based on the two-

process model of sleep regulation that enabled individualized 

predictions of performance impairment represented by PVT 

lapses for subjects exposed to total sleep loss. The method ad-

vanced our previous work11 in two important ways. First, it al-

lowed model-parameter estimation and performance predictions 

as soon as the first performance measurement became available. 

This was achieved by combining a priori performance informa-

tion with the individual’s performance data through Bayesian 

inference. However, by retaining the strategy used in our previ-

ous work, where the nonlinear optimization problem of find-

ing the best estimates of the two-process model parameters is 

transformed into a series of linear problems, the new method 

guaranteed unique estimates of the five parameters of the two-

process model, avoiding brute-force, grid-search procedures.10 

Another important feature of the new method was that a priori 

performance information was optimally combined with the in-

dividual’s performance data as a function of a user-provided 

estimate of the uncertainty (i.e., the noise level) in the mea-

surements. As a result, the algorithm increased its trust in the 

a priori performance information as the estimate of the noise 

level in the measurements increased, and vice versa. Moreover, 

as more and more performance measurements were attained for 

an individual, the algorithm placed more and more trust in the 

measurements, de-emphasizing a priori performance informa-

tion. The rate of increase of the trust placed in the measure-

ments, however, became faster or slower as the user-provided 

uncertainty in the measurements decreased or increased, re-

spectively.

Second, the current work, for the first time, provided sta-

tistically based error bounds around the model predictions in 

the form of prediction intervals. This was achieved by taking 

advantage of the linear representation of the two-process model 

proposed in our previous work,11 which afforded the reformula-

tion of the two-process model into an equivalent AR model and, 

thus, provided analytical expressions for estimating PIs about 

the model predictions, bypassing the need to first estimate con-

fidence intervals of the model parameter estimates.10

Employing a simulated performance data set generated from 

the two-process model with selected parameters and with su-

perimposed white Gaussian noise, we found that the param-

eters’ estimates asymptotically converged to their true values 

as the number of performance data points increased and as the 

amount of noise in the performance data decreased, thereby 

confirming that the proposed method satisfied key convergence 

properties of adaptive algorithms.18 Moreover, we observed that 
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available on a frequent basis. This may not be possible in some 

operational settings, since it may not be practical to discontinue 

work-related tasks for administering performance tests. Further-

more, we note that, although PVT lapse (selected as our predicted 

variable) is recognized as a widely used and sensitive measure to 

sleep loss and although PVT may be the most practical test for 

some operational environments,37 it may not accurately reflect 

real, work-related performance of individuals.

Our future modeling efforts will focus on predicting perfor-

mance under chronic sleep restriction conditions, where wake 

and sleep episodes alternate, precluding the availability of a 

large set of contiguous performance measurements from which 

individualized models can be obtained. This difficulty can 

be handled by our proposed method in that model adaptation 

would take place incrementally during wake episodes, and fu-

ture performance levels would be predicted based on the latest 

parameter values. In addition, we will assess the performance 

of the proposed approach for the prediction of other outcome 

measures of performance, such as the Karolinska sleepiness 

scale,38 the Stanford sleepiness scale,39 the serial addition/sub-

traction task,40 and the digit symbol substitution task.41

Considerable modeling efforts are still required to fully ad-

dress the set of capability gaps identified at the Department of 

Defense-sponsored Fatigue and Performance Modeling Work-

shop.1-3 However, the work described here provides significant 

contributions toward closing the research gaps and developing 

models that accurately predict cognitive performance impair-

ments due to sleep deprivation at an individual level.
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As µ2 increases, the first term in Eq. (A.2) increases monoton-

ically while the second term decreases monotonically.29 There-

fore, the cost function in Eq. (A.2) has at most one minimum,42 

which corresponds to the optimal µ2. Because tr[cov(P
μ

2)] in 

Eq. (A.2) is proportional to the user-provided uncertainty 2 in 

the measurements y (i.e., the noise level in y), the optimal µ2 

is a function of 2. Thereby, as 2 increases, the optimal µ2 in-

creases, accentuating the trust in the prior performance data in 

Eq. (A.1), and vice versa.

APPENDIX B

In this appendix, we show the equivalence between the two-

process model of performance given by Eq. (5)

( )[ ],)1(sin)0()(
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and the 12th-order autoregressive (AR) model given by Eq. (10)
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Note that for any set of values for the five parameters [α, γ, 

β, S(0), and φ], P(k) in Eq. (B.1) is a solution to the 12th-order 

difference equation given by the expression within the brackets 

in Eq. (6)
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where Z denotes a shift operator, such that Zn{P(k)} = P(k+n). 

By expanding the linear, forward-difference operator in Eq. 

(B.3) into a 12th-degree polynomial in Z and applying it to P(k) 

in Eq. (B.1), we obtain the following difference equation

,)(....)10()11()12( 1221 kPckPckPckP +++++=+  (B.4)

APPENDIX A

Optimal Selection of the Parameter µ2 in Eq. (9) [main text]

In this appendix, we describe the method employed to obtain 

an optimal value for the parameter µ2 in Eq. (9)
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which simultaneously accounts for the fit to the measurements 

y [the first term in Eq. (A.1)] and the fit to the prior performance 

data ỹ(the second term).

We obtained an optimal value for µ2 by minimizing the ex-

pression (i.e., the cost function) within the braces of the follow-

ing equation

,)][cov(minarg 22
2

2

2 





 +−
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where P
μ

2 denotes the last N elements of the solution of P in Eq. 

(A.1), for a specific µ2 and for λ2 set to an arbitrarily selected 

large number (21024). To avoid potential numerical problems 

with this procedure, we transformed Eq. (A.1) to its standard 

form,28 solved it for a specific µ2 and for λ2 set to an arbitrarily 

selected large number (21024), and transformed its solution back 

to the original problem [i.e., Eq. (A.1)]. The first term within 

the braces in Eq. (A.2) represents the fit of the solution of Eq. 

(A.1) to the performance data measurements y, whereas the sec-

ond term represents the trace of the covariance of P
μ

2, which is 

equivalent to the fit of the solution of P to the a priori-generated 

performance data ỹ, i.e., the second term in Eq. (A.1). Noting 

that P
μ

2 and tr[cov(P
μ

2)] are functions of µ2 and λ2, for which 

closed-form expressions exist,28 and because Eq. (A.2) has a 

unique minimum (see below), the optimal µ2 can be obtained 

through standard numerical unconstrained optimization tech-

niques, such as Levenberg-Marquardt or Gauss-Newton.
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By analyzing the correspondence between Eqs. (B.5) and 

(B.2), we concluded that the two-process model in Eq. (5) is 

equivalent to the 12th-order AR model given by Eq. (10), where 

b
i
 = c

i
, with i = 1,…,12.

where c
i
, with i = 1,…,12, are real numbers, which are fixed 

given the values of γ, ω, and T
s
. According to Eq. (B.4), we 

observe that P(k +12) can be expressed as a linear combination 

of the previous 12 measurements or, alternatively, P(k) can be 

expressed as a linear combination of P(k-1), P(k-2),…, and P(k-

12) as follows
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