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Rajaraman S, Gribok AV, Wesensten NJ, Balkin TJ, Reifman J.
Individualized performance prediction of sleep-deprived individuals with
the two-process model. J Appl Physiol 104: 459–468, 2008. First pub-
lished December 13, 2007; doi:10.1152/japplphysiol.00877.2007.—We
present a new method for developing individualized biomathematical
models that predict performance impairment for individuals restricted
to total sleep loss. The underlying formulation is based on the
two-process model of sleep regulation, which has been extensively
used to develop group-average models. However, in the proposed
method, the parameters of the two-process model are systematically
adjusted to account for an individual’s uncertain initial state and
unknown trait characteristics, resulting in individual-specific perfor-
mance prediction models. The method establishes the initial estimates
of the model parameters using a set of past performance observations,
after which the parameters are adjusted as each new observation
becomes available. Moreover, by transforming the nonlinear optimi-
zation problem of finding the best estimates of the two-process model
parameters into a set of linear optimization problems, the proposed
method yields unique parameter estimates. Two distinct data sets are
used to evaluate the proposed method. Results of simulated data (with
superimposed noise) show that the model parameters asymptotically
converge to their true values and the model prediction accuracy
improves as the number of performance observations increases and
the amount of noise in the data decreases. Results of a laboratory
study (82 h of total sleep loss), for three sleep-loss phenotypes,
suggest that individualized models are consistently more accurate than
group-average models, yielding as much as a threefold reduction in
prediction errors. In addition, we show that the two-process model of
sleep regulation is capable of representing performance data only
when the proposed individualized model is used.

total sleep deprivation; individualized modeling; performance predic-
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A PROMISING STRATEGY to better manage the detrimental effects
of limited sleep on cognitive performance of civilian and
military personnel involves biomathematical modeling. Bi-
omathematical models can be used to estimate the performance
of sleep-deprived individuals, to plan improved sleep/wake
schedules, and to optimize the timing and dosing of fatigue
countermeasures, e.g., naps and caffeine, so that performance
peaks and is maintained during the desired times of the day.1

To date, most mathematical models are limited to predicting
group-average performance (18, 21, 26). Group-average mod-

eling, however, is incongruous with our knowledge that per-
formance impairment due to total or partial sleep deprivation is
strongly dependent on innate differences among individuals
(25, 35, 39, 41). For example, on a psychomotor vigilance test
(PVT) scale (19), interindividual differences accounted for
nearly 70% of the total variance in the performance among
individuals (35). What is needed, in particular for operational
settings, is the ability to predict performance of specific indi-
viduals (26). However, prominent among the obstacles associ-
ated with individualizing model predictions are the interrelated
problems of 1) how to deal with uncertainties in the initial
states, i.e., initial homeostat and circadian values, of the indi-
viduals being modeled; and 2) how to determine the model
parameters that would accurately reflect the substantial inter-
individual differences in performance impairment due to sleep
loss (32).

Another obstacle in the development of individualized mod-
els relates to our inability to identify biomarkers capable of
quantitatively predicting performance decrement due to sleep
loss (3, 37). Given the absence of such independent predictor
variables of performance, the next-best option for developing
individual-specific models is to feed back past measures of
observed performance P(k), k � k�1, k�2, . . . , of an indi-
vidual as inputs to the model to predict that individual’s future
performance P(k), at time index k. For example, one could use
past PVT measures to develop models capable of estimating
future PVT values. As measures of performance from a spe-
cific individual become available, such a mechanism would
allow the model parameters, which are assumed to be time
invariant and fixed for a given individual,2 to be systematically
adapted to that individual, based on previous temporal patterns
of performance, to more accurately predict future performance
levels for that individual.

Presently, only two methods have been proposed for devel-
oping individualized performance prediction models (29, 36).
Both methods used the concept of feeding current and previous
measures of performance of a specific individual back into the
model to predict that individual’s future performance. The
original work proposed by Olofsen and colleagues (29) as-
sumes that a simple exponential model can be used to represent
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daily-averaged performance measures of a group of individuals
restricted to partial sleep deprivation over a 20-day period.
Casting the exponential model in a mixed-effects regression
framework allows the model to fit the group data so that the
fixed effects (i.e., constant or time-varying parameters) are
decoupled from the random effects (i.e., the inter- and intrain-
dividual variability), where the group-average model parame-
ters and their corresponding variances are estimated through
the maximum likelihood principle. As new performance mea-
sures for an individual, not necessarily studied before, become
available, a Bayesian approach makes use of the learned
interindividual variability of the group and the individual’s
performance data to adapt the group-average model parameters
and the model to that individual. More recently, Van Dongen
and colleagues (36) extended this work by substituting the
exponential model with Borbély’s two-process model of sleep
regulation (8, 14) and developed models for predicting (up to
24 h ahead) performance impairment levels of individuals in an
88-h total deprivation study.

Notwithstanding the significant contribution of these two
methods that, for the first time, allowed for the development of
individual-specific models of performance, they have some
shortcomings. First, unique estimates of the two-process model
parameters for a specific individual cannot be guaranteed
because the Bayesian posterior distribution could be multimo-
dal. The possible multimodal behavior of the posterior distri-
bution could be due to the multimodal nature of the prior
probability distribution of the group-average parameters or the
multimodal likelihood function of an individual’s trait param-
eters [both of which may occur because of nonlinear relation-
ships of the 2-process model parameters with respect to the
model’s output P(k)]. Second, there is a high computational
cost to maximize the Bayesian posterior distribution through a
brute-force, grid-search approach, and the cost increases expo-
nentially as the desired accuracy of the resulting parameter
estimates increases. The multimodality of the posterior distri-
bution, in particular, has serious implications. It may negate a
key convergence property of adaptive (or learning) algorithms,
in that the model parameters must converge asymptotically to
their true values as the number of observations increases and
the amount of noise in the data decreases (12).

In this study, we present an alternative method to develop
individualized predictive models of performance for subjects
restricted to total sleep deprivation. Similar to the method
proposed by Van Dongen and colleagues (36), the five-param-
eter, two-process model of sleep regulation is used as the
mathematical basis to predict an individual’s temporal pattern
of performance, and past measures of performance P(k), k �
k�1, k�2, . . . , are fed back as inputs to the model to estimate
future performance P(k). Unlike their approach, however, for
predicting an individual’s performance, the proposed method
does not require the availability of performance data from a
group of (like) individuals and the estimation of group-average
model parameters. Instead, an individual’s temporal variability
is learned directly and solely from the individual’s own data. A
set of past performance data points are used to predict future
levels of performance for that individual. Any new datum point
that becomes available is combined with the individual’s pre-
vious data (in a “batch” approach) and is used to adapt the
model parameters and generate estimates of future perfor-
mance, without requiring knowledge of an individual’s initial

state, i.e., initial homeostat and circadian phase. In case a new
datum point is either missing or unavailable at the “expected”
sampling period, no adaptation of the parameters takes place,
and the most recent parameter values are used to estimate
future performance levels.

More importantly, for a given set of performance data, this
approach guarantees a unique estimate of the five parameters of
the two-process model and ensures that the model parameters
asymptotically converge to their true values as the number of
measurements increases and the amount of noise in the ob-
served measurements reduces to zero. These are accomplished
by transforming the underlying nonlinear optimization prob-
lem of finding the best estimate of P(k), the solution of which
may not be unique, into a set of linear optimization problems
that are guaranteed to yield a unique solution.

METHODS

The two-process model of sleep regulation. In the two-process model
of sleep regulation, two separate processes underlie sleep regulation (8).
The first, Process S (Sleep homeostasis), which is dependent on prior
sleep/wake history, increases exponentially with wake time and decreases
exponentially with sleep/recovery time to a basal value (14). The rate of
sleep pressure buildup and withdrawal is individual specific, constant,
and has unknown values. The second, Process C (Circadian process), is
a 24-h periodic, self-sustaining oscillator, independent of sleep/wake
history (15, 17) that initiates in the suprachiasmatic nucleus of the
hypothalamus. The equations comprising the two-process model at dis-
crete sampling time index k can be expressed as (9, 14)

S�k� � 1 � exp(�Ts/�r)�1 � S�k � 1�� during wakefulness, (1)

S�k� � exp(�Ts/�d)�S�k � 1�� during sleep, (2)

C�k� � �
i�1

5

ai sin�i2	

�
��k � 1�Ts � 
��, (3)

where S(k) denotes the value of the sleep homeostat, usually scaled
between 0 and 1 (9); C(k) denotes a five-harmonic sinusoidal equa-
tion, which can adequately approximate the circadian pacemaker
under entrained conditions of performance and alertness (24); Ts

represents the sampling period; �r and �d represent the time constants
of Process S during wakefulness and sleep, respectively; � denotes the
time period of the circadian oscillator (�24 h); ai, i � 1, . . . , 5,
represents the amplitude of the five harmonics of the circadian process
(a1 � 0.97, a2 � 0.22, a3 � 0.07, a4 � 0.03, and a5 � 0.001); and

 denotes the initial circadian phase (1).

Performance modeling using the two-process model. The temporal
pattern of cognitive performance is represented by the additive inter-
action of the homeostatic pressure for sleep and the circadian rhythm
input (2). Therefore, performance P(k), at time k, can be described by

P�k� � �S�k� � C�k�, (4)

where � and  are parameters that control the relative effect of the two
processes on performance. In this study, we do not model the non-
linear interaction between Processes S and C, which has been shown
to exist (13, 16, 23). Also, we choose to keep the shape of Process C
identical among the individuals, with the coefficients of the sine
functions held constant over time. However, our method can account
for interindividual differences in the circadian process not only by
modifying these coefficients proportionally but also independently.
For total sleep deprivation, Eq. 4 can be rewritten as

P�k� � � � �S�0��k�1 � �
i�1

5

āi sin �i���k � 1�Ts � 
��, (5)

where � � exp(��Ts), � �1/�r, � � 2	/�, and āi � ai. Equation 5
is a function of five unknown parameters [�, �, , S(0), and 
] of
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which �, �, and  have been termed trait parameters, since they are
innate individual characteristics, and S(0) and 
 have been termed
state parameters, since they depend on prior sleep/wake history and
environmental conditions, such as light exposure levels and circadian
phase shift due to transmeridian traveling (36).

Performance P(k) in Eq. 5 generates output values in a range that
can be mapped (usually through linear mapping), by adjusting � and
, to predict subjective sleepiness and objective performance mea-
sures, such as the Karolinska Sleepiness Scale (4) and PVT lapses,
respectively. Here, we map P(k) to PVT lapses because this is the
objective performance measure recorded in the laboratory study
whose data are used in this work. Although PVT lapse is recognized
as the most sensitive measure to sleep loss and, arguably, the most
practical one for use in operational environments (5), it should be
noted that PVT may be incapable of reflecting the true performance of
individuals subjected to complex tasks experienced in real-world
applications.

Subject-specific model development. The two-process model of
sleep regulation is adopted as the underlying modeling framework for
developing an individualized performance model. To date, no physi-
ological predictor of sleep-related performance impairment has been
identified. Therefore, information available from current and previous
measurements of performance P(k) from a specific individual is fed
back into the model to predict that individual’s future performance.
Through this mechanism, with each new performance observation the
five unknown model parameters [�, �, , S(0), and 
] are simulta-
neously adjusted to account for the most recent information on the
current state of the individual.

Regardless of the method used to adjust the performance model
parameters in Eq. 5 for a specific individual, its solution involves the
minimization of the errors between the performance model fit and a
set of performance measurements from that specific individual. Be-
cause of the nonlinearity of the performance model with respect to its
parameters, this minimization requires the solution of a nonlinear
optimization problem. Such a problem, however, may have multiple
solutions because of the possible nonconvexity of the objective
function (33). Therefore, if the initial guess of the parameter estimates
is not chosen in the region of attraction of the global minimum,
traditional gradient-based methods, such as Levenberg-Marquardt or
Gauss-Newton, may fail to converge to the optimum solution.

We propose a new approach for developing individualized perfor-
mance models that overcomes this limitation. The central idea is to
recast the otherwise nonlinear optimization problem into a set of
linear optimization problems, whose solutions, if they exist, are
guaranteed to be unique (7). This approach is motivated by the fact
that performance P(k) in Eq. 5 is composed of a linear combination of
three basic components—a constant signal �; an exponential signal

�S(0)�k�1; and five sinusoidal signals āisin{i�[(k � 1)Ts � 
]}, i �
1, . . . , 5— that can be decoupled from each other to form a set of
three linear equations on P(k). Additionally, each set of equations can
be solved to uniquely obtain one or more of the five parameters of
P(k). The three basic components are decoupled from each other by
separately applying a set of three first- and higher-order linear oper-
ators on P(k), as follows.

Let Z denote a shift operator, such that Zn{x(k)} � x(k � n), where
x(k) denotes the value of the time series x at time k, with k and n being
positive integers. Equivalent to differential operators in a continuous-
time formulation, this notation has been widely used to compactly
represent many difference operations in discrete-time formulation of
time-series signals. For example, a first-order forward difference
operation on x(k), i.e., x(k � 1) � x(k), can be represented as
Z1{x(k)} � Z 0{x(k)}, which is equivalent to (Z� 1){x(k)}. To take
this example further, the discrete approximation of the second-order
derivative of x(k), i.e., x(k � 2) � 2x(k � 1) � x(k), can be
represented as Z2{x(k)} � 2Z1{x(k)} � Z0{x(k)}, or equivalently as
(Z � 1)2{x(k)}. Therefore, a difference operation on x(k) can be cast
as an algebraic expression involving Z. Besides, the difference oper-
ators are commutative such that the order of operations does not affect
the results. For example, the result of (Z � 2)(Z � 1){x(k)} is the
same as (Z � 1)(Z � 2){x(k)}.

Let us now define the following three operators

I. Z � 1
II. Z2 � 2 cos �i�Ts�Z � 1, i � 1, 2, . . . , 5

III. Z � �

so that, when individually applied to performance P(k) in Eq. 5, each
operator eliminates one of the three basic components. For example,
by applying operator I to P(k), we eliminate the constant signal �,
since (Z � 1) {�} � Z{�} � � � 0. Similarly, operator II eliminates
the sinusoidal signal � i�1

5
āisin{i�[(k � 1)Ts � 
]}, and operator

III eliminates the exponential signal �S(0)�k�1 (see Supplement,
available with the online version of this article). Hence, by succes-
sively applying a pair of different operators to P(k) in Eq. 5, we
eliminate two of the three basic components and end up with a linear
equation on the parameters of the remaining signal that can be
uniquely estimated.

Identification of parameters � and �S(0) of the exponential signal.
To uniquely identify parameters � and �S(0) of the exponential signal
(i.e., the homeostatic Process S), we eliminate the constant and
sinusoidal components by successively applying operators I and II,
respectively, to P(k) in Eq. 5. The resulting exponential signal (Fig. 1)
is characterized solely by �S(0) and �, which can be estimated by
solving an associated linear optimization problem, the solution of

α

α

φ

Fig. 1. Schematic diagram of the proposed
method to uniquely estimate the 5 parameters
of the 2-process model for a specific individual
based on previous performance observations
from that individual.
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which is unique (see Supplement). Because operators I and II together
represent an 11th-order polynomial in Z and two estimates of the
exponential signal are required to uniquely obtain �S(0) and �, this
formulation requires at least 13 observations of P(k) (see Supple-
ment).

Identification of parameter � of the constant signal. To uniquely
identify the parameter � of the constant signal, we eliminate the
circadian and exponential components by successively applying op-
erators II and III, respectively, to P(k), where � in operator III is
obtained as described above. The resulting constant signal (Fig. 1) is
characterized solely by �, which can be estimated by solving an
associated linear optimization problem (see Supplement). Similar to
operators I and II, operators II and III together represent an 11th-
order polynomial in Z, but here one estimate of the constant signal
requires only 12 observations of P(k) to uniquely estimate �.

Identification of parameters � and � of the sinusoidal signal. To
uniquely estimate parameters  and 
 of the sinusoidal signal, we
could repeat the abovementioned procedure and apply operators I and
III to P(k). Another approach, resulting in a simpler solution, is to
exploit the fact that performance P(k) in Eq. 5 is composed of a linear
combination of three basic components. Hence, once parameters of
the exponential and constant components are computed, as discussed
above, these components can be subtracted from P(k) in Eq. 5 to yield
an expression for the five harmonics of the sinusoidal component (see
Supplement). The resulting nonlinear expression, which is a function
of the two unknowns  and 
, is reformulated into a set of linear
equations that can be uniquely solved based on at least 10 observa-
tions of P(k), allowing for the unique estimation of  and 
 (see
Supplement).

Through this method, the five parameters of the two-process model
in Eq. 5 can be uniquely estimated from at least 13 observations of
P(k) for the individual being modeled. In practice, however, due to the
noisy nature of performance data, a larger number of observations is
used to compute the first estimates of the parameters. Thereafter, as
each new performance datum becomes available, it is added to the
previous observations and together used to adapt the model parame-
ters and generate future predictions.

The application of operators I, II, and III on observations P(k)
requires the computation of difference operations (i.e., first- and
higher-order derivatives) on these observations. The calculation of
these derivatives of P(k) can be formulated as the solution of a least
squares (LS) problem. For example, the first-order difference opera-
tion of an N � 1 vector of measurements P with elements P(k) can be
solved by minimizing the functional �P � Uw �2

2, where w denotes an
N � 1 vector of first-order differences and U denotes an N � N matrix
representing the discrete analogue of integration (see Supplement)
(22). It is well known that difference operations on noisy signals, such
as PVT measurements, amplify the noise component and suppress the
true underlying signal (20, 22, 34). The amplification of noise in the
resulting difference operations leads to unreliable estimates of the
underlying parameters of the constant, exponential, and sinusoidal
signals, with the estimates having high variance.

To address this issue, we apply the regularization method to the LS
problem so that a priori constraints, such as smoothness, are imposed
on the elements of the solution w to limit noise amplifications (28, 30,
31, 34, 38). The regularized LS approach replaces the original LS
functional, which we seek to minimize, with an augmented functional

arg min
w

�P � Uw�2
2 � �2�Lw�2

2, (6)

where the regularization parameter � is a real number that controls the
trade-off between fitting the data P and satisfying an a priori con-
straint L, which is itself represented by a well-conditioned matrix,
imposed on the nature of the solution (see Supplement). This aspect of
regularization is similar to Bayesian inference, in which a priori
knowledge is incorporated in the problem formulation to lend stability
and precision to the solution (6, 10). The net effect of regularization

is a significant reduction on the variance of the solution, at the cost of
introducing a small bias (see Supplement) (27).

RESULTS

We employ two data sets to test the proposed approach. The
first consists of simulated performance data generated by
running the two-process model in Eq. 5 with known parameters
and superimposing random noise to emulate the variability
observed in measured performance data. Simulated data permit
demonstration of a key property of the proposed approach, i.e.,
the estimated model parameters asymptotically converge to
their true (known) values 1) as the amount of noise in the data
decreases and 2) as the number of performance data used to
adapt the model parameters to a specific individual increases.
The second data set consists of performance measures from a
controlled laboratory study of nine healthy individuals re-
stricted to 82 h of total sleep deprivation (40). These data allow
testing of the approach within the context of between-subject
and within-subject variability encountered in measured perfor-
mance data and comparison of the predictive capabilities of
individualized models with those otherwise provided by group-
average models.

Simulated data set. The simulated data set is generated by
running the two-process model in Eq. 5 with fixed (known)
parameters and superimposing random noise to emulate the
variability observed in performance data. The three trait pa-
rameters in Eq. 5, where � � 30.30,  � 6.35, and � � 0.03
h�1 (� � 0.94), are obtained by sampling the probability
distribution of parameters estimated by Van Dongen and col-
leagues (36), while the state parameters, where S(0) � 0.82 and

 � 6.00 h, are randomly chosen. In each simulation, perfor-
mance data are generated for 82 h of total sleep deprivation and
sampled once every 2 h to duplicate the sampling rate of
typical sleep studies. Data from each simulation are superim-
posed with random noise sampled from a normal distribution
with zero mean and one of three (16, 4, or 1) levels of variance.
These variances correspond to signal-to-noise ratios of 3.70
(59.10/16), 14.77 (59.10/4), and 59.10 (59.10/1), respectively,
where 59.10 is the variance of the performance data signal
simulated by running Eq. 5 with the abovementioned parame-
ters for 82 h.

In each simulation, the first 42 h (or equivalently, the first 22
“training” data points) are used to obtain initial estimates of the
five model parameters and to make the first prediction at some
future time, in accordance with the desired prediction horizon.
For example, for a 6-h prediction horizon, the first prediction,
based on performance data up to 42 h, is made for performance
at 48 h. Subsequently, each datum corresponding to a new
performance observation is added to the existing data set one at
a time, and the model parameters are adapted to take into
account all information, including the latest performance da-
tum, to make the next prediction. Following the example
above, the performance datum “observed” at 44 h is added to
the previous 22 data points to adapt the five model parameters
and make a prediction at 50 h. This procedure emulates the
temporal processes of data collection and prediction in poten-
tial field applications of individualized performance models
and is used throughout this paper unless noted otherwise.

Figure 2 shows the simulated performance profile for a
representative single individual with a signal-to-noise ratio of
14.77. The performance units are normalized to emulate results
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of a PVT scale. The shaded portion in Fig. 2 represents the
amount of training data used to obtain the initial estimate of the
parameters, after which predictions for the three selected pre-
diction horizons of 2, 6, and 10 h began. The root mean square
error (RMSE) is used as a metric to quantify the predictions.
The smaller the RMSE between the predicted and the observed
performance, the better is the resulting prediction. For consis-
tency, the RMSEs are computed across overlapping prediction
time intervals, for instance, between 52 and 82 h in this case.
As expected, the RMSEs increase monotonically with increas-
ing prediction horizons. This is because the model parameters
are not updated over the prediction horizon. Unlike shorter
prediction horizons, which employ intermediate observations
to help the algorithm better learn the model parameters and
yield improved predictions, longer horizons would not benefit
from the use of intermediate observations. For the same reason,
we also observe that the predictions are phase delayed with
respect to the actual data and that such a delay increases with
increasing prediction horizons. However, in the absence of
noise in the observed data, if the algorithm is provided with
sufficient data to fully learn the model parameters, the predic-
tions would be approximately the same regardless of the
prediction horizon.

Figure 3 shows the corresponding estimates for the five
model parameters as a function of training points, starting at
42 h. The true value of the parameters is illustrated by the
horizontal dashed lines. As expected, each one of the param-
eters asymptotically converges to its true value as the number
of training data points increases, achieving 95% accuracy at the
end of 82 h. Subsequent deviations of the parameter estimates
from their true values can occur as a result of noise added to the
simulated performance data.

To further illustrate the ability of the algorithm to consis-
tently improve the estimation of the model parameters as a
function of performance observations and reduced data noise,
we perform three additional sets of simulations. Each set
consists of 100 simulations, and each simulation in a set is
superimposed with randomly sampled noise from a normal
distribution with variances corresponding to signal-to-noise
ratios of 59.10, 14.77, and 3.70. Each of the three sets of 100
simulations is superimposed with only one of these noise levels

so that the impact of each noise level on parameter estimation
could be observed.

Table 1 shows the mean, the variance, and the mean squared
error (MSE), i.e., the square of the bias plus the variance, for
each of the five parameter estimates over the 100 simulations.
For simulated data in which the bias in the estimate is known,
the MSE, which accounts for both estimation accuracy (bias)
and estimation precision (variance), is the most statistically
meaningful metric. The parameter estimates are shown at two
points in time, 62 and 82 h of wakefulness, for each of the three
signal-to-noise ratios. For each of the five parameters, the
results consistently indicate that, for a fixed time, the MSE
increases as the signal-to-noise ratio decreases, and that, for a
fixed signal-to-noise ratio, the MSE decreases with time.

Laboratory data set. The second data set used to test the
proposed approach is based on data collected from a controlled
laboratory study in which 48 healthy adults were kept awake
for 85 consecutive hours to determine the effects of counter-
measures on performance and alertness during prolonged sleep
deprivation (40). During the entire wake period, PVT cognitive
performance tests were measured every 2 h, starting after the
first hour (0800) and ending 2 h before the end of the study, for
a total of 42 PVT observations over 82 h. Eleven of these 48
individuals were administered placebo, while the others took
stimulants, and data from 2 of those 11 contained clear outliers.
Hence, the data for this set were from the remaining nine
sleep-deprived individuals who had not been administered
active fatigue countermeasures.

The laboratory study used in this work was approved by the
Walter Reed Army Institute of Research Human Use Commit-
tee and the United States Army Medical Research and Materiel
Command Human Subjects Review Board of the U.S. Army
Surgeon General, and was performed in accordance with the
ethical standards laid down in the 1964 Declaration of Hel-
sinki. Written informed consent was obtained from all subjects
prior to participation.

Figure 4 shows the mean performance profile and the SD of
the nine individuals over the 82 h of PVT test data collection.
Overall, the trend suggests that both PVT lapsing and variance
(70% of which could be attributable to interindividual variabil-
ity) (35) increase over time. Figure 4 also shows (dashed line)

Fig. 2. Simulated performance data, normalized to a psychomotor vigilance test (PVT) scale, for 82 h of total sleep deprivation with a signal-to-noise ratio of
14.77. The solid circles show the simulated performance lapses every 2 h, whereas the dotted, dot-dashed, and dashed lines represent 2-, 6-, and 10-h-ahead
predictions, respectively, obtained with individualized models. The shaded portion represents the amount of training data used to identify the initial model
parameters after which predictions are made. Thereafter, the model parameters are adjusted every 2 h. The root mean square error (RMSE) between the predicted
and simulated performance, calculated from 52 through 82 h, provides a metric of the predictions.
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predictions obtained with the group-average two-process
model using the model parameter values discussed above and
depicted in Table 1. Visual inspection clearly indicates that the
group-average model is not adequate for predicting the mean
performance of the nine individuals. Another interesting ob-
servation is that the group-average model predictions are out of
phase with the mean PVT observations. This indicates that the

group-average model with fixed, preset parameter values is not
capable of accurately predicting mean performance of a group
of individuals with uncertain initial conditions, i.e., unknown
values for the initial homeostat and circadian phase settings.
This is important as a practical matter because it is likely that
such information will often be difficult to obtain in real-world
settings.

φ
α

Fig. 3. Estimates and true value (horizontal
dashed lines) of the 5 parameters [�, �, ,
S(0), and 
] of the 2-process model. These
correspond to the simulated performance data
illustrated in Fig. 2 and show that the esti-
mates of model parameters asymptotically
approach their true values as they are ad-
justed every 2 h (from the 42nd to 82nd hours
of continuous wakefulness).

Table 1. Parameter estimates for three Monte Carlo simulations of 100 trials each with three different signal-to-noise ratios

Signal-to-Noise Ratio Time Awake, h �, Lapses �, h�1 , Lapses S(0) 
, h

True value

30.30 0.03 6.35 0.82 6.00

Estimated values

59.10 62 30.66�2.10 0.03�0.00 6.35�0.26 0.83�0.01 6.01�0.16
(MSE � 4.54) (MSE � 0.00) (MSE � 0.07) (MSE � 0.00) (MSE � 0.02)

82 30.52�0.90 0.03�0.00 6.34�0.24 0.83�0.01 6.01�0.13
(MSE � 0.87) (MSE � 0.00) (MSE � 0.06) (MSE � 0.00) (MSE � 0.02)

14.77 62 32.42�9.72 0.03�0.01 6.37�0.52 0.83�0.03 6.03�0.31
(MSE � 98.90) (MSE � 0.00) (MSE � 0.27) (MSE � 0.01) (MSE � 0.10)

82 30.92�1.95 0.03�0.01 6.35�0.48 0.83�0.03 6.02�0.27
(MSE � 4.21) (MSE � 0.00) (MSE � 0.23) (MSE � 0.01) (MSE � 0.07)

3.70 62 34.16�12.70 0.03�0.03 6.07�0.98 0.84�0.65 0.70�0.65
(MSE � 176.20) (MSE � 0.00) (MSE � 1.04) (MSE � 0.42) (MSE � 0.43)

82 31.93�6.53 0.03�0.01 6.03�0.96 0.83�0.61 0.64�0.56
(MSE � 45.30) (MSE � 0.00) (MSE � 1.02) (MSE � 0.38) (MSE � 0.31)

The estimates’ mean � SD and the mean square error (MSE), i.e., the square of bias plus variance, are shown at 2 time points (62 and 82 h of wakefulness)
at three different signal-to-noise ratios (59.10, 14.77, and 3.70).
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Ideally, to compare the capability of the proposed (or any
other) algorithm to develop individual-specific models of
performance based on the two-process model, one would
compare that algorithm’s estimates against the true value of
the model parameters. Unfortunately, except for simulated
experiments, where the true parameter values are known,
such a comparison is not possible. In the absence of such
knowledge, a standard method to indirectly assess a predic-
tive algorithm’s capabilities is to compare the algorithm’s
predictions against observed (performance) data. However,
because the predictive contribution of the model structure
cannot be separated from those of the model parameter
estimates, such a comparison inevitably considers the capa-
bility of the underlying model itself, in this case the two-
process model, to represent the observed data. Hence, to test
our individual-specific models (within the context of the
2-process model capability to represent performance data),
we select three subjects representative of three distinct
performance phenotypes: relatively vulnerable to sleep loss,
relatively average sensitivity to sleep loss, and relatively
resilient to sleep loss. Figure 5, top, middle, and bottom,
illustrates the observed PVT lapses for the vulnerable,
average, and resilient subjects, respectively, along with the
group-average model predictions. Figure 5 also shows the
individual-specific model predictions for 2-, 6-, and 10-hour
prediction horizons in which the first 42 h of data (shaded)
are employed to generate the initial estimates of the model
parameters and make the initial prediction at the corre-
sponding future time. For consistency, the RMSEs are
computed between 52 and 82 h.

As expected, the RMSEs increase monotonically with in-
creasing prediction horizons. In comparing the group-average
with the individual-specific models, predictions from the indi-
vidual-specific models consistently result in smaller RMSEs,
even for the worst predictions attained with the 10-h prediction
horizon. The most striking difference is observed for the
resilient individual (Fig. 5, bottom), where the group-average
model substantially overestimates performance impairment,
yielding more than a threefold increase in the RMSE.

Although the differences in RMSE are not equally striking
for the vulnerable and the average individuals, qualitatively
there are significant differences. Regardless of the prediction
horizons, the individual-specific models clearly capture the
trends in the performance profiles, quasi-synchronously pre-
dicting the up and down variations of the observed data, while
the group-average model fails to do so. The RMSE’s failure to

describe this attribute of the predictions is pronounced in cases
where data are significantly corrupted with noise—as in the
data for the vulnerable and average individuals in Fig. 5—
favoring “flat” predictions that fall within the variations of the
data.

A model can be said to adequately describe a given set of
measurements if the residual error, i.e., the difference between
the model fit and the measurements, is an uncorrelated (white
noise) signal (11). The whiteness of a residual-error signal can
be inferred by computing its autocorrelation; for a purely
white-noise signal, its autocorrelation coefficient, normalized
between �1 and 1, attains a value equal to one for a zero shift
(i.e., zero delay) and a value equal to zero for all other shifts in
the signal. For practical applications, where the residual error
is not purely a white noise and the correlation coefficient for
nonzero shifts is not zero, a degree of certainty of the whiteness
of the residual-error signal can be inferred by computing
approximate confidence error bounds of the autocorrelation
coefficient.

This metric for model-fit characterization necessarily ac-
counts for both the form of the model, i.e., the mathematical
equations used to represent the underlying model, and the
estimates of the model parameters. Hence, it affords us not
only the ability to compare the performance of a group-average
model with that of individual-specific models, but, for the first
time, it provides the ability to quantify the power of the
two-process model of sleep regulation in representing perfor-
mance data for subjects restricted to prolonged, total sleep
deprivation.

The top three panels in Fig. 6 show the autocorrelation
function of the residual errors for both models for each of the
three subjects (vulnerable, average, and resilient). The shaded
areas illustrate the approximate 95% confidence bounds of the
autocorrelation coefficients about zero, determined by the Port-
manteau test (11). For the individual-specific models, we
employ the model parameters attained at the end of the 82 h of
wakefulness (since here we are testing for model fit instead of
model prediction), and for the group-average model we employ
the same parameter values used throughout the simulations
(and illustrated in Table 1). The results clearly show that the
individualized models describe the PVT lapse data better than
the group-average model. In particular, for the vulnerable and
average individuals, where the RMSEs in Fig. 5 between the
individualized models and the group-average models are not
markedly different, the autocorrelation coefficients reveal that
the individualized models are indeed capable of capturing the

Fig. 4. Mean and SD of PVT performance
measurements collected every 2 h for 9 indi-
viduals during 82 h of total sleep deprivation.
The dashed line shows the performance pre-
dictions obtained with a group-average model.
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correlations in the PVT lapse data, since their autocorrelation
coefficients fall within the 95% bounds. This is not the case for
the group-average model. Moreover, the top three panels in
Fig. 6 strongly suggest that the two-process model of sleep
regulation is capable of representing performance data for
subjects restricted to prolonged, total sleep deprivation as long
as the model parameters are customized for specific individuals
using the proposed approach.

Because the group-average model is not expected to ade-
quately predict performance for any one individual, we com-
pute the residual error between the mean PVT lapses over the
nine individuals and the group-average two-process model
predictions illustrated in Fig. 4. Figure 6, bottom, clearly shows
that the group-average model, assumed to represent an “aver-
age” individual, is not capable of accurately capturing the
correlations in the mean PVT lapses.

DISCUSSION

In this study, we present a method based on the two-process
model of sleep regulation to develop individual-specific mod-

els that predict decrements of cognitive performance over time
during total sleep deprivation. Like other recently proposed
individual-specific models (29, 36), the present method makes
use of previous performance observations to predict future
performance of individuals with uncertain initial state and
unknown trait characteristics. However, unlike these ap-
proaches, the proposed method does not require additional
performance data from a group of individuals. Instead, each
individual’s temporal variability is captured solely from that
individual’s own past performance data, and as each new
observation becomes available these data are combined to
adapt and customize the model parameters for that individual.

Another advantage of the proposed method is that, for a given
set of performance data, it guarantees a unique estimate for the
five parameters of the two-process model. This is achieved by
transforming the nonlinear optimization problem of finding the
optimal parameters of the two-process model, which may not
have a unique solution, into a set of linear optimization problems
whose solution, if it exists, is guaranteed to be unique. Through
numerical simulations, we show that the model parameters

Fig. 5. Individualized model predictions for 3
subjects with different behavioral phenotypes
[vulnerable to sleep loss (top), average sensitiv-
ity to sleep loss (middle), and resilient to sleep
loss (bottom)]. The solid circles in each of the
panels represent the observed PVT lapses mea-
sured every 2 h. The dotted, dot-dashed, and
dashed lines represent the 2-, 6-, 10-h-ahead
predictions, respectively, while the solid line
represents the prediction using the group-aver-
age model.
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asymptotically converge to their true values as the amount of
training data increases and as the amount of noise in the perfor-
mance data decreases, thereby confirming that our method satis-
fies key convergence properties of adaptive algorithms (12).

This work also addresses the as-yet-unanswered question of
whether Borbély’s two-process model (8, 14), which was devel-
oped to estimate slow-wave sleep propensity, can also serve as the
basis for predicting the performance of sleep-deprived individuals.
We analyze the amount of information content remaining in the
residual error, i.e., the difference between the two-process model
fit and the performance measurements, to provide a quantitative
assessment of the model’s ability to represent performance data.
The whiteness of the residual errors suggests that, for individuals
with vulnerable, average, and resilient phenotypes (Fig. 6, top
three panels), as long as the parameters of the two-process model
are systematically adapted to the particular individual as described
here, the two-process model is capable of representing perfor-
mance data for subjects restricted to prolonged, total sleep depri-
vation. The same is not true for the traditional fixed-parameter,
group-average model (Fig. 6, bottom), which cannot accurately
capture the correlations in the mean PVT lapses of a group of
individuals with uncertain initial states, i.e., initial homeostat and
circadian values.

Despite the advances of the proposed method to predict
performance of sleep-deprived subjects at the individual level,
it does have some limitations. The method requires the accu-
mulation of a minimum number of past performance observa-
tions of an individual before accurate model-parameter esti-
mates and performance predictions can be made for that

individual. In theory, a minimum of 13 observations are re-
quired. However, in practice, due to low signal-to-noise ratios
in performance data, a larger number of observations is gen-
erally needed. This “batch” approach for learning the model
parameters also precludes the direct use of the method to the
modeling of chronic sleep deprivation, where large consecutive
batches of data may not be available due to intermittent
sleep/wake periods. Another limitation relates to the underly-
ing assumption that measures of performance, such as PVT
lapses, are available on a frequent basis. However, this as-
sumption may not hold in certain operational settings because
it may not be practical to discontinue work-related tasks for
administering performance tests. Furthermore, we note that
PVT lapses, selected as our predicted variable, may be inca-
pable of reflecting the true performance of individuals sub-
jected to complex cognitive tasks.

Considerable modeling efforts are still required to address
the knowledge and capability gaps identified at the Department
of Defense-sponsored Fatigue and Performance Modeling
Workshop (18, 21, 26). The method described here can serve
as a building block to address some of the gaps. For example,
the “batch” approach for learning the model parameters can be
reformulated into a “recursive” approach, where the model
parameters are incrementally adjusted based solely on the most
recent performance measurement. This model extension would
allow for the prediction of performance for individuals re-
stricted to chronic, partial sleep deprivation. Moreover, we
could take advantage of the proposed linear representation of
the two-process model and extend our method to analytically

Fig. 6. Autocorrelation coefficients of the residual
error as a function of time delay. Top 3 panels
indicate the autocorrelation for the individualized
and group-average model fit for each of the 3
individuals shown in Fig. 5. Bottom panel indicates
the autocorrelation of the group-average model fit
for the mean performance over the 9 individuals
illustrated in Fig. 4. The shaded areas represent
approximate 95% confidence intervals of the auto-
correlation coefficients around zero.
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estimate the reliability of the model predictions by providing
statistical error bounds in the form of confidence and prediction
intervals. This would allow for quantitatively determining the
bounds within which model predictions may be trusted for a
predefined coverage probability.

Along with the recent efforts by Van Dongen and colleagues
(36), this work advances the capability of existing biomath-
ematical performance models, shifting the focus away from
traditional, group-average performance predictions into more
accurate, operationally useful individual-specific predictions.
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