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ABSTRACT

Lower rates of fracture in both Blacks compared to Whites, and men compared to women are not completely ex-
plained by differences in bone mineral density (BMD). Prior evidence suggests that more favorable cortical bone
microarchitecture may contribute to reduced fracture rates in older Black compared to White women, however it
is not known whether these differences are established in young adulthood or develop during aging. Moreover,
prior studies using high-resolution pQCT (HR-pQCT) have reported outcomes from a fixed-scan location, which
may confound sex- and race/ethnicity-related differences in bone structure.
Purpose: We determined differences in bone mass, microarchitecture and strength between young adult Black
and White men and women.
Methods: We enrolled 185 young adult (24.2 4 3.4 yrs) women (n = 51 Black, n = 50 White) and men (n = 34
Black, n = 50 White) in this cross-sectional study. We used dual-energy X-ray absorptiometry (DXA) to deter-
mine areal BMD (aBMD) at the femoral neck (FN), total hip (TH) and lumbar spine (LS), as well as HR-pQCT to
assess bone microarchitecture and failure load by micro-finite element analysis (UFEA) at the distal tibia (4% of
tibial length). We used two-way ANOVA to compare bone outcomes, adjusted for age, height, weight and phys-
ical activity.
Results: The effect of race/ethnicity on bone outcomes did not differ by sex, and the effect of sex on bone outcomes
did not differ by race/ethnicty. After adjusting for covariates, Blacks had significantly greater FN, TH and LS aBMD
compared to Whites (p < 0.05 for all). Blacks also had greater cortical area, vBMD, and thickness, and lower cor-
tical porosity, with greater trabecular thickness and total vBMD compared to Whites. pPFEA-estimated FL was sig-
nificantly higher among Blacks compared to Whites. Men had significantly greater total vBMD, trabecular
thickness and cortical area and thickness, but greater cortical porosity than women, the net effects being a higher
failure load in men than women.
Conclusion: These findings demonstrate that more favorable bone microarchitecture in Blacks compared to
Whites and in men compared to women is established by young adulthood. Advantageous bone strength
among Blacks and men likely contributes to their lower risk of fractures throughout life compared to their
White and women counterparts.

© 2017 Published by Elsevier Inc.

Abbreviations: MrOS, Osteoporotic Fractures in Men Study; SWAN, Study of Women Across the Nation; FEA, finite element analysis; PA, posterior-anterior; FN, femoral neck; TH, total
hip; Tt.Ar, total cross-sectional area; Tt.vBMD, total vBMD; Th.vBMD, trabecular vBMD; Th.N, trabecular number; Tb.Sp, trabecular separation; Th.Th, Trabecular thickness; Ct.Ar, cortical
area; Ct.Th, cortical thickness; Ct.vBMD, cortical vBMD; Ct.TMD, cortical tissue mineral density; Ct.Po, cortical porosity; Tb.Ar, trabecular area; Ct.Ar/Tt.Ar, cortical area fraction; PFEA,
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1. Introduction

Worldwide, there are well-established differences in fracture rates
by race and ethnic-origin [1-5]. In particular, Blacks/African-Americans
have lower incidence of fractures in both youth and older adulthood
than Whites/Caucasians residing in the US [3,6]. Black men and
women also have a 2-3 fold lower incidence of stress fracture compared
to their White counterparts [7,8]. Although Black individuals have
higher areal bone mineral density (aBMD) than Whites/Caucasians
at all ages [9-13], this higher aBMD does not entirely account for
the lower fracture risk seen in Black compared to White individuals
[14-16].

Therefore, it has been hypothesized that variation in bone morphol-
ogy and microarchitecture due to racial background contributes to ob-
served differences in fracture incidence [13,17-21]. Accordingly, as
assessed by quantitative computed tomography (QCT), older Black
men from the Osteoporotic Fractures in Men (MrOS) study had more fa-
vorable morphology at the proximal femur compared to White men
[17]. Similarly, high-resolution peripheral quantitative computed to-
mography (HR-pQCT) scans of the distal radius and tibia revealed that
postmenopausal Black women from the Study of Women Across the Na-
tion (SWAN) cohort had greater trabecular volumetric BMD (vBMD),
and cortical thickness compared to their White counterparts [13].
While studies comparing Asian compared to Caucasian women suggest
that these differences in bone microarchitecture are evident in premen-
opausal women [18-20], there are few studies to indicate whether
these race/ethnic advantages in bone microarchitecture among Black
individuals are established during growth and development, or result
from a different pattern of age-related changes in bone.

It is also well known that men have lower fracture risk than women
at all ages. Many prior studies have reported higher aBMD and advanta-
geous bone microarchitecture in adult men compared to women
[22-25] [23,26]. However, to date, studies comparing bone
microarchitecture by HR-pQCT in adults have used a fixed region-of-in-
terest, starting 9.5 mm or 22.5 mm proximal to the distal endplate of the
radius and tibia, respectively, regardless of body size. Therefore, results
using this approach may be difficult to interpret in individuals of differ-
ing stature or limb length, as some bone microarchitecture outcomes
vary significantly along the length of the limb in this metaphyseal re-
gion [27-29].

Thus, there is strong rationale to study the bone morphology and mi-
crostructural features that may explain race/ethnicity- and sex-based
differences in both stress fracture risk in young adults and osteoporo-
sis-related fracture risk later in life, particularly among young adult
men and women of African ancestry. Therefore the, primary aim of
this study was to determine differences in bone morphology,
microarchitecture, and finite element analysis (FEA) derived bone
strength of the distal tibia according to sex- and race/ethnic-origin in
young Black and White adults. We located the region of interest relative
to bone length to overcome potential confounding by differences in
bone length and height among groups. We hypothesized that Black
men and women will have more favorable bone microarchitecture pa-
rameters than White men and women, and that men of both races
will have more favorable bone microarchitecture parameters than
women.

2. Materials and methods
2.1. Subject characteristics

We enrolled young adult men and women between the ages of 18-
30 yrs with a body mass index (BMI) between 18 and 30 kg/m?. Subjects
self-identified as White/Caucasian (50 women, 50 men) or Black/Afri-
can-American (51 women, 34 men). For this study, we defined racial
group identification as having at least three of four grandparents of
the same race/ethnic background as the subjects' self-identified race/

ethnicity. Women enrolled in this study were required to be currently
eumenorrheic (>9 menses in the prior 12 months, including 1 menses
in last 60 days). Exclusion criteria included underlying medical condi-
tions or use of medications known to affect bone health, history of an
eating disorder, and history of bilateral lower limb fractures. We
screened 244 potential participants for this study: 59 screened subjects
did not participate in the study, including 25 who did not meet BMI
criteria, 15 who did not meet race criteria, 7 who were outside the age
range, 2 who had a history of metabolic bone disorder, 2 who had an
eating disorder, 2 who had a history of bilateral ankle fractures, 2 who
were amenorrheic, 2 who had an endocrine disorder possibly affecting
bone, 1 who was taking anti-seizure medication, and 1 who met more
than one exclusion criteria. This study was approved by the Institutional
Review Board of Partners Health Care and the Human Research Protec-
tion Office at the US Army Medical Research and Materiel Command. In-
formed written consent was obtained from each subject prior to
participation in the study.

2.2. Clinical history and anthropometric measurements

We assessed socio-economic status, education, health history, frac-
ture history, and physical activity history through questionnaires. For
women, questionnaires also captured menstrual status and contracep-
tive use. Height (to the nearest millimeter) was obtained using a wall-
mounted stadiometer. Body mass (to the nearest 0.1 kg) was measured
on a calibrated electronic scale. BMI was calculated as mass (kg) divided
by height squared (m?). We measured tibia length from the medial tib-
ial plateau to the distal edge of the medial malleolus to the nearest mm
using an anthropometric tape. All measurements were taken twice, and
the mean of two readings was used.

2.3. Areal bone mineral density

We used dual energy X-ray absorptiometry (DXA: QDR45000A;
Hologic Inc., Bedford, MA, USA) to assess the posterior-anterior (PA)
spine, femoral neck (FN), and total hip (TH) aBMD (g/cm?). Quality con-
trol was maintained through daily measurements of a Hologic CXA an-
thropomorphic spine phantom and visual review of every scan image by
an investigator experienced in bone densitometry.

2.4. Bone microarchitecture

We measured cortical and trabecular vBMD and microarchitecture
at the distal tibia using HR-pQCT (XtremeCT, Scanco Medical AG,
Basserdorf, Switzerland; isotropic voxel size of 82 um). The scan region
started at 4% of tibial length (distal) and extended proximally for 110
slices (9.02 mm). The non-dominant leg was scanned, unless there
was a prior leg or ankle fracture, in which case the contralateral leg
was scanned. Quality control was maintained with daily scanning of
the manufacturer's phantom. All scans were reviewed immediately for
motion artifact and were repeated up to two times if significant motion
artifact was noted. Movement artifact was scored on a 5-point scale,
with 1 = no movement and 5 = severe movement artifact [30].

Using Scanco analysis software version 5.11, total cross-sectional
area (Tt.Ar mm?), total and trabecular vBMD (Tt.vBMD, Tb.vBMD,
mg HA/cm?), and trabecular number (Tb.N, 1/mm) were measured di-
rectly. Trabecular separation (Tb.Sp, mm) and trabecular thickness
(Tb.Th, mm) were then calculated from Th.vBMD and Tbh.N. We used a
semiautomated technique [31,32] to measure cortical area (Ct.Ar,
mm?), cortical thickness (Ct.Th, mm), cortical vBMD (Ct.vBMD, mg HA/-
cm?), cortical tissue mineral density (Ct.TMD, mg HA/cm?), cortical po-
rosity (Ct.Po, %), and trabecular area (Tb.Ar, mm?). Cortical area fraction
(Ct.Ar/Tt.Ar,%) was then calculated. We also used 3D HR-pQCT images
to perform linear micro-finite-element-analysis (UFEA) to estimate
tibia metaphyseal stiffness and failure load under axial compression.
In this method, each voxel in the HRpQCT image is converted to a linear
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isotropic hexahedral element, assuming a Young's modulus of 10 GPa,
and Poisson's ratio of 0.3 for all elements. The finite element model is
then subjected to axial compression, with a compressive strain of 1% ap-
plied along the vertical axis with the top and bottom surfaces fully
constrained. Following previous guidelines, failure load was defined as
the load at which the equivalent strain exceeds 0.7% in at least 2% of
the elements [33]. Short term reproducibility (with repositioning) for
HR-pQCT measurements at the tibia in our laboratory ranged from 0.2
to 1.7% for density parameters, from 0.7 to 8.6% for microarchitecture
parameters, and from 2.1 to 4.8% for UFEA parameters.

2.5. Statistical analysis

Data are reported as mean + standard deviation (SD) unless other-
wise noted. We performed a two-way ANOVA to assess between-group
differences and assess race by sex interactions for subject demo-
graphics, covariates and bone outcomes. Univariate regression analyses
were used to determine association of age, height, weight, fracture
history, contraceptive use, age of menarche, recent physical activity,
income, education, smoking history, and alcohol use with bone
microarchitectural parameters. Because age, height, weight, and
physical activity were significantly associated with BMD and
microarchitectural parameters and differed among study groups, we
next used an analysis of covariance (ANCOVA) to control for these var-
iables while assessing differences by race and sex. We did not include
BMI in this multivariate model because height and weight were already
included in the model. Comparisons with a p-value of <0.05 are report-
ed as statistically significant. We used Stata version 14.2 (StataCorp LP,
College Station, TX) for all statistical analyses.

3. Results
3.1. Subject characteristics

We enrolled 185 subjects, including 100 White (50 women, 50 men)
and 85 Black (51 women, 34 men) individuals. Subjects averaged

24.4 + 3.4 years old, with a BMI of 23.9 + 3.0 kg/m? (Table 1).
Black women and men were slightly younger, participated in fewer

hours of recent physical activity per week, had fewer prevalent frac-
tures, less education and lower familial income, on average, than
White women and men. Contraceptive use was lower among Black
women compared to White women. As expected, women weighed
less and were shorter than men, on average. Women also had a lower
BMI, participated in fewer hours of recent weight-bearing physical ac-
tivity per week, and had fewer prevalent fractures than men.

3.2. Areal bone mineral density

Blacks had higher aBMD of the PA spine, FN and TH compared to
Whites (p < 0.01 for all, Table 2) before and after adjustment for age,
height, weight, and physical activity (all p < 0.01). In unadjusted analy-
ses, men had greater aBMD than women at the femoral neck and total
hip (p < 0.01), but not the PA spine. Following multivariate adjustment,
hip BMD did not differ between sexes, however, men had higher aBMD
at the PA spine (p < 0.01).

3.3. vBMD and microarchitecture

In both unadjusted and adjusted analyses, bone morphology and
microarchitecture were generally more favorable in Black than White
adults, and also more favorable in men than women (Table 3, Figs. 1-
4). The effect of race/ethnic-origin was independent of sex. Overall
bone size was similar in Black and White subjects, as evidenced by no
significant differences in Tt.Ar. However, Black men and women had
greater Tt.vBMD and more favorable cortical microarchitecture, includ-
ing greater Ct.Th (13%), Ct.Ar (10%), Ct.Ar/TtAr (16%), Ct.vBMD (5%),
Ct.TMD (2.5%), and lower Ct.Po (25%) than their White counterparts
(all p<0.01). Tb.vBMD (9%) and Tb.Th (9%) were significantly higher,
but Tb.N significantly lower (—5%) in Blacks compared to Whites in
the unadjusted model. All differences remained significant after multi-
variate adjustment, except for Tb.vBMD (p = 0.19 after adjustment).

Most morphological and microarchitectural parameters were more
favorable in men compared to women in unadjusted analyses, including
greater Tt.Ar (21%), Ct.Ar (14%), Ct.Th (13%), and Ct.Ar/Tt.Ar (14%). Men
also had greater Tt.vBMD (8%) and Tb.vBMD (11%), Tb.N (5%), and Th.Th
(7%) compared to women (all p < 0.01). However, Ct.vBMD (3%) was

Table 1
Demographic characteristics of study subjects. Values are Mean (SD) or n (%).
White women Black women White men Black men p race/sex interaction p race D sex
n=>50 n=>51 n=>50 n=34
Age (y) 24.5(2.9) 222 (3.2) 249 (3.2) 243 (3.6) 0.02 <0.001 0.210
Height (cm) 164.9(10.8) 166.1 (7.9) 179.9 (8.0) 177.8 (7.4) 0.14 0.689 <0.001
Weight (kg) 63.4 (9.6) 64.4 (10.2) 78.5(11.5) 782 (114) 0.69 0.848 <0.001
BMI (kg/m? 23.3(3.2) 23.3(2.5) 242 (2.9) 249 (34) 0.68 0.291 0.010
Tibia length (mm) 367.9 (24.1) 3783 (29.2) 408.3 (28.8) 4134 (30.7) 0.53 0.065 <0.001
Physical activity (h/week) 49 (4.3) 23(2.8) 5.9 (5.4) 5.1(8.6) 0.26 0.029 0.018
Age of menarche 12.8 (1.6) 11.8 (1.3) - 0.291 -
)
Fracture history 18 (36%) 4 (8%) 24 (48%) 6 (18%) 0.74 <0.001 0.062
(total)
Education level 0.95 <0.001 0.661
High school 0 (0%) 3 (6%) 0 (0%) 6 (18%)
Bachelors deg 44 (88%) 45 (88%) 39 (78% 26 (75%)
Graduate deg 6 (12%) 3(6%) 11 (22% 2 (6%)
Family income 0.03 <0.001 0.440
Less than $20 K 0 (0%) 6 (12%) 0 (0%) 4 (12%)
$20 K to $99 K 27 (54%) 27 (53%) 14 (28%) 22 (65%)
$100 K or more 23 (46%) 18 (35%) 36 (72%) 8 (23%)
Current smoking 0.50 0.508 0.499
Daily 0 (0%) 0 (0%) 0 (0%) 1(3%)
<Daily 1(2%) 1(2%) 1(2%) 0 (0%)
None 49 (98%) 50 (98%) 49 (98%) 33 (97%)
Hormonal contraceptive use - <0.001 -
Current use 37 (74%) 13 (25%)
Past use 7 (14%) 9(18%)
No use 6 (12%) 29 (57%)
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Table 2
Results from dual-energy x-ray absorptiometry at the femoral neck (FN), total hip (TH) and lumbar spine (LS). Values are Mean (SD).
White women Black women White men Black men p race/sex p race D sex “p race “p sex
n =50 n=>51 n=>50 n=34 interaction
FN aBMD (g/cm?) 0.859 (0.134) 0.958 (0.141) 0.947 (0.124) 1.080 (0.186) 0.427 <0.001 <0.001 <0.001 0.359
TH aBMD (g/cm?) 0.978 (0.121) 1.054 (0.153) 1.051 (0.138) 1.174 (0.168) 0.286 <0.001 <0.001 <0.001 0.380
PA Spine aBMD (g/cm?) 1.032 (0.119) 1.116 (0.140) 1.046 (0.119) 1.153 (0.131) 0.547 <0.001 0.178 <0.001 0.004
FN Z-score 0.1(1.2) 0.1 (1.0) 0.1(0.9) 0.1(1.2) 0.956 0.870 0.741 0.679 0.007
TH Z-score 0.3(1.0) 0.2 (1.0) 0.1 (0.9) 0.0 (1.0) 0.905 0.393 0.293 0.212 <0.001
PA Spine Z-score —0.1(1.1) —03(1.3) —04(1.1) 0.5(1.2) 0.361 0.097 0.200 0.142 <0.001
Bold = p < 0.05.

* Adjusted for height, weight, age, and physical activity.

significantly higher and Ct.Po significantly lower (—34%) in women
than men. After adjusting for height, weight, age and physical activity
most differences remained significant, however, there was no longer a
significant difference in Tt.Ar, Ct.vBMD, or Th.N.

3.4, UFEA

As predicted, given their more favorable bone microarchitecture,
Blacks had significantly higher uFEA-derived bone stiffness (8%) and
failure load (7%) than Whites, and men had significantly higher stiffness
(28%) and failure load (27%) than women (Table 3). In both cases, these
significant differences persisted after multivariate adjustment.

4. Discussion

In this study, we found that young adults of Black/African-American
race have greater hip and spine aBMD, along with more favorable bone
microarchitecture and higher pFEA-estimated failure load at the distal
tibia than their White/Caucasian counterparts. Notably, these differ-
ences were seen in both men and women, and remained significant
after adjusting for factors known to influence bone structure, including
age, weight, height, and physical activity. Moreover, our findings of fa-
vorable bone traits in individuals of Black race/ethnicity are consistent
with a lower self-reported history of fracture in Black compared to
White subjects in our study.

Our findings of higher aBMD in young Black adults compared to
White adults are consistent with many studies showing that Black indi-
viduals, from childhood to older adulthood, have higher aBMD by DXA
than other racial groups [9-13,34-42]. Our results suggest that higher
aBMD values in Black men and women are largely attributable to

enhanced cortical bone properties, including greater Ct.Ar/Tt.Ar, Ct.Th,
Ct.vBMD, and Ct.TMD. In contrast, we observed no difference in
Th.vBMD between Black and White subjects after multivariate adjust-
ment, though Tb.Th was higher and Tb.N lower in Black compared to
White subjects. This pattern of enhanced cortical, but not trabecular
bone in young adults is consistent with a prior study in 18-19 year-
old Black and White women that used pQCT measures of the tibia to
show that Black women have significantly greater Ct.vBMD, Ct.Th and
Ct.Ar, but lower Th.vBMD than their White counterparts [43]. Favorable
cortical bone structure appears to be established early in puberty, as 9-
13 year old Black boys and girls have higher Ct.Th and Ct.vBMD by pQCT
of the tibial diaphysis than corresponding White children [44]. Our and
others' findings demonstrating similar or lower Tb.vBMD at the appen-
dicular skeleton in Black compared to White individuals differ from a
prior report of increased Th.vBMD in Black compared to White subjects
at the spine at the end of puberty [45] and at the femoral neck in older
men [17]. These discrepancies suggest that effects of race/ethnicty on
bone structure may vary by skeletal site.

Favorable bone structure in persons of Black race/ethnic background
appears to be maintained throughout life in both men and women. For
example, we previously used HR-pQCT measurements of the appendic-
ular skeleton to show that postmenopausal Black women from the
SWAN cohort have greater Ct.Ar and Ct.Th, and greater uFEA-estimated
failure load than White women [13]. Consistent with the pattern of ra-
cial differences in bone structure seen in the current study and the
SWAN cohort, Black men from the MrOS cohort (i.e., >65 yrs. of age)
had a higher proportion of cortical bone and integral vBMD at the fem-
oral neck, as assessed by QCT, than their White counterparts [17].

Mechanisms to explain differences in bone density, strength and
microarchitecture by race/ethnic-origin are not well understood.

Table 3
Tibial bone microarchitecture (4% distal) in young adult men and women according to race/ethnic origin [Mean (SD)].
White women Black women White men Black men p race/sex p race D sex “p race *p sex
n=>50 n=>51 n=>50 n=34 interaction

Size/morphology
Tt.Ar (mm?) 865 (115) 850 (129) 1098 (168) 1069 (151) 0.74 0.230 <0.001 0.634 0.173
Ct.Ar (mm?) 90.6 (15.4) 103.5 (20.6) 120.6 (18.2) 136.8 (29.3) 0.60 <0.001 <0.001 <0.001 <0.001
Ct.Ar/Tt.Ar (%) 10.7 (2.3) 12.4 (11.6) 11.2 (24) 12.9(2.7) 0.93 <0.001 0.147 <0.001 <0.001

Microarchitecture
Ct.Th (mm) 0.80 (0.16) 0.94 (0.19) 0.94 (0.17) 1.09 (0.22) 0.82 <0.001 <0.001 <0.001 <0.001
Ct.Po (%) 4.29 (1.46) 3.22(1.07) 6.05 (2.13) 491 (2.16) 0.89 <0.001 <0.001 0.006 0.005
Tb.Th (mm) 0.076 (0.011) 0.083 (0.0100) 0.081 (0.012) 0.090 (0.010) 0.72 <0.001 0.001 <0.001 <0.001
Tb.Sp (mm) 0.388 (0.052) 0.392 (0.062) 0.351 (0.060) 0.380 (0.070) 0.17 0.079 0.006 0.028 0.748
Tb.N(1/mm) 2.18 (0.26) 2.14 (0.28) 2.35(0.29) 2.18 (0.34) 0.15 0.014 0.015 0.005 0.680

Density
Tt.vBMD (mgHA/cm?) 263 (40) 293 (46) 293 (51) 315 (51) 0.55 <0.001 <0.001 0.002 <0.001
Tbh.vBMD(mgHA/cm?) 198 (31) 213 (35) 229 (41) 234 (39) 0.32 0.069 <0.001 0.191 <0.001
Ct.vBMD (mmHA/cm?) 873 (38) 908 (35) 847 (42) 889 (37) 0.56 <0.001 <0.001 <0.001 0.287
Ct.TMD (mgHA/cm?) 930 (31) 950 (29) 921 (27) 948 (27) 0.38 <0.001 0.201 <0.001 0.881

HUFEA
Stiffness (kN/mm) 211.6 (39) 245.7 (53) 304 (53) 337 (68) 0.90 <0.001 <0.001 <0.001 <0.001
Failure Load (kN) 10.8 (1.9) 12.4 (2.6) 15.5 (2.5) 16.9 (3.4) 0.77 <0.001 <0.001 <0.001 <0.001

Bold = p < 0.05.
* Adjusted for height, weight, age, and physical activity.
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Fig. 1. Cortical bone microarchitecture at the distal tibia in White and Black men and women after multivariate adjustment (Mean + SE). A) Cortical thickness (Ct.Th), B)cortical porosity
(Ct.Po) and C) cortical tissue mineral density (Ct.TMD) for White and Black women and men. # p < 0.05 for Black vs. White within sex. *p < 0.05 for men vs. women within race.

Multivariate model adjusted for height, weight, age, and physical activity.

While groups of the same race/ethnic-origin share genetic components

physical activity, income, education, smoking history, and alcohol use,

that influence skeletal health [46], prior studies indicate that environ- and found that only physical activity was related to bone

ment, income and education may also modulate skeletal differences as-
sociated with race/ethnicity [47,48]. We examined the role of several
possible lifestyle factors, including contraceptive use, age of menarche,
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microarchitecture. This result, along with our observation of favorable
bone microarchitecture and failure load in Black subjects after adjust-
ment for age, height, weight and physical activity, suggest that factors

* * B
0.101 # # 25 #
0.084 — 2.0+
t
0.06+ E 151
0.04+ ; 1.0+
a
'—
0.02+ 0.5
0.00 T T 0.0 T T
Women Men Women Men
300+ .
* * 1 White
—_ Il Black
200+ ==
100+
c T L
Women Men

Fig. 2. Trabecular bone microarchitecture at the distal tibia in White and Black men and women after multivariate adjustment (Mean + SE). A) Trabecular thickness (Tb.Th), B) trabecular
number (Tb.N) and C) trabecular bone mineral density (Tb.vBMD) for White and Black women and men. # p < 0.05 for Black vs. White within sex. *p < 0.05 for men vs. women within race.

Multivariate model adjusted for height, weight, age, and physical activity.
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White

Black

Fig. 3. Representative 2D HR-pQCT images of the distal tibia from Black and White men and women.

other than lifestyle contribute to variation in bone microarchitecture by
race/ethnic-origin.

Different rates of bone metabolism are a plausible explanation for
disparities in bone microarchitecture by race/ethnicity. Our HR-pQCT
findings are supported by histomorphometric analyses of iliac crest bi-
opsies in men and women (20-84 yrs), which showed that Blacks
have greater Ct.Th and Tb.Th than Whites [49-51], potentially due to
lower bone turnover among Blacks. In particular, after double-

Black

tetracycline labeling, biopsies showed that the bone formation rate
among Black adults ranges from 35%-75% that of White adults [51,52].
In addition, serum markers of bone turnover are generally reported to
be lower in Black than White children [53] and adults [10,54-57],
though some studies report similar values in Black compared to White
women [58-61].

Differences in bone metabolism by race/ethnicity may, in part, be
driven by lower skeletal sensitivity to parathyroid hormone (PTH)

White

Fig. 4. Representative HR-pQCT images of the distal tibia from Black and White men and women; 3D visualization of the mineralized cortical bone and trabecular bone structure.
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among Blacks compared to Whites [55,62]. Despite the observed lower
bone turnover among Blacks, several studies have reported higher plas-
ma PTH in Black adults compared to their White counterparts [58,63—
65]. Accordingly, following PTH infusion, there was a smaller increase
in bone resorption markers in Black premenopausal women compared
to their White counterparts [56]. Moreover, there is evidence that
Black individuals with similar calcium intakes and with similar concen-
trations of 25(0OH) vitamin D, 1,25(0OH), vitamin D, and PTH exhibit
lower urinary calcium excretion compared to White individuals, indi-
cating higher renal mineral conservation among Blacks [62]. This calci-
um conservation has been associated with greater aBMD and peak
bone mass among Blacks compared to Whites [66,67], and likely con-
tributes to their favorable cortical bone microarchitecture.

Osteocyte morphology may also contribute to more favorable bone
microarchitecture in Black compared to White individuals [68]. Data
from iliac crest biopsies show that Black women have greater osteocyte
and lacunar density than White women [69]. Given the prominent role
of osteocytes in orchestrating bone remodeling [70,71], it is plausible
that a greater osteocyte density may contribute to more favorable
bone microarchitecture. Notably, Dong et al. reported that regions of
human cortical bone specimens with greater osteocyte lacunar number
and density were less porous compared to regions with lower lacunar
density [72]. Furthermore, decreased osteocyte lacunar number and
density have been reported with age [73] and among adults with an os-
teoporotic fracture compared to healthy adults [74,75], suggesting that
osteocytes play an important role in skeletal maintenance. Future stud-
ies should focus on elucidating the role of osteocyte density and differ-
ences in bone strength and microarchitecture by race/ethnic-origin.

Our observations of higher Tt.vBMD, Th.vBMD, Ct.Th and Ct.Ar/Tt.Ar,
as well as higher Ct.Po in men compared to women are largely similar to
results from prior studies examining sex-related differences in bone
microarchitecture [22,24,76-83]. Importantly, the current results are
consistent with studies that utilized a fixed region of interest irrespec-
tive of limb length. The similarity of results across studies, despite differ-
ent protocols, suggests that differences in the relative region of interest
do not markedly confound sex-related differences in men compared to
women. Our data support the notion that sex differences in bone
microarchitecture and estimated bone strength are established by
young adulthood and persist throughout the lifespan even after ac-
counting for differences in body size by scanning at a region relative
to limb length, suggesting sex-specific biological differences impact
bone accrual and maintenance [84-90].

Our study has several important strengths. In contrast to prior stud-
ies, we measured bone microarchitecture at a location relative to limb
length rather than one that was fixed. Nonetheless we found similar dif-
ferences by sex and race/ethnicity as compared to prior reports [13,17,
21,23,24,26,40,43,77,82,83]. This suggests that sex- and race/ethnicity-
related differences in bone parameters are not confounded to a large ex-
tent by differences in limb length when using a fixed scan location.
However, this observation applies only to studies with an approximate
10% difference in limb length that we observed here. While our results
showing differences in aBMD and bone microarchitecture are similar
to what has been reported between men and women and between
older Black and White women, our findings confirm that these differ-
ences are also present in young adults. Limitations of this study include
the cross-sectional design and lack of biomarkers, such that we can only
speculate at the biological mechanisms contributing to the differences
in bone mass and microarchitecture by sex- and race/ethnic-origin. In
addition, we relied on self-reported physical activity history and other
lifestyle variables, which are subject to recall bias.

5. Conclusion
In summary, our results confirm and extend prior observations of

higher aBMD and more favorable bone microarchitecture in Black
compared to White individuals, and suggest that these race-related

differences are independent of sex and are established by early adult-
hood. Moreover, we confirm prior reports of favorable bone
microarchitecture in young adult men compared to women. Advanta-
geous bone strength among Blacks appears attributable to denser, less
porous, and thicker cortices compared to Whites, and among men at-
tributable to larger bones with denser and thicker cortices compared
to women. This advantage in bone microarchitecture likely contributes
to lower fracture, and stress fracture risk among Blacks and men com-
pared to their White and women counterparts.
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