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There is immense pressure on all developers 
of new drugs today to efficiently and cost-
effectively produce compounds with efficacies 
better than existing therapies and with very lim-
ited adverse effects. This requires the simultane-
ous optimization of both the desired bioactivity 
and the absorption, distribution, metabolism, 
excretion and toxicity (ADMET) properties of 
a drug candidate. Of the ADMET processes, 
metabolism, and specifically metabolic stability, 
has been identified as a defining characteristic 
in drug development success or failure due to its 
overall impact on compound pharmaco kinetics. 
Therefore, metabolic information about com-
pounds in the drug-discovery pipeline is cru-
cial to their development as drugs. For example, 
extensive first-pass metabolism can contribute 
to low bioavailability, while metabolism that 
occurs too rapidly can cause a short thera peutic 
window requiring a frequent dosing schedule. 
Conversely, metabolism that proceeds too slowly 
can cause an accumulation of drug in the body 
and increases the risk of toxic effects. Inhibition 
or induction of the CYP450 enzymes, which 
catalyze the majority of metabolic reactions [1], 
can cause adverse drug interactions. In some 
cases, the metabolites of a compound can be 
toxic or reactive, or can themselves exhibit 
bioactivities that may differ from their parent 
molecule [2].

The importance of a full understanding of 
metabolite formation and interactions with 
CYPs became clear in the 1990s when the anti-
histamine terfenadine (marketed as Seldane in 
the USA) was implicated in life-threatening 
cardio toxic drug–drug interactions with keto-
conazole, an antifungal drug [3]. Terfenadine 
is a prodrug that ordinarily is rapidly metabo-
lized by CYP 3A4 into its active carboxylated 
metabolite. However, in the presence of keto-
conazole or other drugs, such as macrolide anti-
biotics, that inhibit CYP 3A4, the concentration 
of the parent compound can rise to toxic levels 
[4]. Unfortunately, for Hoechst Marion Roussel 
(now Sanofi-Aventis), the makers of terfenadine, 
the active carboxylated metabolite fexofenadine 
had meanwhile been patented by another com-
pany, and Hoechst Marion Roussel was forced 
to buy back the development rights in order to 
market it (as Allegra® in the USA) [5]. This inci-
dent led to a new appreciation of hERG inhibi-
tion as a mechanism for drug toxicity [6,7] and 
new requirements from the US FDA for a char-
acterization of the metabolites of any new drug 
candidate along with in vitro measurements of 
CYP inhibition and induction [4].

The 1990s were also the heyday of hope and 
hype for the new drug-discovery technologies of 
combinatorial chemistry and high-throughput 
screening, and the development and testing of 
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large screening libraries. It became clear that in 
order to realize the potential of the large num-
bers of hits coming out of high-throughput 
screens, the determination of ADMET proper-
ties would also have to be carried out more rap-
idly and efficiently than the in vivo screens that 
were standard for the time [8,9]. This led to the 
development of new, faster in vitro metabolism 
screening methods [10] as well as even more rapid 
and inexpensive in silico models [11].

Although in vitro screening methods can be 
fairly accurate for determining metabolic prop-
erties, they have several limitations, includ-
ing the cycle time and the inefficiency when 
screening large numbers of compounds [12], not 
to mention the significant cost when applied to 
large screening libraries. In silico screening can 
help to alleviate the strain of large numbers of 
samples on the in vitro methods by character-
izing, categorizing and, thus, potentially elimi-
nating metabolically unstable compounds from 
the collection of candidates early on in the 
drug-discovery process [13].

Here, we describe databases (Table 1) and soft-
ware (Table 2) that can be obtained and used by 
the general (scientific) public, namely, resources 
that are either marketed as commercial prod-
ucts, or that are freely or even openly available 
(box 1). Dozens, if not hundreds, of metabolism 
prediction methods can be found in the litera-
ture, and reviews thereof are published quite 
frequently [13–15]. Many of the QSAR models 
described in the literature have been developed 
by pharmaceutical companies, on large propri-
etary datasets, using proprietary descriptors and/

or ‘black-box’ machine learning methods. Such 
studies may be an illustration of what is pos-
sible given enough good and consistent data. 
However, for the drug developer at a different 
company or institution desiring a simple off-the-
shelf method to use in an ongoing fast-paced 
research project, most of these studies are not 
immediately useful.

This article focuses on a bottom-up, individ-
ual compound-driven approach to metabolism 
predictions, as opposed to the top-down sys-
tems biology approach, which is currently called 
‘metabolomics.’ We are, therefore, not generally 
including here tools that are used in metabo-
lomics research, such as those for metabolite/
biomarker identification and metabolic profiling 
studies. We are also not including tools for what 
could be called environmental metabolism pre-
dictions, that is, biodegradation or biocatalysis 
by bacteria. Many of the commercial software 
programs listed here provide other functionality 
and can calculate additional ADMET properties 
other than what is described here. We do not aim 
to provide a complete description of each pack-
age, only the portions of it relative to metabolism 
predictions.

The metabolism end points that are currently 
predicted by in silico methods can be divided 
into two general types. The first type consists of 
predictions of the effects of metabolism on the 
structure of a compound itself, such as a list of 
its metabolites, the reactions that the compound 
will undergo (biotransformations), or the atomic 
sites where metabolic reactions are most likely to 
take place (regiolability or regioselectivity). The 

Table 1. Publicly available databases and datasets with metabolism-related content.

Name Company/institution Availability Compound Source Properties Ref.

ADME DB Fujitsu Commercial Literature Metabolizing enzymes, 
reaction data

[217,218]

AurSCOPE ADME Aureus Sciences Commercial Literature, patents, 
drugs

Metabolizing enzymes, 
reaction data, metabolic 
stability

[260]

BioPrint Cerep Commercial Drugs Measured bioactivities [89,257]

ChEMBL European Bioinformatics 
Institute

Free, open Literature Bioactivities [93,264]

DrugBank University of Alberta Free, open Drugs Pharmacology, 
metabolizing enzymes

[91,259]

MetaBase GeneGo Commercial Literature CYP substrates [29,203]

Metabolite Accelrys Commercial Literature Biotransformations [201]

Microsomal Stability Evolvus Commercial Literature Clearance, half-life [262]

PubChem NCBI, NIH Free Various Measured bioactivities [66,233]

QSAR World Strand Life Sciences Free Literature Clearance, half-life [263]

WOMBAT-PK Sunset Molecular 
Discovery

Commercial Literature, drugs Pharmacokinetic data [90,258]
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second type of predictions are concerned with 
which enzymes the compound will interact with, 
and include the classification of CYP substrates, 
inhibitors and inducers, as well as predictions 
of whether the compound will also (or instead) 
be metabolized by non-CYP enzymes such as 
glucuronosyltransferases and sulfotransferases. 
A third type of prediction, which we discuss in 
more detail in [16], involves estimation of a com-
pound’s overall metabolic stability, that is, of its 
half-life or clearance rate, measured either in vivo 
or in an in vitro model. 

Effects of metabolism on compound 
structures
The prediction of metabolites was the first com-
putational end point for which software and 
databases became available, as early as the 1980s, 
due to the advent of personal computers and the 
publication of several textbooks that began to 
organize and categorize knowledge about meta-
bolic reactions [1,17,18]. These methods generally 
consist of: a set of rules, extracted either directly 
from the literature or indirectly from the litera-
ture via a database; a method for applying the 

Table 2. Publicly available software for metabolism-related predictions.

Name Company/Institution Availability Prediction Method Ref.

ACD/Percepta ACD/Labs Commercial Metabolic reaction sites, CYP 
substrates and inhibitors

QSAR models [50,51,224]

ADMET 
Descriptors/
Collection

Accelrys Commercial CYP 2D6 inhibition QSAR model [71,251,252]

ADMET 
Predictor

Simulations Plus Commercial Metabolic reaction sites, CYP 
substrates, inhibitors, kinetics, 
UGT substrates, clearance

QSAR models [211]

ADMEworks 
Predictor

Fujitsu Commercial CYP-binding affinities QSAR models [253]

CypScore CAChe Research Free Metabolic reaction sites QSAR models [43,219]

isoCYP Molecular Networks Commercial CYP substrates QSAR models [75,254]

MetabolExpert CompuDrug Commercial Biotransformations Logical rules [30,205]

Metabolizer ChemAxon Beta 
‘preview’

Biotransformations Reaction enumeration [216]

MetaDrug GeneGo Commercial Biotransformations, CYP 
substrates and inhibitors

QSAR models [29,204]

META-PC MultiCASE Commercial Biotransformations Fragmentation, dictionary rule 
application

[32,34,207]

MetaPrint2D University of Cambridge 
(UK)

Open source Metabolic reaction sites, 
biotransformations

Fingerprint counting [53,54,228]

MetaSite Molecular Discovery Commercial Metabolic reaction sites, 
metabolites

Structural alignment plus 
semi-empirical calculations

[39,214]

METEOR Lhasa Membership Biotransformations Rule application plus logical 
reasoning

[35,36,208]

MEXAlert CompuDrug Commercial First-pass conjugation Rule application [267]

P450 SOM Schrödinger Commercial Metabolic reaction sites Docking plus rules [56,231]

PASS GeneXplain Commercial CYP substrates, inhibitors, 
inducers, phase II substrates

QSAR models [69,247]

QikProp Schrödinger Commercial Number of biotransformations SMARTS matching [268]

RS-Predictor Rensselaer Free Metabolic reaction sites QSAR models [46,48,223]

SMARTCyp University of 
Copenhagen (Denmark)

Free Metabolic reaction sites Ab initio calculations (fragment 
look-up) plus structural 
measurements

[44,45,222]

StarDrop Optibrium Commercial Regiolability, CYP binding 
affinity

Semi-empirical calculations, 
QSAR models

[209]

TIMES Burgas ‘Prof. Assen 
Zlatarov’ University 
(Bulgaria)

Unknown Biotransformations Rule application, QSAR models [40,41,215]

VirtualToxLab Biograf 3R/University of 
Basel (Switzerland)

Commercial CYP and nuclear receptor 
binding affinities

Docking plus QSAR models [78,255]
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rules to an input compound; and a method for 
deciding when to stop applying them, that is, a 
way of ranking or ordering the combin atorial 
explosion of predicted metabolites. Many pro-
grams can also provide, either directly or via 
another program, an estimation of the toxicity 
for each predicted metabolite.

Regioselectivity or metabolic reaction site pre-
dictions are similar in spirit to the prediction of 
biotransformations, because each metabolic reac-
tion must occur at a site, though not every site can 
undergo a reaction. Some software programs can 
predict both reactions and sites, and the under-
lying data for building models are generally the 
same. Site prediction methods fall into two cat-
egories: those that use a calculation (or fragment-
based look-up) of the quantum chemical reactivity 
of each atom in the query molecule, usually along 
with a steric accessibility factor, and those that rely 
on some form of pattern matching to datasets of 
experimentally observed metabolic reaction sites. 
More detailed academic and proprietary/private 
methods have been reported in the literature [15,19], 
involving high-level quantum calculations, dock-
ing, homology modeling of CYP structures and 
molecular dynamics, but few of these have been 
implemented as publicly available software.

For further details on some of the programs 
discussed here, Kulkarni et al. [20] gives an in-
depth review and comparison of the programs 
MetabolExpert, META, Meteor and TIMES. 
Computational methods for predicting sites of 
metabolism were reviewed recently and com-
prehensively by a group at Gedeon Richter in 
Hungary [14], and specific comparisons of a 
few commercial programs were done by groups 
in Belgium at Ghent University and Janssen 
Pharmaceutica [21], and at Genentech [22]. 

�� Databases
Metabolite
The oldest and largest commercial database con-
taining biotransformation reactions, including 
parent compounds and metabolites, is Metabolite 
[201], a database of biotransformations that was 
developed by MDL Information Systems in 1994 
[23]. MDL was purchased by Elsevier in 1997, 
then sold to Symyx in 2007. The Metabolite 
database is now available commercially through 
Accelrys, which merged with Symyx in 2010 
(this database should not be confused with the 
Accelrys Metabolism database [202] originally 
called Biotransformations, and first developed 
by Synopsys, which merged into Accelrys in 
2001. Metabolism was based on data extracted 
from two publications by the Royal Society of 
Chemistry: Biotransformations [24] and Metabolic 
Pathways of Agrochemicals [25]. Unfortunately, it is 
no longer commercially available).

Metabolite was originally based on data 
from a German book series, Biotransformation 
von Arzneimitteln [26], and the journal 
Pharmacokinetics [27]. It was intended to be 
a wide collection of metabolism data with a 
focus on quantity rather than quality [23] and 
now includes compounds from New Drug 
Applications, proceedings from meetings of 
the International Society for the Study of 
Xenobiotics and the scientific literature from 
1990 onward [11]. These are mainly pharma-
ceutical compounds, but also include food addi-
tives, industrial chemicals and agrochemicals 
[28]. The latest version at the time of writing, 
2011.2, contains 62,465 molecules and 103,907 
biotransformation reactions, of which 36,041 
are in humans. The database can be searched 
by structure, substructure or similarity to any or 
all of the parent, substrate (pathway intermedi-
ate) or metabolite compounds, or by a reaction 
query to the biotransformations. For some reac-
tions in the database, the enzyme responsible for 
catalysis is listed, along with information about 
the reaction time and whether the compound 
can act as an inhibitor or an inducer as well as 
a substrate [201]. Data from both the Metabolite 
and Metabolism databases have been used exten-
sively in the development of many software pro-
grams for predicting both metabolites and sites 
of metabolism, as will be shown below. 

MetaBase
Other commercially available databases of 
biotransformations include MetaBase, from 
GeneGo, which is a large database that includes 

Box 1. Definitions of the various levels of accessibility that can be 
provided for software and databases.

�� We provide definitions, as used in this paper, of the various levels of accessibility that 
can be provided for software and databases. Note that these are not necessarily the 
same as the definitions used by the Open Source Initiative or the GNU Project.

�� Academic: resource developed by an academic or nonprofit group that is available 
for free to other nonprofit researchers, and in exchange for money to anyone else.

�� Commercial products: resource that is available to anyone in exchange for money.

�� Freely available: resource that is available to anyone and costs no money.

�� Openly available: database or software program for which the underlying data or 
source code is available to anyone for examination, modification, or incorporation 
into other resources as desired.

�� Proprietary: private resource that is only available to certain people (i.e., its 
developers or the employees of a company).

�� Publicly available: resource that can be accessed or used by anyone, regardless of 
affiliation, either for free or in exchange for money.
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literature data on small molecule–protein, 
protein–protein and protein–DNA interactions, 
signaling pathways, regulatory networks and 
diseases. As of May 2012, it contains 692,425 
chemical compounds, 44,171 proteins and 
1,076,985 interactions. Relevant to metabolism 
predictions, it also contains a set of 9048 meta-
bolic reactions on xenobiotic and endogenous 
compounds [203]. The program MetaDrug, first 
released in 2004, is a software platform and 
graphical interface to the MetaBase database 
[204]. In MetaDrug, a small set of 81 ‘metabolic 
rules’ covering phase I and II enzymes can be 
applied to input query compounds, and the pre-
dicted metabolites are prioritized according to 
their occurrence frequencies in MetaBase [29]. A 
set of QSAR models for various ADMET pre-
dictions can then be applied to the set of input 
compounds and their predicted metabolites, as 
will be discussed in the next section.

�� Software
MetabolExpert
The earliest computer program for metabolite 
prediction was MetabolExpert [30], first released 
in 1987 by the company CompuDrug [205], orig-
inally founded in Hungary. It was based on the 
metabolic pathways described in a textbook [17], 
which had been organized according to func-
tional groups and sub structures rather than 
chemical series. This allowed, for the first time, 
the possibility of deriving the biotransformations 
that were likely to occur on an entirely new com-
pound [16], and thus, the formalizing of a set of 
logical rules for metabolism in an expert system. 
In MetabolExpert, the rules are programmed as 
logical statements in Prolog and are applied suc-
cessively to the input molecule to generate a tree 
of predicted metabolites [30]. The set of rules was 
later augmented with data from other textbooks 
and the literature [206]. 

META
Another early program was META, part of the 
Computer Automated Structure Evaluation 
(CASE) system developed by Gilles Klopman 
at Case Western Reserve University (USA) in the 
mid-1980s [31], and now licensed by MultiCASE, 
Inc. [207] (META was originally written for 
VMS, in 1994, hence the name META-PC 
for the Windows version). META consists of 
a program for breaking down an input query 
molecule into fragments, then applying a dic-
tionary of transformations to generate metab-
olites. There are four dictionaries available: 

mammalian metabolism, aerobic and anaerobic 
degradation by bacteria (for environmental tox-
icity predictions), and photodegradation. The 
program recognizes when an intermediate is 
chemically unstable and applies further trans-
formations from a fifth ‘spontaneous’ dictionary 
until a stable chemical compound is achieved 
[32]. The mammalian metabolism dictionary for 
META [33] was built to be comprehensive, and to 
include only ‘well-established’ data from a set of 
textbooks dating from the mid-1970s to the early 
1990s. A genetic algorithm was incorporated into 
the program to prioritize the transformations 
in the dictionary so as to be able to reproduce 
experimental data on observed metabolites [34]. 
The output from META is a tree of predicted 
metabolites, pruned at the point where the logP 
of the compounds is low enough that they can 
presumably be excreted by the kidneys [32].

Meteor
Meteor was developed beginning in 1997 by 
Lhasa, Ltd [208] as a logical outgrowth of their 
Derek system for toxicity prediction, as a means 
of dealing with chemicals that are nontoxic in 
their original form but run the risk of being con-
verted into toxic metabolites in the body [35]. 
Meteor consists of a knowledge base of biotrans-
formation reactions, collected from the Accelrys 
Metabolism database [202], from the literature, 
and via consultation with human experts from 
industry, regulatory agencies, and academia [36]. 
The biotransformation reactions are applied to 
input compounds and their logP is calculated. 
The resulting tree of metabolites is subjected 
to an absolute reasoning process to evaluate 
the qualitative probabilities for each reaction 
(probable, plausible, equivocal, doubted and 
improbable) as a function of the substrate’s lipo-
philicity, and a relative reasoning process to rank 
order the predicted metabolites according to 
regioselectivity data in the knowledge base [36].

StarDrop
StarDrop has the distinction of being simulta-
neously one of the oldest and one of the newest 
software programs for metabolic site prediction. 
It began life in the Camitro Corporation, which 
was founded in 1998 at the height of the dot-com 
boom, and offered its suite of ADME predic-
tion models over a secure internet connection 
[11]. Camitro merged with ArQule in 2001, and 
in 2003, ArQule sold its ADME capabilities to 
Inpharmatica, who named the ADME program 
Admensa Interactive. Inpharmatica was bought 
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by BioFocus in 2006, and initially kept the name 
Admensa, but in 2008 the program was renamed 
StarDrop. Finally, the company Optibrium was 
spun off from BioFocus in 2009, for the sole pur-
pose of developing and marketing the StarDrop 
software [209].

StarDrop can predict reaction sites on small-
molecule substrates for CYPs 3A4, 2D6 and 
2C9. For all these enzymes, a semi-empirical 
calculation of hydrogen removal energies at the 
AM1 level is used [37,38]. This is supplemented 
by additional empirical steric and orientation 
parameters, which are different for each CYP. 
StarDrop no longer runs over the internet, but 
as a desktop client, which can be coupled to a 
server for running the computationally intensive 
semi-empirical quantum mechanical calcula-
tions. Because of these calculations, StarDrop 
predictions for the site of metabolism are sig-
nificantly slower than methods involving only a 
QSAR model or a database lookup, on the order 
of a few minutes per molecule. The output from 
StarDrop is a listing of predicted sites of metabo-
lism for the query molecule, ranked in order of 
the predicted relative proportion of metabolites 
formed at each site. Additionally, for CYP 3A4, 
a ‘composite site lability’ is calculated for the 
molecule as a whole, as an estimate of the effi-
ciency of metabolism for the entire molecule. 
This number can be compared across different 
molecules in a data set [210].

ADMET Predictor
ADMET Predictor, formerly known as 
QMPRPlus, was f irst released in 1999 by 
Simulations Plus [211]. The Metabolism Module 
can predict sites of metabolism for nine CYPs 
(1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 
3A4). The models for CYP site prediction were 
derived from data extracted from the Accelrys 
Metabolite database [201], supplemented with 
additional literature data. ADMET Predictor 
uses QSAR models built with molecular struc-
ture descriptors (e.g., molecular weight, numbers 
of various functional groups, geometric and elec-
trostatic properties) and trained using artificial 
neural network classification ensembles [212]. In 
contrast to other metabolic site prediction pro-
grams, ADMET Predictor first predicts whether 
or not the query molecule is in fact a substrate for 
the CYP, and then calculates a propensity score 
for each atomic site [213]. 

ADMET Predictor can be run in interactive 
mode (with a spreadsheet-like user interface) or 
batch mode. In either case the predictions are 

very fast and use limited computing resources. 
The interactive mode can easily handle datasets 
of tens of thousands compounds on a Windows-
based PC with a few GB of memory. For larger 
datasets, one may run into memory issues with 
the spreadsheet interface in the interactive mode. 

MetaSite
MetaSite from Molecular Discovery, which was 
first released in 2003, is perhaps the most well-
known program for regioselectivity predictions 
[214]. It is based on the alignment of 3D inter-
action points calculated for a substrate binding 
site with similar interaction points calculated for 
input query compounds. An alignment of the 
two sets of interaction points is optimized to 
predict the orientation of the query compound 
in the CYP active site. This allows the calcula-
tion of an accessibility score for each atom in 
the query, based on its distance to the heme in 
the CYP active site. A reactivity score is also cal-
culated for each atom, based on semi-empirical 
calculations of the energy for hydrogen removal. 
The probability of metabolism at each site in 
the input compound is then given as the prod-
uct of its accessibility and reactivity scores [39]. 
MetaSite can also calculate the contributions to 
reactivity by atoms adjacent to the site, which is 
useful for suggesting synthetic modifications to 
a compound’s structure in cases where the site of 
metabolism itself cannot be modified for what-
ever reason. MetaSite contains built-in models 
for the CYP 1A1, 1A2, 2B6, 2C9, 2C19, 2D6, 
2E1, 3A4 and 3A5 substrate binding sites, and 
additional models for mutants or other isoforms 
can be built and added by the user. The newest 
functionality in MetaSite is the ability to gener-
ate structures for the metabolites produced by 
reactions at each site [214].

TIMES
Like Meteor, Tissue Metabolism Simulator 
(TIMES) is focused on toxicology predictions. 
TIMES was developed in 2004 at the Laboratory 
of Mathematical Chemistry at Burgas ‘Prof. Assen 
Zlatarov’ University in Bulgaria [215]. Currently, it 
contains a liver (S9) metabolism simulator [40] and 
a skin metabolism simulator [41], both of which 
are based on biotransformations collected from 
literature data. Generation of the metabolic maps 
produced from applying the biotransformation 
reactions to the input query molecule is stopped 
when a threshold for either metabolite occur-
rence probability or logP is reached [40]. The set 
of metabolites can then be filtered through one 
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of several QSAR models to rank them according 
to their predicted toxicity [215].

Metabolizer
Metabolizer is a tool for the ChemAxon platform. 
It was introduced in 2007, and it is currently only 
available as a ‘preview’, pending the development 
of a full set of biotransformation libraries. To run 
Metabolizer, a library of reactions is loaded along 
with the set of substrates, and a set of metabolites 
is enumerated by applying the reactions to the 
substrates [216]. 

Merck dataset
In 2007 researchers at Merck and Co. published 
a set of QSAR models for predicting regio-
selectivity for CYPs 3A4, 2D6 and 2C9 [42]. 
This, in itself, is nothing extraordinary, and their 
methods are not available as public software; 
however, rather than simply providing a list of 
references or referring vaguely to ‘literature data’ 
they published the structures of the compounds 
used in their training sets, which were extracted 
from the Accelrys Metabolite [1] and Fujitsu 
ADME DB [217,218] databases, in computer-read-
able mol2 format, as supplementary information 
that could be downloaded. This dataset of 521 
compounds was used, as either a training or test 
set, to develop no fewer than three new freely 
available site prediction methods: CypScore, 
SMARTCyp and RegioSelectivity Predictor 
(RS-Predictor).

CypScore
CypScore is an implementation by CAChe 
Research [219] of a method described by 
researchers at Bayer and the University of 
Erlangen-Nuremberg (Germany) in 2009 [43]. 
It is a hybrid of a metabolic site prediction 
method and a method for estimating clearance 
or microsomal stability in that it predicts the 
regiolability of query molecules toward a gener-
alized ‘super CYP’; or, in other words, identifies 
sites on the input query molecules that are the 
most generally susceptible to oxidation. Unlike 
some other site prediction methods, it can be 
used to rank molecules relative to one another. 
CypScore provides a set of six multiple linear 
regression models for various oxidation reac-
tion types. Models were trained using a data-
set curated from the literature and from the 
Biotransformations [24] publication series that 
formed the basis for the Accelrys Metabolism 
database [202]. The descriptors in the models are 
features of the molecular electrostatic surface 

and of the semi-empirically calculated (AM1) 
wave function [43]. The compounds published 
by Merck [42] were used as a test set. CypScore 
was validated using a proprietary dataset at 
Bayer (though trained on public data), but the 
results were reported in such a way that the 
models could easily be reproduced by other 
researchers. 

CypScore is freely available as a customized 
plug-in for the modeling program MOE from 
Chemical Computing Group [220] and as a com-
ponent for Pipeline Pilot from Accelrys [221]. 
However, to perform the calculations it requires 
other CAChe Research software that is available 
under academic licensing terms [219].

SMARTCyp
SMARTCyp, released in 2010, is a simple and 
elegant method for predicting sites that are 
metabolized by CYP 3A4 and 2D6, relying on 
only two or three molecular descriptors. The 
first of these is a reactivity descriptor, which is 
a measure of the activation energy of the oxida-
tion reaction at each site in the query molecule, 
looked up in a table of fragment energies pre-
calculated using density functional theory. The 
second descriptor is a measure of how far each 
site is from the center of the molecule [44]. The 
CYP 2D6 model adds a third descriptor as a 
measure of the distance to the nearest protonated 
nitrogen atom [45]. The aforementioned com-
pounds from Merck [42] were used as a test set 
to validate the models [44]. 

SMARTCyp is freely and openly available as 
a web service or a downloadable Java program 
from the University of Copenhagen (Denmark) 
[222]. Since SMARTCyp uses 2D ligand struc-
ture information only, it is very fast, and both 
the web service and the Java executable of the 
program are user friendly. The open source code 
for SMARTCyp has allowed its methodology 
to be used and expanded by other researchers: 
SMARTCyp predicted reactivities are incor-
porated as descriptors into the newest version 
of RS-Predictor, described below [46], and an 
openly available extension of the SMARTCyp 
program to cover three more CYPs, namely 1A2, 
2C9 and 2C19, was recently implemented [47].

RS-Predictor
RS-Predictor was first published in 2011 [48]. It 
uses a large set of substructure-based, physico-
chemical and quantum chemical (semi-empiri-
cal AM1) descriptors, and a machine learning 
method called multiple instance ranking, which 
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is a variation of support vector machines. The 
models were calibrated on a dataset consist-
ing of the Merck compounds [42], curated and 
augmented by compounds from a recent review 
paper [49]. RS-Predictor was originally developed 
to predict metabolism sites for CYP 3A4, but has 
now been extended to 1A2, 2A6, 2B6, 2C19, 
2C8, 2C9, 2D6, 2E1 and a theoretical ‘merged’ 
CYP enzyme [46]. Their training sets, anno-
tated with site predictions from RS-Predictor, 
SMARTCyp, StarDrop and Schrödinger P450 
Site of Metabolism, are available for download 
in SD format as supplementary information to 
the journal articles [46,48]. 

RS-Predictor is freely available as a web ser-
vice from the Rensselaer Exploratory Center for 
Cheminformatics Research [223]. It is simple to 
use and requires only the upload of an SD file 
containing the query structures. The output 
consists of an SD file in return, annotated with 
the predicted primary, secondary and tertiary 
sites of metabolism for each compound in each 
CYP model.

ACD/Percepta
ACD/Percepta [224], formerly known as ADME 
Suite, was created in 2009 with the merger 
of Pharma Algorithms with ACD/Labs. 
Initially, the only available metabolism-related 
model, which had been developed by Pharma 
Algorithms, was for CYP 3A4 binding and sites 
of metabolism [225]. The regiolability models have 
since been expanded to include CYP 1A2, 2C19, 
2C9 and 2D6, as well as a general model for 
human liver microsomes [226]. They are trained 
on literature data using fragment-based descrip-
tors and a partial least squares-based modeling 
method that accounts for similarity between the 
query compound and compounds in the training 
set as well as the consistency of the experimental 
data for the training set compounds. This allows 
a reliability measure to be reported along with 
each site prediction [50,51]. For each prediction 
ACD/Percepta also displays the five most similar 
compounds from the training set [226,227]. 

MetaPrint2D
MetaPrint2D is a new open-source tool, devel-
oped in 2010 at the University of Cambridge 
(UK), that is freely available as a web service 
[228] and as a standalone Java program [229], and 
is also distributed as part of the Bioclipse chemo- 
and bio-informatics workbench [52,230]. It uses 
circular fingerprints to describe the environment 
around each atom according to the atom types 

found bonded to it [53]. The Accelrys Metabolite 
database [201] was mined to extract counts of how 
often biotransformations occur (or do not occur) 
at specific atom environments. The ratio of how 
often an atom environment is versus is not a reac-
tion center gives an estimate of the likelihood 
of a biotransformation reaction occurring at an 
atom environment of that type in a new query 
compound [54]. The basic method for counting 
metabolite occurrence frequencies is the same as 
that used by MetaDrug to prioritize predicted 
metabolites [55]. The output from MetaPrint2D is 
a 2D structural drawing of the query compound 
with its atoms colored to indicate the likelihood 
of a biotransformation occurring at that site. In 
a recent extension called MetaPrint2D-React, 
the reactions that may occur at each atomic site 
and the structures of predicted metabolites can 
also be generated [228].

P450 Site of Metabolism
A new addition to the Schrödinger Suite of mod-
eling programs as of 2011 is a docking-based 
P450 Site of Metabolism prediction method (an 
initial version was called IDSite [56]). This is a 
welcome development, inasmuch as, aside from 
MetaSite, most if not all other publicly avail-
able regioselectivity methods do not directly 
incorporate structural information about the 
interaction of a query compound with the CYP 
binding site. The Schrödinger method relies on 
an induced-fit docking protocol [57], which uses 
Glide ligand docking into a flexible receptor site, 
where side chain conformations are adjusted 
using the homology modeling module Prime. 
Available CYP structures include 2C9 and 2D6 
(regioselectivity predictions can also be made for 
3A4, but this model does not use docking). Each 
potential site of metabolism is given an overall 
score based on its accessibility to the heme in 
the ensemble of docked poses and a rule-based 
calculation of intrinsic reactivity [231].

Compound interactions with 
metabolizing enzymes
This general metabolism prediction end point 
includes the classification of compounds as CYP 
substrates, inhibitors, inducers and activators, 
binding predictions for phase II and non-CYP 
enzymes, and estimations of reaction rate con-
stants and binding affinities. Publicly available 
software for predicting CYP interactions tends 
to be piecemeal, with individual QSAR mod-
els available as part of larger sets of ADMET 
property predicting packages. The prediction 
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of whether or not a compound is a substrate 
of a given CYP enzyme is useful for the CYPs 
whose expression levels vary widely among 
different sub-populations (e.g., 2D6). Drugs 
that are substrates of CYP 3A4 can have their 
metabolism rates affected by dietary compounds 
such as those found in grapefruit juice. Knowing 
whether a compound is a CYP inhibitor is impor-
tant for predicting drug–drug interactions. The 
difference between a substrate and an inhibitor 
is not always clear – generally, an inhibitor is a 
compound that binds tightly enough that the 
rate of metabolism of other substrates is affected. 
Commonly, inhibitors are defined as compounds 
with an IC

50
 cutoff of 10 µM or less [2]. 

CYP induction is an important process 
whereby the presence of xenobiotic compounds 
can increase the expression levels of certain 
CYPs, which has the effect of increasing the 
clearance of substrates metabolized by those 
CYPs, potentially causing drug–drug interac-
tions [58,59]. The induction mechanism is medi-
ated by nuclear receptor transcription factors, 
mainly the pregnane X receptor and the constitu-
tive androstane receptor, which together induce 
CYPs from the 2B and 3A subfamilies, as well as 
the phase II UDP-glucuronosyl, sulfo- and glu-
tathione transferases [60,61]. In addition, the aryl 
hydrocarbon receptor induces CYPs from the 1A 
subfamily along with several phase II enzymes, 
the peroxisome proliferator activated receptor 
induces CYPs from the 4A subfamily, and the 
liver X receptor induces CYPs from the 7A sub-
family [60]. In addition to the expression level-
based induction of CYP activity, CYPs can also 
be activated by certain compounds that, upon 
binding to the CYP enzyme itself, appear to 
increase the V

max
 of substrate metabolism. This 

process is not well understood, and may either 
involve two molecules occupying the active site 
at the same time, or the presence of an allosteric 
site in certain isoforms [62].

�� Databases
ADME DB
ADME DB was developed by Slobodan Rendic 
of Zagreb University in Croatia, in collaboration 
with Fujitsu beginning in 2004 [63], and based on 
data collected from the literature on xeno biotic 
interactions with CYPs and other metabolizing 
enzymes [64,65]. Previously, these data had also 
been used in the software tool BioFrontier/P450, 
which was used to predict metabolites produced 
by CYPs [232] but which is no longer commer-
cially available. As of April 2012, ADME DB 

contains information on 27,980 CYP substrates 
as well as 6125 substrates of other phase I and 
phase II metabolizing enzymes: esterases, UDP-
glucuronosyltransferases, sulfotransferases, glu-
tathione S-transferases and flavin-containing 
monooxygenases [217,218].

ADME DB can be searched by structure or 
substructure, but the search results cannot be 
exported in a structural format. The data for 
each compound include whether it is also an 
inhibitor, inducer or activator, the metabolic 
reaction it undergoes, and (where available) 
kinetic and other experimental information 
about the reaction such as the in vitro assay model 
used, K

m
, V

max
, K

i
, IC

50
, EC

50
 and/or half-life. 

Unfortunately, the license terms for this database 
preclude any large-scale structure and property 
extraction, as well as the public dissemination of 
any models derived from the data.

PubChem
The well known PubChem database [66,233] 
contains a series of freely available assays depos-
ited by the NIH Chemical Genomics Center 
(NCGC), for CYP inhibitors and substrates: 
1A2 [234], 3A4 [235], 2C9 [236], 2C19 [237] and 
2D6 [238], along with a panel assay with all 
five cytochromes [239]. The Sanford-Burnham 
Medical Research Institute (USA) has also 
screened for CYP 2C9 [240] and 2C19 [241] inhibi-
tors. The Scripps Research Institute Molecular 
Screening Center (USA) has completed a set of 
primary and confirmatory assays for aryl hydro-
carbon receptor activators, along with a counter 
screen for activators of the pregnane X recep-
tor [242]. Additionally, NCGC has deposited a 
screen for activators of CYP 3A4 [243], and the 
Sanford-Burnham Medical Research Institute 
has screened for activators of 2C9 [244] and 
2C19 [245]. These newer datasets have already 
been used in models included in MetaDrug and 
ACD/Percepta, discussed below.

The Comparative Toxicogenomics Database
The Comparative Toxicogenomics Database 
(CTD) is a meticulously curated collection of 
chemicals, genes and diseases, and the relation-
ships and connections between them [246]. The 
focus of this resource is on links between envi-
ronmental toxins and diseases in humans [67,68], 
but relevant to metabolism, it includes all of 
the CYP genes from hundreds of species, along 
with UDP-glucuronosyltransferases, sulfotrans-
ferases, N-acetyltransferases and so forth. The 
relationships between genes and compounds are 
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described with a controlled vocabulary and so 
can be filtered according to the type of interac-
tion. Along with binding, activity and expres-
sion, interactions include metabolic processing 
and a list of 35 hierarchical reaction types, such 
as hydroxylation, glucuronidation and acety-
lation. The entire set of chemical–gene inter-
actions can be downloaded, or more specific 
datasets can easily be generated using batch 
queries [246]. However, chemical structures are 
not included and compounds are identified by 
MeSH and CAS numbers, so any extracted 
data would need to be collated with structural 
information from another resource for model 
building.

�� Software
PASS
Prediction of Activity Spectra for Substances 
(PASS) is a QSAR modeling program that 
can predict thousands of different bioactivi-
ties. The first version of PASS was developed in 
1995, at the Institute of Biomedical Chemistry, 
in the Russian Academy of Medical Sciences. 
PASS is now commercially available through 
GeneXplain [247]. Predictions from PASS are 
qualitative and reported as the probability that 
each input compound is active and that it is 
inactive. The descriptors used in PASS are sub-
structure-based, the so-called multilevel neigh-
borhoods of atoms descriptors [69]. Its default 
models were trained on a dataset (called the SAR 
Base) that has been collected from the literature 
and various databases since 1972, and as of the 
2011 version numbers 250,407 compounds. 

PASS can qualitatively predict substrates for 97 
CYP types and subtypes, inhibitors for 27 CYPs, 
and inducers for 12 CYPs (without regard to 
mechanism). There is also a model for predicting 
aryl hydrocarbon receptor agonists, which could 
also potentially be CYP inducers. Additionally, 
PASS has models for 70 non-CYP metabolism 
activities, including flavin-containing monooxy-
genase substrates, glutathione S-transferase sub-
strates, monoamine oxidase substrates, peroxi-
dase substrates, sulfotransferase substrates, and 
UDP-glucuronosyltransferase substrates, among 
others. The training sets for individual models 
in PASS (as part of the large default SAR Base) 
may be quite small, and this of course affects the 
ability of PASS to predict those activities with 
high probabilities for arbitrary compounds [70]. 
For each compound in the query set, PASS notes 
whether it contains substructure descriptors that 
were not seen in the training set, giving a further 

estimate of whether or not the model is likely to 
be predictive. 

StarDrop
In a separate functionality from its regio lability 
predictions, StarDrop from Optibrium [209] has 
two QSAR models for CYP-binding affinity – 
a continuous model for 2C9 and a four-class 
classification model for 2D6. These models 
were trained on small sets of in vitro data col-
lected in-house, and built using physico chemical 
descriptors along with atom type and function-
ality counts. The 2D6 classification model 
was built using decision trees and the 2C9 pK

i
 

model uses rule-based partial least squares equa-
tions. These models do not attempt to predict 
whether a compound will be a CYP substrate, 
only what its affinity will be if it is a substrate; 
their purpose is to predict potential drug–drug 
interactions. StarDrop determines whether an 
input compound fits into the chemical descrip-
tor space of the models, and if not, an error of 
prediction with a value of infinity is returned. 
Otherwise, an estimate of the root-mean square 
error of prediction is given [248]. However, the 
error of prediction is not shown by default in the 
results window so users must exercise caution.

Accelrys
An ADME toolkit called C2.ADME was 
released for version 4.6 of the Cerius2 modeling 
program from Accelrys in 2001 [249]. This tool-
kit included a QSAR model for CYP 2D6 inhi-
bition, based on a training set of 100 compounds 
from the literature. These compounds were col-
lected using what the authors referred to as a 
‘fairly relaxed set of criteria’ so that the training 
set was diverse in terms of both chemistry and 
bioactivity. The models were trained using an 
ensemble recursive partitioning technique and 
Cerius2 topological and atom type descriptors 
[71]. Currently the ADME toolkit is available in 
Discovery Studio [250,251] and as a component in 
the Pipeline Pilot ADME-Tox collection [221,252].

ADMEWORKS Predictor
ADMEWORKS Predictor, from Fujitsu, con-
tains a set of QSAR models derived from the 
data in the ADME DB. It can predict K

m
 for 

CYP 2D6 and 3A4, as well as K
i
 for CYP 3A4 

inhibition [253]. Models for predicting kinetics 
and inhibition for other CYP types are under 
development. It is run over a web server located 
in Poland and, compared with a locally run 
program, the performance is quite slow.
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MetaDrug
MetaDrug, from GeneGo [204], includes a set of 
CYP substrate and inhibition QSAR models that 
can be applied to both input compounds and to 
the full set of their predicted metabolites. These 
are binary classification models for substrates of 
1A2, 2B6, 2D6 and 3A4, and for inhibitors (at 
IC

50
 <10 µM) of 1A2, 2C19, 2C9, 2D6 and 3A4. 

The substrate models were trained on literature 
data from MetaBase, and the inhibitor models 
were trained on data from the cytochrome panel 
assay in PubChem submitted by NCGC [239], 
using recursive partitioning methods and physi-
cochemical property descriptors [72]. MetaDrug 
also has a classification model for pregnane X 
receptor activation, based on literature data from 
MetaBase, which could identify some CYP-
inducing compounds, and a quantitative predic-
tion of the pIC

50
 of human soluble epoxide hydro-

lase inhibition, an important phase II enzyme. 
For the models trained on MetaBase data, the 
training set can be viewed with a single click from 
each model description, which also includes the 
number of molecules in the training and test 
sets, and the statistical parameters for sensitiv-
ity, specificity, and accuracy. Model applicability 
domains are calculated using Tanimoto prioritiza-
tion, which provides a measure of the similarity 
between the query compound and its most similar 
training set compound. 

MetaDrug is run through a web interface. 
Input compounds can be uploaded in SD format, 
and the results can be viewed online or exported 
as an Excel file. MetaDrug is not intended for 
ana lysis of large datasets – the QSAR model pre-
dictions can only be run on files with less than 
500 compounds, and the calculations performed 
on enumerated metabolites can only be run if the 
input file has fewer than 12 compounds.

isoCYP 
isoCYP was released in 2007, and uses a simple 
model to classify input compounds as metab-
olized primarily by either CYP 3A4, 2D6, or 
2C9 [254]. The training set for the model was 
taken from an earlier study from researchers at 
Liverpool John Moores University (UK), who 
had compiled a test set of known drugs [73] and 
a training set from the literature, and used these 
to construct recursive partitioning models for 
CYP substrate classification [74]. The structures 
of these compound sets were listed in SMILES 
format in a table in the manuscript. The pro-
gram isoCYP is an attempt by researchers at 
Molecular Networks to improve upon, and 

market, the predictivity of the CYP substrate 
classification models, using molecular proper-
ties as descriptors and a support vector machine 
for classification. A set of compounds from the 
Accelrys Metabolite database [201] was also used 
as an external test set [75]. 

isoCYP is intended to be used for rapid filter-
ing of large datasets, and can be run from the 
command line, from a graphical user interface, 
or through a component for Pipeline Pilot. It 
can also be tested free of charge for small sets of 
compounds on the Molecular Networks website 
[254]. The output for each compound is simply 
the name of the CYP for which it is predicted to 
be the most likely substrate. It does not take into 
account the possibility of overlapping substrates, 
or the possibility of non-CYP metabolism [75].

ADMET Predictor
In addition to its metabolic site predictions, 
the Metabolism Module in ADMET Predictor 
from Simulations Plus has classification models 
for substrate binding to CYPs 1A2, 2A6, 2B6, 
2C8, 2C9, 2C19, 2D6, 2E1 and 3A4. There 
are also classification models for inhibition of 
five CYPs (1A2, 2C9, 2C19, 2D6 and 3A4), 
as well as specific K

i
 values for the inhibition 

of 3A4-mediated metabolism of midazolam 
and testosterone. These models were released 
in 2008 and developed in collaboration with 
Enslein Research, who collected and curated the 
literature data upon which the models are built 
[76]. Additionally, ADMET Predictor includes 
QSAR classification models for nine human 
UDP-glucuronosyltransferase isozymes. These 
can predict whether or not a compound will 
undergo a glucuronidation reaction before being 
oxidized in a phase I reaction [213]. All input com-
pounds are checked to determine whether their 
molecular properties fall within the descriptor 
space of each model, and if not, the prediction is 
considered to be outside the scope of the model 
and flagged in the output [212].

ACD/Percepta
ACD/Percepta has QSAR models for the pre-
diction of substrates and inhibitors for CYPs 
1A2, 2C19, 2C9, 2D6 and 3A4. The models 
were trained on the same data used for the ACD/
Percepta regiolability models, along with some 
additional data from known drugs. The inhi-
bition models also used data from PubChem 
bioassays by NCGC [36]. The output for inhib-
itors is presented as the probability that a com-
pound will bind with IC

50
 <50 µM and with 
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IC
50

 <10 µM [227]. As with the regiolability 
models, a reliability measure is reported for 
the prediction. Additionally, the models can be 
revised and expanded to include any new experi-
mental data that might be generated by the user 
to increase their coverage of chemical space and 
therefore the applicability domain [77].

VirtualToxLab
VirtualToxLab is unique among CYP binding 
prediction software programs in that it incor-
porates either an automated docking run or a 
ligand-based pharmacophore alignment to pro-
duce a set of predicted binding modes against 
the target of interest. For each target, a multi-
dimensional QSAR model has been developed, 
consisting of a linear regression equation with 
atomistic descriptors, to convert scores calcu-
lated from the docked or aligned poses into pre-
dicted binding affinities [78,255]. VirtualToxLab 
has models for CYPs 1A2, 2A13, 2D6, 2C9 [79] 
and 3A4 [80], as well as other anti-targets that 
are involved in receptor-mediated toxicity reac-
tions. A ‘toxic potential’ can then be calculated 
for each input compound based on its predicted 
binding affinities to all the models [78]. Three 
of these anti-targets are potentially involved in 
CYP induction: the aryl hydrocarbon [81], PPAR 
gamma [82] and liver X receptors [83].

VirtualToxLab was developed by the 
Biographics Laboratory of the 3R Research 

Foundation in Switzerland, whose goal is to 
find alternatives to animal experimentation. 
A version of VirtualToxLab is available (with 
some reduced functionality) for free to aca-
demic and nonprofit researchers. It is run with 
a Java interface, using the Java OpenGL library, 
installed on the client computer and communi-
cating over an SSH connection with the remote 
server in Switzerland. This graphical interface 
allows the preparation of 3D structures for the 
input compounds, and the visualization of the 
docked poses for each compound. Due to the 
compu tationally intensive nature of the calcula-
tions, they take several hours per molecule per 
target, and only one molecule can be run at a 
time; however, a queuing system allows multiple 
molecules to be submitted in the same session.

�� Predictions
We collected from the Drugs@FDA website 
[256] a small test set of ten molecules that were 
very recently (within the last year) approved as 
drugs (new molecular entities). CYP substrate, 
inhibition, and induction data were extracted 
manually from the reviews included in the drug 
approval packages. Basic information about each 
drug is listed in Table 3, and structures are given 
in Table 4. We attempted to include a variety of 
chemotypes and therapeutic indications.

Here, the goal was not to provide a rigor-
ous quantitative benchmark of the accuracy of 

Table 3. Recently approved drugs used as a small test set.

Name Trade name Company New drug 
application

Approval Mechanism Target Disease

Axitinib Inlyta® Pfizer 202324 27 January 2012 Kinase inhibitor VEGFR Renal cell carcinoma

Vismodegib Erivedge™ Genentech 203388 30 January 2012 Hedgehog 
pathway 
inhibitor

Smoothened 
GPCR

Basal cell carcinoma

Ivacaftor Kalydeco™ Vertex 203188 31 January 2012 CFTR 
potentiator

CFTR chloride 
channel

Cystic fibrosis

Ruxolitinib Jakafi® Incyte/Novartis 202192 16 November 2011 Kinase inhibitor JAK1, JAK2 Myelofibrosis

Crizotinib Xalkori® Pfizer 202570 26 August 2011 Kinase inhibitor ALK, c-Met, 
RON

Non-small-cell lung 
cancer

Indacaterol Arcapta™ Novartis 022383 1 July 2011 Long-acting b
2
 

agonist
b

2
 adrenergic 

receptor
Chronic obstructive 
pulmonary disease

Ticagrelor Brilinta® AstraZeneca 022433 20 July 2011 Platelet 
aggregation 
inhibitor

Platelet P2Y
12

 
ADP-receptor

Acute coronary 
syndrome

Ezogabine Potiga™ GlaxoSmithKline/
Valeant

022345 10 June 2011 Potassium 
channel opener

KCNQ/Kv7 Epilepsy

Linagliptin Tradjenta® Boehringer 
Ingelheim

201280 2 May 2011 Peptidase 
inhibitor

DPP-4 Type 2 diabetes

Abiraterone Zytiga® Janssen 202379 28 April 2011 Androgen 
biosynthesis 
inhibitor

CYP17 Prostate cancer
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prediction for each software program because 
this is a very small set of compounds and, 
although they are new drugs, all of them have 
been known in the literature for many years so 
we cannot guarantee that none of them is pres-
ent in any of the model training sets. Rather, we 
intended to give a flavor of the range of enzyme 

interactions that could be calculated, the confi-
dence given by each program in its predictions, 
and a sense of in which contexts each program 
might be useful.

We then ran predictions of the metabolizing 
enzyme interactions against this test set from all 
of the programs discussed in this section, with 

Table 4. Test set structural information.

Name Structure SMILES InChI Key

Axitinib

O NH

S N
H

N

N

C2=C(SC1=CC=CC=C1C(=O)NC)
C=CC3=C2[NH]
N=C3C=CC4=CC=CC=N4

RITAVMQDGBJQJZ-
UHFFFAOYSA-N

Vismodegib 

N

Cl

NH

O

Cl

S
O

O

C1=C(Cl)C(=CC=C1[S](=O)(=O)C)
C(=O)NC2=CC=C(Cl)C(=C2)
C3=CC=CC=N3

BPQMGSKTAYIVFO-
UHFFFAOYSA-N

Ivacaftor

O

O

HO

NH

NH

CC(C)(C)C1=CC(=C(C=C1NC(=O)
C3=CNC2=CC=CC=C2C3=O)O)C(C)
(C)C

PURKAOJPTOLRMP-
UHFFFAOYSA-N

Ruxolitinib

N

N N
H

NN

N
C[NH]C2=NC=NC(=C12)C3=C[N]
(N=C3)[C@H](CC#N)C4CCCC4

HFNKQEVNSGCOJV-
OAHLLOKOSA-N

Crizotinib

N
H

N
N

N NH2

O

Cl

F

Cl

[C@H](OC1=CC(=CN=C1N)C2=C[N]
(N=C2)C3CCNCC3)(C4=C(Cl)
C=CC(=C4Cl)F)C

KTEIFNKAUNYNJU-
GFCCVEGCSA-N
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the exception of ADMEWORKS Predictor 
(because the trial version calculates only a 
small subset of the available properties) and 
the CYP 2D6 inhibition model in the Accelrys 
ADME toolkit. Versions used were: PASS 2011 
Professional, StarDrop 5.0, the online demo ver-
sion of isoCYP, MetaDrug (versionless, 2012), 

ADMET Predictor 6.0, and VirtualToxLab 4.2. 
The amount of computer time required to run 
the predictions ranged from a few seconds 
for the programs with simple QSAR models, 
to 1 h for MetaDrug, to over a week for the 
computationally intensive docking runs of 
VirtualToxLab.

Table 4. Test set structural information (cont.).

Name Structure SMILES InChI Key

Indacaterol

O N
H

OH

HO

HN

H

[C@@H](O)(C1=C2C(=C(O)C=C1)
NC(=O)C=C2)CNC3CC4=C(C3)
C=C(C(=C4)CC)CC

QZZUEBNBZAPZLX-
QFIPXVFZSA-N

Ticagrelor

HN

F

F

N

N

S

N
N

N

O
OH

OH

HO
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Figure 1. Predicted metabolizing enzyme interactions with the test set (Table 3). Checkmarks indicate correct predictions, 
crosses indicate incorrect predictions and empty squares mean no prediction of the interaction was made. Confident predictions are 
shaded dark gray and uncertain predictions are shaded light gray.  
AP: ADMET Predictor 6.0; iC: isoCYP; MD: MetaDrug; PC: ACD/Percepta; PS: PASS 2011; SD: StarDrop 5.0; VT: VirtualToxLab 4.2.

Computational tools & resources for metabolism-related property predictions | Technology Review

www.future-science.com 1921future science group



The results of the predictions are shown in 
FiguRe 1. For PASS, all predictions where the 
probability that the compound is active was 
greater than the probability that it is inactive 
(P

a
 > P

i
) are included. Uncertain predictions are 

defined as those where P
a
 <0.5. For StarDrop, 

CYP 2C9 inhibition was defined as a predicted 
pK >6 and 2D6 inhibitors were defined as 
those with predicted affinity high or very high. 
Uncertain predictions are those with an infinite 

error of prediction for 2C9 and those where 
the probability for each class of 2D6 inhibition 
is equal. In MetaDrug, substrates/inhibitors 
with a calculated QSAR value >0.5 were con-
sidered active, and uncertain predictions were 
those with a Tanimoto prioritization <50%. 
ADMET Predictor provides simple yes/no pre-
dictions for CYP substrates and inhibitors. In 
ACD/Percepta, active substrates and inhibitors 
were considered to be those with a probability 
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Figure 1. Predicted metabolizing enzyme interactions with the test set (Table 3) (cont.). Checkmarks indicate correct 
predictions, crosses indicate incorrect predictions and empty squares mean no prediction of the interaction was made. Confident 
predictions are shaded dark gray and uncertain predictions are shaded light gray.  
AP: ADMET Predictor 6.0; iC: isoCYP; MD: MetaDrug; PC: ACD/Percepta; PS: PASS 2011; SD: StarDrop 5.0; VT: VirtualToxLab 4.2.
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>0.5 for an IC
50

 <50 µM, and uncertain predic-
tions were those with a reliability index <0.3. In 
VirtualToxLab, if binding was predicted to be 
medium, high or very high, the compound was 
considered to be an inhibitor or inducer.

We did not observe any overwhelming dif-
ference in accuracy between the different soft-
ware programs for our small test set, although 
of course, it bears re-emphasizing that we are 
presenting only a qualitative observation and 
not a rigorous statistical test. The most accu-
rate results (defined as the number of correct 
predictions divided by the total number of 
predictions) were achieved by isoCYP, which 
predicted that all of the drugs would be metab-
olized by CYP 3A4, and in fact all of them 
are, with the exception of ezogabine, which 
is not a CYP substrate at all. VirtualToxLab 
and StarDrop both seem to perform well, with 
accuracies of approximately 75%. The remain-
ing programs averaged approximately 60% 
accuracy. 

We also calculated the sensitivity and the 
specificity for each program. Sensitivity is calcu-
lated as the number of true positives divided by 
the sum of true positives and false negatives, and 
defines the program’s ability to correctly make 
positive predictions (e.g., ivacaftor is a substrate 
of CYP 3A4). Specificity is calculated as the 
number of true negatives divided by the sum 
of true negatives and false positives, and defines 
the program’s ability to correctly make negative 
predictions (e.g., linagliptin does not induce 

CYP 2D6). Here, the differences between the 
programs were more pronounced.

PASS has the most available models for 
metabolizing enzyme interactions out of all the 
programs. However, by default, PASS does not 
show negative results (i.e., that an input com-
pound is not an inhibitor of a given enzyme). If 
the result of a prediction is not on the list, then 
we know the probability of that activity is less 
than the predicted probability of its inactivity 
(P

a
 < P

i
) but we are not sure how confident that 

prediction is.
ACD/Percepta is very conservative in express-

ing confidence in its predictions. The developers 
regard a reliability index >0.7 as a good predic-
tion, and a reliability index between 0.3 and 0.7 
as borderline. However, with our test set none of 
the predictions had a reliability index >0.7, and 
only two predictions were >0.5. We therefore 
used the bottom of the borderline, 0.3, as the 
cutoff, but even here only a third of the predic-
tions were confident, the lowest ratio of all the 
programs. Generally speaking, the accuracy of 
the confident predictions in the other software 
programs was slightly higher. The greatest jump 
in accuracy between all predictions and only 
confident predictions was seen with MetaSite at 
14% improvement.

This simple set of test results serves to highlight 
some of the difficulties faced by bench chemists 
or modelers without a particular interest in the 
gritty details of metabolic enzyme interactions 
or the pitfalls of QSAR modeling, who might 
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Figure 1. Predicted metabolizing enzyme interactions with the test set (Table 3) (cont.). Checkmarks indicate correct 
predictions, crosses indicate incorrect predictions and empty squares mean no prediction of the interaction was made. Confident 
predictions are shaded dark gray and uncertain predictions are shaded light gray.  
AP: ADMET Predictor 6.0; iC: isoCYP; MD: MetaDrug; PC: ACD/Percepta; PS: PASS 2011; SD: StarDrop 5.0; VT: VirtualToxLab 4.2.
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only want a reasonably accurate prediction of the 
potential for toxicity or unfavorable drug–drug 
interactions as a filter in a screening cascade, or 
as a check on a set of analogs proposed for syn-
thesis. Is a 60% accuracy rate really any kind of 
significant improvement over a random selection 
of compounds? For a single compound or a small 
set proposed for synthesis, in the absence of any 
prior knowledge about the metabolic behavior of 
the chemotype, such a prediction is essentially 
meaningless. One might well be better off gen-
eralizing from a set of simple rules of thumb 
[84]. Conversely, some of the programs (PASS, 
StarDrop, and VirtualToxLab) do show sensitivi-
ties in the 80–90% range, suggesting that they 
may be useful in a situation where false positives 
can be tolerated but false negatives (i.e., missing 
a good compound) are undesirable. As a filter to 
eliminate potentially problematic compounds, 
isoCYP, StarDrop, or ADMET Predictor would 
seem to be good choices, for rapidly if not entirely 
accurately predicting whether a compound is 
likely to be a substrate or an inhibitor of CYP 
2C9 or 2D6. MetaDrug also shows reasonable 
specificity, but it is too slow to be used for a large 
database of compounds. FiguRe 1 also highlights, 
in its expanses of empty uncharted space, the lack 
of available computational predictions for most of 
the measurements that would be required by the 
FDA for any new drug application. This is sum-
marized in the form of a calculated predictivity 
for each program, meaning the number of cor-
rect predictions divided by the total number of 
datapoints we had collected for all compounds. 
With the exception of PASS, all the programs 
have a predictivity of less than one-third.

Metabolic stability 
The total body clearance and/or the half-life 
of a xenobiotic compound (these are inversely 
proportional to one another by the volume of 
distribution) is a complicated end point to model 
because it involves multiple enzymatic reactions 
and depends on factors such as the extent of 
plasma protein binding and the involvement of 
active transport across membranes. To simplify 
the situation, the intrinsic clearance of a com-
pound can be considered. This consists of the 
portion of the total clearance that can be attrib-
uted to the removal of drug from the blood by the 
liver [85]. Intrinsic clearance can be approximated 
using one or a series of in vitro assays, including 
kinetics with recombinant CYPs expressed in 
baculoviruses, and half-life measured in human 
liver microsomes, liver S9 fraction, or intact 

hepatocytes. These in vitro assays are generally 
undertaken in a relatively high-throughput man-
ner as an early screen during drug discovery, and 
referred to as metabolic stability assays [86,87]. 

It should be emphasized that the in vitro assays 
are themselves models, requiring various kinds of 
mathematical extrapolations to relate the in vitro 
measurements to in vivo clearance data. While 
there is definitely a strong correlation between 
in vitro and in vivo clearance, there is some con-
cern about how well these in vitro assays can cap-
ture the complexities of clearance in vivo [86,88]. 
In attempting to predict, via in silico methods, 
an in vitro end point such as stability in human 
liver microsomes, one is in fact building a model 
of a model. Nevertheless, in silico methods may 
be useful as a means of filtering larger libraries 
of compounds much more cheaply and quickly 
than with in vitro screening methods.

�� Databases
BioPrint
The BioPrint database, developed in 1999, is 
produced by Cerep. Rather than data extracted 
from the literature, BioPrint contains data mea-
sured in-house in Cerep’s own set of 159 stan-
dardized assays. As of 2012, the database con-
sists of a set of approximately 2500 known drugs 
and reference compounds. The assays relevant 
to metabolism are metabolic stability measured 
in human liver microsomes, and inhibition of 
CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 
3A4 and 3A5 [257]. QSAR models using the 
in vitro assay results as descriptors along with 
3D pharmacophore-based molecular descriptors 
have been constructed by Cerep to allow the pre-
diction of in vivo end points such as adverse drug 
reactions once a new compound has been run 
through the panel of assays [89]. Cerep sells this 
type of profiling as a service, but the BioPrint 
database itself is also available as a commercial 
standalone product.

WOMBAT-PK
World Of Molecular Bioactivity (WOMBAT) 
-PK was first released in 2005 by Sunset Molecular 
Discovery, as a subset of the WOMBAT database, 
to integrate medicinal chemistry knowledge with 
pharmacokinetics data [90]. The 2010 version of 
WOMBAT-PK contains 1260 drugs from text-
books, FDA databases and the literature. Data 
fields relevant to metabolism include systemic 
clearance, apparent systemic clearance, non-
renal clearance, half-life, terminal half-life and 
phase I metabolizing enzymes. However, these 
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metabolism and clearance data are not available 
for every drug in the database [258].

DrugBank
DrugBank, from the University of Alberta 
(Canada) [259], is a well-known free database of 
6711 drug compounds in version 3.0 (approved 
drugs, nutraceuticals and experimental drugs). 
It links cheminformatics and bioinformatics 
by including target, metabolizing enzyme and 
transporter information for each drug. For a sub-
set of the drugs, metabolism data such as half-life 
and clearance pathways are included, but this 
information is presented in free text format as 
extracted from journal articles [91].

AurSCOPE ADME
The AurSCOPE ADME database from Aureus 
Sciences consists of a set of 40,635 compounds 
(as of June 2012) collected from the literature, 
patents, known drugs and new drug applications 
in the USA and Europe. The metabolism-related 
properties that are included are binding affin-
ity and kinetic data for various phase I and II 
enzymes, along with human liver microsome and 
hepatocyte stability data [260]. Recently, Aureus 
has collaborated with Institute of Biomedical 
Chemistry to develop AurPASS, in which the 
PASS modeling methods are used with the 
AurSCOPE database to predict a variety of 
biological activities [261].

Evolvus
The company Evolvus [262], which specializes 
among other things in chemical data curation, 
offers a hepatic clearance/microsomal stability 
dataset, containing, as of May 2010, approxi-
mately 5000 compounds tested in humans and 
other mammalian species. The data have been 
collected from the recent literature (since 2002). 

Other free databases
Freely available resources include two datasets 
for clearance and half-life, extracted from the 
Goodman & Gilman textbook [92] and available 
at QSAR World [263]. The ChEMBL database of 
bioactivity data at the European Bioinformatics 
Institute [93,264] contains, in version 14, over 
9000 half-life or metabolic stability-related 
assays from the literature, in particular a rela-
tively large (669 compounds) set of human 
intravenous administration half-life data [94]. 
PubChem [66,233] contains two assays from the 
Conrad Prebys Center for Chemical Genomics 
at the Sanford-Burnham Medical Research 

Institute, measuring metabolic stability in 
human and mouse hepatic microsomes [265,266]. 
At the time of writing, these assays are set up 
as placeholders containing one compound each, 
but a full set of data is planned to be released. 
These last four resources are discussed in more 
detail in the accompanying paper [15], where we 
use them to build QSAR models of half-life in 
human liver microsomes.

�� Software 
ACD/Percepta
Aside from the databases containing half-life 
and clearance information, mainly for relatively 
small sets of known drugs, there are very few 
publicly available resources useful in the context 
of metabolic stability predictions. ACD/Percepta 
[224] has, to our knowledge, the only explicit pre-
diction of half-life in human liver microsomes. It 
uses a random forest classification model, trained 
on literature data, with its CYP substrate and 
regioselectivity predictions (discussed above) 
as descriptors. Input compounds are classified 
as ‘stable’, ‘unstable’ or ‘undefined’, where the 
latter can either mean that the compound is of 
intermediate stability or that the reliability of 
the prediction is too low. Users can adjust the 
range of half-life times that should be considered 
‘undefined’.

ADMET Predictor
In ADMET Predictor, the Metabolism Module 
(discussed in more detail above) can predict 
K

m
 and V

max
 for hydroxylation reactions by five 

recombinant CYPs (1A2, 2C19, 2C9, 2D6 and 
3A4) and converts these into an intrinsic clear-
ance value for each CYP. It can also provide 
a more general ‘CYP_Risk’ score for a query 
compound, based on predictions of high clear-
ance by any of the CYPs along with inhibition 
of 3A4 [213].

MEXAlert
The program MEXAlert from CompuDrug, 
a simplif ied, high-throughput version of 
MetabolExpert (discussed above), can be used 
to flag compounds that are likely to undergo 
extensive first-pass metabolism, and thus be 
rapidly eliminated before reaching the systemic 
circulation [267]. Rather than an extensive graph-
ical tree of metabolites, MEXAlert produces a 
simple text table with each input compound 
flagged as ‘Probable’ or ‘Not Probable’ that it will 
be metabolized, along with a list of predicted 
biotransformation reactions.
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QikProp
An interesting approach to metabolic stability 
prediction is found in the program QikProp from 
Schrödinger, first released in 2000, and devel-
oped by the Jorgensen group at Yale University 
(USA) [268]. QikProp can calculate a descriptor 
called #metabol, which tests whether an input 
compound can undergo any of a set of 21 meta-
bolic reactions. The output is a number between 
0.0 and 8.0; a higher number indicates that a 
compound is more likely to be meta bolically 
unstable. The development of this property 
has not, to our knowledge, been described in 
any of the publications about QikProp, so it 
is not clear how well the number of potential 
reactions a compound can undergo correlates 
with its actual reactivity or metabolic stability. 
In a QSAR modeling study on the metabolic 
stability of calcitriol analogs, using QikProp 
properties among others, Jensen et al. evaluated 
several variable selection methods, and found 
that while the #metabol descriptor was chosen 
some of the time, it was not ultimately one of the 
most predictive descriptors [95].

Holes in the bucket
A caveat of all 2D structure-based approaches, 
such as QSAR models, is the inability to handle 
enantiomer-specific metabolism. This may not 
be a big issue as many pairs of stereoisomers 
are observed to give rise to the same metabo-
lites [45]. However substrate stereochemistry 
has been known to play an important role in 
CYP-mediated metabolism. For example, 2C19 
is known to catalyze 6- and 8-hydroxylation, 
but not 4 -́hydroxylation of R-warfarin. On the 
other hand, 2C19 catalyzes 4´-hydroxylation 
but not 6- and 8-hydroxylation of S-warfarin 
[96]. Tools that explicitly consider 3D molecular 
conformations of both the substrate and the pro-
teins are required for predicting stereochemistry-
specific metabolism. These tools are much more 
resource-demanding.

One of the drawbacks to biotransformation 
prediction methods is that they tend to lump 
together biotransformation data from different 
species and tissue types [23,29] (an exception to 
this is TIMES, though its liver simulator is built 
on data from humans, rats and dogs [40]). Also, 
in spite of attempts in each software program to 
prune the resulting metabolic trees, a great many 
metabolites are still generated for each input 
compound, not all of which will be observed 
experimentally [29]. Because of this, these pro-
grams are difficult to apply in a high-throughput 

fashion. The advantages of biotransformation 
prediction methods are that, unlike other meth-
ods discussed herein, biotransformation predic-
tion methods are not focused on CYPs and 
so can predict metabolites produced via other 
metabolizing enzymes. Furthermore, the combi-
natorial enumeration of metabolites can be use-
ful in the context of identifying the compounds 
present in mass spectrometry data [29].

The drawbacks of metabolic site prediction 
methods are that they generally cannot evalu-
ate the reactivity of different molecules relative 
to one another, only different sites within the 
same molecule [42]. They also cannot generally 
predict which specific CYP will metabolize a 
compound, or even whether or not the input 
query compound will actually be metabolized, 
only where it would be metabolized if it were 
a substrate (exceptions to this are StarDrop, 
with its composite lability prediction [210], and 
ADMET Predictor, which prefaces its site pre-
dictions with a substrate classification predic-
tion [213]). Metabolic site prediction methods 
can be useful for optimization of a given lead 
compound to improve its metabolic stability 
[2,13], but generally not for selecting a lead com-
pound out of a larger set of screening hits, or for 
database filtering prior to sample acquisition or 
synthesis.

Ideally, one would like to be able to predict 
the rate of metabolism for an input compound, 
compared with other compounds in the dataset 
under ana lysis. Rates of metabolic reactions are 
important because the extent of metabolism of 
a compound and which sites are predominantly 
metabolized is (often) kinetically driven. Rate 
predictions are also a way of ranking the extent 
of reactivity of one compound against another, 
rather than simply ranking the sites within a 
single compound. In spite of the importance 
of this parameter, there are very few software 
packages that address metabolic reaction rates, 
probably because of a lack of good consistent 
training data.

There are also very few software tools for 
predicting CYP induction, and none (to our 
knowledge) for CYP activation prediction. This 
is probably a function of the relative newness 
of this field (the nuclear receptor mechanism 
for CYP induction was only discovered in 1998 
[58]) and of the complexity of the underlying 
mechanisms, confounding the development of 
structure-activity relationships.

The prediction of phase II and other non-
CYP substrates is another area of metabolism 
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prediction where there is very little publicly 
available software. This lack of models for pre-
dicting substrates and inhibitors of non-CYP 
metabolism enzymes is concerning, particularly 
in light of a recent meta-ana lysis of drug metabo-
lism pathways and metabolites extracted from 
current literature. Testa et al. found that a full 
40% of the reactive toxic metabolites described 
were quinones and analogs thereof (quinon-
imines, quinonimides, quinone-diimines) [97]. 
These can be produced by CYPs but also by 
peroxidases, an enzyme family that has essen-
tially been neglected in the field of metabolism 
prediction, and whose tissue distribution and 
substrate specificity is very different from CYPs. 
Fortunately, public data on substrates of non-
CYP metabolism enzymes are available from the 
literature, and could be extracted from several of 
the databases discussed here, including Accelrys 
Metabolite [201], MetaBase [203] or CTD [246]. 

Future perspective
It is customary at this point in a review paper on 
property prediction methods and tools – whether 
they are metabolism-related or dealing with 
other properties in the drug design and ADMET 
areas – to call for more public data and to hope 
for the sharing of the large proprietary datasets 
available in pharmaceutical companies, so here 
we will continue that tradition. The extent to 
which many of the software programs listed here 
are based on the same data (from the literature, 
from the Accelrys Metabolite database [201], from 
the relatively small set of existing drugs and pat-
ented pre-clinical compounds, and most recently 
from PubChem [233]) is striking. Of course, all 
developers of publicly available software, be it 
free, academic or commercial, face the same 
constraints on data availability. It may be, as 
observed in the ana lysis of bioactivity databases 
by Tiikkainen and Franke at Merz Pharma [98], 
that the literature data used by different vendors 
do not overlap all that much, due to different 
time frames being used for the data extraction 
and collection. However, in many cases, the data 
for training sets or dictionary development have 
been extracted from very old literature. Old data 
are not necessarily wrong, but are perhaps not 
fully representative of the new chemistry space 
being explored in current drug design and dis-
covery work [12]. Older data are also certainly 
not consistent with newer methods of metabolite 
detection [99].

Mechanisms for publicly sharing the large 
proprietary ADMET datasets owned by 

pharma ceutical companies have been consid-
ered. One successful example of this is the non-
profit Lhasa, Ltd, developers of Meteor, which 
has set up a membership program for collab-
orative work on toxicity and metabolism pre-
dictions. Generally, the actual proprietary data 
points or measurements are not shared between 
Lhasa members, but the data are used to develop 
and validate rules for the toxicity and metabo-
lism knowledge bases [100]. The potential for 
sharing ADMET models, if not data, was also 
explored in a collaboration between researchers 
at Pfizer and Collaborative Drug Discovery [101]. 
Certainly it is not surprising that high-quality 
QSAR models can be built with open-source 
descriptors such as those from the Chemistry 
Development Kit [269] and open-source model-
building tools such as R [270] or KNIME [271]. 
The issue is whether descriptors can be chosen in 
such as way as to capture aspects of the chemical 
structure that contribute to its biological prop-
erties, without allowing the original structures 
of compounds in the training set to be reverse 
engineered [102,103].

In calling for new data and more data, it is 
also worthwhile to consider what kind of new 
data would be the most useful. Even the large 
datasets in big pharmaceutical companies may 
be narrowly focused on sets of closely related 
series of analogs, and perhaps not generalizable 
to other regions of chemical space. It is also not 
clear to what extent data from different labora-
tories or different assay protocols can reasonably 
be combined [104,105]. The screening centers of 
the NIH Molecular Libraries Program [272] have 
contributed to this effort by producing assays for 
several metabolism end points. Some commer-
cial software currently contains QSAR models 
based on these data, and we expect to see more 
to come. It is to be hoped that these screening 
efforts will continue, with PubChem as a central 
repository, even in the face of funding cuts to 
the program [106].

Ultimately, in silico models are based on one 
of the fundamental tenets of pharmacology, that 
chemically similar molecules should behave in 
biologically similar ways. The presence of ‘activ-
ity cliffs’ in bioactivity SAR data is well known 
[107,108], but metabolic processes may be particu-
larly susceptible to these effects, as the metabolic 
fate of a compound depends strongly on a large 
number of variable factors in the biological sys-
tem into which it is introduced. For example, a 
small difference in distribution relative to the 
liver between two similar compounds could 
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result in a very large difference in metabolic 
outcome [23]. In addition, there are many varia-
tions in metabolic and other ADME responses 
due to genetic differences between individuals, 
and within the same individual under different 
circumstances (e.g., pregnancy or aging) [109]. 
This suggests that there is a fundamental limit 
to the predictivity achievable by any structure-
based metabolism modeling method, and that 
that limit may not be very high. 

A productive avenue for increasing the usabil-
ity of in silico modeling would be the improve-
ment of algorithms capable of extracting what 
signal there is from noisy data, in an extremely 
rugged activity landscape, without overfitting. 
Along with this it would be important to have a 
consistent method for dealing with uncertainty, 
namely, how to determine what level of confi-
dence to have in model predictions for new indi-
vidual compounds, and where to draw the line 
between reasonable and nonsensical predictions.
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Executive summary

�� This review focuses on publicly available databases and software that can be used for in silico prediction of metabolism-related 
properties.

�� Computational end points for metabolism predictions include regioselectivity, biotransformations, interactions with metabolizing 
enzymes and metabolic stability.

�� Programs for predicting biotransformations and regioselectivity are highly incestuous and based on many of the same datasets.

�� We tested the programs PASS, StarDrop, isoCYP, MetaDrug, ADMET Predictor, Percepta and VirtualToxLab for predicting interactions 
with metabolizing enzymes and found, qualitatively, a 60–75% success rate.

�� It is of concern that there is very little publicly available software for predicting phase II and other non-Cyp interactions.

�� Future improvements in modeling metabolism-related properties could be realized with larger sets of consistent experimental data and 
careful consideration of the limits of model predictivity.
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