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Abstract 

Because the liver plays a vital role in the clearance of exogenous chemical compounds, it is susceptible to chemical-induced toxicity. 
Animal-based testing is routinely used to assess the hepatotoxic potential of chemicals. Although large-scale high-throughput 
sequencing data can indicate the genes affected by chemical exposures, we need system-level approaches to interpret these 
changes. To this end, we developed an updated rat genome-scale metabolic model to integrate large-scale transcriptomics data and 
utilized a chemical structure similarity-based ToxProfiler tool to identify chemicals that bind to specific toxicity targets to 
understand the mechanisms of toxicity. We used high-throughput transcriptomics data from a 5-day in vivo study where rats were 
exposed to different non-toxic and hepatotoxic chemicals at increasing concentrations and investigated how liver metabolism was 
differentially altered between the non-toxic and hepatotoxic chemical exposures. Our analysis indicated that the genes identified via 
toxicity target analysis and those mapped to the metabolic model showed a distinct gene expression pattern, with the majority 
showing upregulation for hepatotoxicants compared with non-toxic chemicals. Similarly, when we mapped the metabolic genes at 
the pathway level, we identified several pathways in carbohydrate, amino acid, and lipid metabolism that were significantly 
upregulated for hepatotoxic chemicals. Furthermore, using our system-level integration of gene expression data with the rat 
metabolic model, we could differentiate metabolites in these pathways that were systematically elevated or suppressed due to 
hepatotoxic versus non-toxic chemicals. Thus, using our combined approach, we were able to identify a set of potential gene 
signatures that clearly differentiated liver toxic responses from non-toxic chemicals, which helped us identify potential metabolic 
pathways and metabolites that are systematically associated with the toxicant exposure.

Keywords: liver toxicity; high-throughput transcriptomics; metabolite predictions; environmental chemicals; chemical structure-based 
analysis; toxicity targets

The liver plays a central role in a wide range of physiological 
functions, including maintaining systemic metabolic homeosta
sis and synthesizing lipids, carbohydrates, and most plasma pro
teins (Jones 2016). In addition, it synthesizes and excretes bile 
acids, which are critical for the normal uptake of vitamins and 
lipids as well as for the excretion of xenobiotics (Corless and 
Middleton 1983). Furthermore, the liver is one of the key organs 
for xenobiotic metabolism, acting as a physical and biochemical 
barrier between the absorbed xenobiotics and the systemic circu
lation due to its strategic location and possessing a very high 
capacity for phases I and II metabolic processes involved in the 
clearance of xenobiotics. Therefore, as the main detoxifying 
organ in the body, the liver is prone to toxic injury, which leads 

to disruption of its normal functionalities and several liver dis
eases, such as non-alcoholic fatty liver disease, fibrosis, cirrhosis, 
and liver cancer, that are serious threats to public health (Baffy 
et al. 2012; Byass 2014; Benedict and Zhang 2017). Indeed, liver 
injury is a common reason for the termination of preclinical test
ing of new drugs and for the withdrawal of approved drugs from 
the market (Regev 2014; Seeff 2015). In addition, many common 
workplace and environmental chemicals are associated with 
liver toxicity (Pond 1982; Tolman and Sirrine 1998; Cave et al. 
2010; Al-Eryani et al. 2015; Committee et al. 2019).

As the liver is the first line of defense against many potentially 
harmful xenobiotics, we need methodologies and tools to achieve 
a detailed description of the biological mechanisms that 
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contribute to liver injury as well as a means to predict injury 
occurrence. In classic toxicology testing, the liver toxicity of a 
potential toxic chemical is determined using in vivo studies 
based on detailed histopathological examination of tissue speci
mens after prolonged and repeated rodent exposures (OECD 
1994). However, these long-term animal studies are ethically dis
puted, costly, time-consuming, and may not be feasible for a 
large number of chemicals (Van Norman 2019; Kiani et al. 2022). 
To circumvent this problem, the National Toxicology Program 
(NTP) proposed a novel high-throughput transcriptomics plat
form (HTT) combined with short-term in vivo 5-day rat exposure 
studies for understanding a quantitative estimate of hazard, as a 
bioactivity-based bridge between traditional apical endpoints 
and the HTT data generated from the in vitro assays 
(Ramaiahgari et al. 2019; Gwinn et al. 2020). These studies were 
able to determine the lowest transcriptional benchmark dose 
(BMD) estimated from HTT, which was within a factor of 5 of the 
values estimated from the traditional apical endpoints obtained 
via longer term studies, and suggested that the 5-day rat in vivo 
model can be used as a rapid approach for estimating BMD val
ues (Gwinn et al. 2020). Use of these HTT data types should 
increase the efficiency of chemical testing and prioritization, 
reduce the number of animals used for testing, and allow for bet
ter allocation of resources to chemicals with the greatest poten
tial for human health risk.

Toxicogenomic dose-response studies generate large volumes 
of omics data, and their complexity requires advanced computa
tional tools to determine patterns of interest among several vari
ables to understand the mechanisms of toxicity. In general, 
dimension-reduction methods are routinely used to describe and 
visualize these large multidimensional datasets, but they do not 
provide functional interpretation of the data. Alternatively, gene 
enrichment-based methodologies, which allow for the identifica
tion of biological modules that provide an overview of the studied 
biological modulations, can be used to identify putative markers 
for adverse health effects (Tawa et al. 2014; Nguyen et al. 2019; 
Karp et al. 2021; Pannala et al. 2023). However, these methods 
were developed based on arbitrary thresholds and might differ 
depending on the selected toxic chemical exposure database 
(Ganter et al. 2006; Igarashi et al. 2015). Furthermore, although 
these methods provided functional interpretation and potential 
biomarkers, the underlying mechanisms leading to liver injury 
still remain elusive. It is therefore difficult to track the onset and 
progression of injury or to translate the results between species 
to diagnose and design effective therapeutic countermeasures 
for toxic effects. Liver injury outcomes may be better predicted if 
we could understand how liver metabolism is altered as a result 
of toxicity. However, this requires a detailed understanding of 
the coordinated behavior of a very large number of intercon
nected metabolic reactions and metabolites. Toward this end, a 
systems biology approach, based on genome-scale metabolic 
models (GSMs) together with chemical structure-based toxicity 
target analyses, can be used to increase our understanding of 
toxicity mechanisms and help identify novel biomarkers associ
ated with them.

GSMs represent the current knowledge of metabolism gener
ated by integrating genetic and biochemical studies coupled with 
cellular, physiological, and clinical data and have emerged as a 
useful tool for the study of cellular metabolism (Nielsen 2009; 
Terzer et al. 2009; Gille et al. 2010; Thiele and Palsson 2010; 
Mardinoglu et al. 2013; Blais et al. 2017; Brunk et al. 2018; Wang 
et al. 2021). GSMs are composed of thousands of reactions and 
metabolites interconnected according to the stoichiometric 

matrix of the network. They also account for gene-protein- 
reaction (GPR) rules that map the relationship between genes, 
the proteins they encode, and the reactions they catalyze in the 
network. Therefore, these networks allow us to predict altera
tions in cellular metabolism based on changes in gene expression 
and can be applied to address questions related to toxicological 
studies (Carbonell et al. 2017; Brunk et al. 2018; Pannala et al. 
2018). In our previous work, we developed rat GSMs and exten
sively used them to characterize the effects of several drug and 
environmental compounds on liver and kidney metabolism and 
identified potential metabolite biomarkers associated with their 
mechanism of toxicity (Blais et al. 2017; Pannala et al. 2019, 
2020a, 2020b, 2020c; Rawls et al. 2021).

In this study, we leveraged the HTT data from rat 5-day dose- 
response studies performed by NTP using 18 different drugs or 
environmental chemicals (Gwinn et al. 2020) to understand and 
predict the alterations in liver metabolism due to toxicant expo
sure. We divided the chemical exposures into non-hepatotoxic 
and hepatotoxic based on the information from chronic liver tox
icity studies (Gwinn et al. 2020) and obtained the derived whole 
transcriptomic data for these chemicals from our previous study 
(Pannala et al. 2023). We then used these derived whole gene 
expression profile data to explore how liver metabolic responses 
differed between the 2 classifications compared with their 
respective controls using chemical structure-based and rat GSM- 
based analyses.

First, using a chemical structure-based toxicity target profiler 
webtool (AbdulHameed et al. 2021), we identified the potential 
toxicity targets/molecular initiating events associated with the 
query chemicals. Many of the identified toxicity targets belong to 
various classes of transcriptional factors, and we created a list of 
downstream genes driven by them for all the chemicals used in 
the study. We then analyzed how mapping these genes onto the 
derived whole gene expression profiles obtained from the HTT 
platform can provide useful molecular signatures or mechanistic 
insights for depicting the predefined toxicity outcomes identified 
in the chronic studies. Our analysis of the changes in transcrip
tion factor-driven genes clearly indicated a distinct gene 
expression pattern for hepatotoxic chemicals compared with 
non-hepatotoxic chemicals, indicating their usefulness in classi
fying liver responses to toxicity. Second, we updated our previ
ously developed rat GSM (Pannala et al. 2020c) by adding new 
biochemical reactions and correcting several reactions for 
stochiometric consistency based on the latest information from 
literature studies (Wang et al. 2021). Using this updated model, 
we integrated the derived whole gene expression profiles into the 
rat GSM and investigated whether the metabolic alterations pre
dicted by the model can differentiate hepatotoxic exposures 
from non-hepatotoxic exposures. Our analysis revealed that the 
expression patterns of genes mapped to the metabolic model 
definitively showed an upregulated behavior both at the gene 
and pathway levels for hepatotoxic chemicals compared with 
non-hepatotoxic chemicals. Furthermore, our rat GSM-based 
approach was able to identify potential metabolites that changed 
differently between the 2 chemical classes in various cellular 
pathways, which can be studied in targeted assays to identify 
biomarkers for liver toxicity.

Materials and methods
Rationale for chemical selection
One of our primary goals in this study was to quantify the liver’s 
responses upon exposure to hepatotoxic and non-hepatotoxic 
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chemicals. To achieve this goal, we relied on NTP 5-day rat stud
ies where rats were exposed to a diverse set of environmental 
and drug-like chemicals that had their hepatotoxicity previously 
evaluated in repeated dosing studies (Gwinn et al. 2020). All of 
the chemicals we selected were tested in 90-day sub-chronic or 
2-year chronic studies, except for fenofibrate. Furthermore, all 
the chemicals were orally administered, and the chemical- 
related increased incidences of liver histopathological effects 
were documented for a systemic comparison. Based on these his
topathology outcomes, we broadly divided the chemicals into 2 
major categories, i.e. non-hepatotoxic and hepatotoxic, which 
allowed us to simultaneously compare liver transcriptomic 
responses under similar conditions across all the chemicals in 
the current study.

Experimental dataset and derived whole 
transcriptomic data
We used experimental data from publicly available NTP 5-day 
in vivo rat studies that include the TempO-Seq HTT S1500þ data
set obtained from rats exposed to a diverse set of chemicals at 
different dose levels and the matched control groups (Gwinn 
et al. 2020). In these experiments, 8- to 10-week-old male 
Sprague Dawley rats were exposed to 8 or 9 concentrations of 
each of the 18 selected chemicals, along with a control group. 
Figure S1 shows all the chemicals, their dose levels, and their cor
responding vehicle controls used in this study. The chemicals 
were administered via oral gavage (5 ml/kg) once per day for 5 
consecutive days (Days 0–4), with 4 animals for each dose and a 
vehicle control (n¼ 4). On Day 5, the rats were exsanguinated and 
the liver tissues were collected for TempO-Seq-based HTT analy
sis (Gwinn et al. 2020). The normalized gene expression signals of 
the HTT S1500þ dataset, in terms of log2(counts per millionþ1) 
values, were then extrapolated to the whole rat transcriptome to 
obtain the derived whole gene expression profiles for all the sam
ples, as described in our previous study (Pannala et al. 2023).

Differential gene expression and KEGG pathway 
enrichment analysis
Using the derived whole gene expression profiles for each dose 
and chemical together with their corresponding control samples 
from the HTT S1500þ dataset, we identified differentially 
expressed genes by performing a 1-way analysis of variance and 
estimated the false discovery rate (FDR) to correct for multiple 
comparisons. We defined a significantly expressed gene as one 
with an FDR-adjusted P-value <0.1. We used the resulting differ
entially expressed gene fold-change values for all of our subse
quent analyses. For the KEGG pathway enrichment analysis, we 
used the aggregated fold-change (AFC) method, which provided 
directionality of gene expression in terms of whether the path
way was up- or downregulated (Yu et al. 2017). Briefly, using the 
differentially expressed gene fold-change values, the AFC 
method calculated the mean fold-change value for each gene 
and defined the KEGG pathway score as the total fold-change 
value of all the genes in the pathway. The sign of the pathway 
score represented the direction of regulation, with positive values 
indicating upregulation and negative values indicating downre
gulation in the treatment condition compared with their corre
sponding controls.

Chemical structure-based toxicity target profiler
We used the webtool ToxProfiler to obtain potential toxicity tar
gets based on the structure of a chemical to predict the probabil
ity of its binding to an established toxicity target (AbdulHameed 

et al. 2021). We obtained the structures of the chemicals used in 
this study from the literature and used them as input to 
ToxProfiler (Table S1) (http://datadryad.org/stash/share/ 
RM9HKUOf8PCb-STlufXehShPuXyTbRenn7i_Cl6bmIQ). Briefly, 
ToxProfiler uses a chemical structure-similarity-based read- 
across approach to generate a toxicity target profile for a query 
chemical based on several target representatives that are known 
to interact with the toxicity targets (64 toxicity targets). The 
webtool uses the 2D similarity approach to determine the simi
larity between the query molecule and the reference set of mole
cules. For each query compound, ToxProfiler displays the 
compound name, chemical structure, and a z-score-based toxic
ity target profile bar as output. The z-score values represent the 
level of similarity between the query compound and the target 
representatives. For example, z-score values greater than 1.960 
indicate a high probability of interaction with the toxicity target, 
values less than 1.645 indicate no interaction, and values 
between the 2 extremes (1.645–1.960) indicate an uncertain pre
diction, with a potential for interaction of the query compound 
with the toxicity target.

We used the Transcriptional Regulatory Relationships 
Unraveled by Sentence-based Text mining (TRRUST) database 
(Han et al. 2018) to collect the genes that are driven by the toxic
ity targets identified using ToxProfiler. The TRRUST database is a 
curated repository of human and mouse transcription factors 
and target interactions and contains genes that act as transcrip
tion factors mapped to their target genes and the type of interac
tion (activation, repression, or unknown). Based on the human 
transcription factors and their regulatory interactions, we identi
fied a list of transcription factors and their targeted genes and 
converted them into rat gene symbols using the online DAVID 
gene ID conversion tool (Huang et al. 2008).

Development of an updated rat GSM
We used the rat GSM iRno_ver3 (see Supplementary Models) 
(http://datadryad.org/stash/share/RM9HKUOf8PCb-STlufXehSh 
PuXyTbRenn7i_Cl6bmIQ) that was previously developed by our 
group (Pannala et al. 2020c) and updated it with 2 crucial features: 
(i) we updated the model for stoichiometric consistency with 
respect to proton balance, and (ii) we added new reactions from a 
recently published rat network model, i.e. ratGEM (Wang et al. 
2021). Briefly, to update iRno_ver3, we compared the reaction 
identifiers in the ratGEM model to determine which reactions 
were not present in iRno_ver3 based on the reaction mapping 
information provided in the ratGEM model (Table S2). The ratGEM 
model missed annotation for several reactions that are part of 
iRno_ver3 due to mismatches in the reaction identifier annotation 
or to various synonyms for the metabolites that are part of the 
reactions. We identified the reactions in iRno_ver3 that are part of 
the ratGEM model and included the respective reaction identifiers 
and corrected any mismatches with respect to metabolites and 
GPR associations (Table S3). This exercise allowed us to identify a 
set of provisional reactions that are unique to iRno_ver3 and not 
part of the ratGEM model.

To further differentiate reactions that are unique to each 
model, we compared both models using the name of the reaction, 
the name of the metabolites (and metabolite identifiers) that 
take part in the reaction, and the corresponding GPR associations 
together with the stoichiometry of the reaction under considera
tion. We note that our original rat GSM was built based on neu
tral formulas for the reaction metabolites, leading to several 
mismatches between the 2 models due to proton imbalance. 
Therefore, we first probed the iRno_ver3 model for charge 
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balance and updated all the reactions that had proton imbalance 
(Table S3) and provided charged formulas for all the metabolites 
in the updated model. Subsequently, our comparison yielded 
reactions that are unique to the ratGEM model, so we added 
them into our iRno_ver3 model (Table S3). To add these reac
tions, we converted all the metabolite and gene identifiers for 
each ratGEM reaction into the iRno_ver3 format and added a new 
metabolite if it did not exist already in the iRno_ver3 model. We 
performed all these operations using the COBRA Toolbox (version 
3.1) for MATLAB (Heirendt et al. 2019) and named the updated 
rat GSM iRno_ver4. We provide our original model as well as the 
updated versions in SBML format as part of the Supplementary 
Models (http://datadryad.org/stash/share/RM9HKUOf8PCb-STluf 
XehShPuXyTbRenn7i_Cl6bmIQ).

Algorithm for data integration and metabolite 
predictions
For the transcriptomics data integration, we used the transcrip
tionally inferred metabolic biomarker response (TIMBR) algo
rithm (Blais et al. 2017). Briefly, the TIMBR algorithm uses the 
GPR relationships in the model to convert the changes in gene 
expression (logarithmic fold-change values) into reaction 
weights. The algorithm first associates default weights with each 
reaction based on whether the reaction was a biochemical, trans
port, or boundary reaction. Next, it multiplies the gene expres
sion value and the default value for reactions that have 
measured gene expression changes in the experimental data. 
Then, TIMBR calculates the global network demand required for 
producing a metabolite in the external serum compartment. 
Here, the objective function minimizes the weighted sum of 
fluxes across all reactions for each condition and metabolite to 
satisfy the associated mass balance and the optimal fraction of 
the maximum network capability to produce that metabolite. 
TIMBR calculates the raw production scores for each metabolite 
in the network for control and exposure conditions, translates 
these values to a z-score value, and represents them as a TIMBR 
z-score for each metabolite. The positive and negative values of 
the TIMBR z-scores indicate the propensity of a metabolite to be 
secreted (increased levels in serum compared with controls) and 
consumed (decreased levels in serum compared with controls), 
respectively (Pannala et al. 2018).

Results
Chemical structure-based analysis reveals gene 
expression patterns predictive of liver toxicity
In this study, we leveraged the HTT S1500þ platform-derived 
whole transcriptomic datasets, obtained from 5-day rat studies, 
to evaluate the predictive capability of changes in liver gene 
expression in response to chemical exposures. The study 
included a diverse set of drugs and environmental chemicals 
that were evaluated for their hepatotoxicity using chronic and 
sub-chronic studies (Gwinn et al. 2020). To understand the poten
tial molecular initiating events by which these chemicals might 
initiate liver injury, we used a chemical-similarity approach 
(ToxProfiler) and evaluated whether the chemical has the poten
tial to bind with any known toxicity targets (including transcrip
tion factors) based on their chemical structure (AbdulHameed 
et al. 2021). Figure 1 shows the ToxProfiler results for all 18 chem
icals in a network diagram with chemical names as nodes and 
their potential toxicity targets shown as edges. The chemicals are 
further divided into non-hepatotoxic and hepatotoxic categories 
based on their prior evidence of hepatotoxicity. Our results 

suggested a clear chemical-protein interaction (indicated with 
solid red line in Fig. 1) for several hepatotoxic chemicals that are 
predicted to interact with nuclear receptors (orange ovals). 
However, we observed that one of the non-hepatotoxic chemicals 
(TBBPA) was also predicted to interact with nuclear receptors, 
whereas 2 hepatotoxic chemicals (PUL and FUR) only showed a 
potential chemical-protein interaction with the nuclear receptor 
family (indicated with a yellow line in Fig. 1). We provide a com
plete list of toxicity targets in Table S4. At least 4 hepatotoxic 
chemicals were predicted to bind to toxicity targets of the andro
gen receptor (AR), estrogen receptors (ESR1 and ESR2), and perox
isome proliferator-activated receptors (PPARA and PPARD). These 
results suggest that the majority of the hepatotoxic chemicals 
bind with a family of nuclear receptors as molecular initiating 
events that drive the subsequent downstream alterations, which 
may lead to a toxic liver injury compared with non-hepatotoxic 
chemicals. These nuclear receptors act as transcription factors 
and modulate the expression of downstream genes.

To further understand the downstream alterations driven by 
the toxicity targets, we collected genes that are modulated by 
these potential molecular initiating events using the TRRUST 
database (Han et al. 2018). Overall, we identified 350 downstream 
genes that are driven by the known transcription factors or toxic
ity targets for which our ToxProfiler analysis showed a chemical- 
protein interaction (Fig. 1; Table S4). We were able to map �265 
toxicity target-driven genes measured in our experimental data 
for each of the 18 chemicals. To understand the overall expres
sion pattern of the mapped genes that indicate molecular initia
tion of toxicity-related processes, we looked at alterations in 
genes that are significantly modulated (FDR<0.1) at the highest 
dose of very toxic chemicals and monitored them at the highest 
dose across all the chemicals using hierarchical clustering.  
Figure 2A shows a clustergram plot of transcription factor-driven 
gene expression profiles at the highest dose of non-hepatotoxic 
(names in light gray on the x-axis) and hepatotoxic chemicals 
(names in dark gray on the x-axis), with their corresponding tox
icity targets indicated on the y-axis. Our chemical-based cluster
ing clearly separated the gene expression responses, with most of 
the non-hepatotoxic chemicals clustered together and away 
from hepatotoxic chemicals. Furthermore, the majority of the 
gene logarithmic fold-change values were downregulated (indi
cated in green) and not statistically significant for non- 
hepatotoxic chemicals, whereas they were upregulated (indi
cated in red) and statistically significant (FDR<0.1) across all the 
hepatotoxic chemicals at the highest dose. However, we did 
observe some exceptions. For example, MTE (non-hepatotoxic) 
and TCCP (hepatotoxic) showed opposite gene expression behav
ior compared with the other chemicals. Although most of the 
hepatotoxic chemicals induced an increase in the fold change of 
these genes, TCCP showed decreased fold-change values for the 
majority of the genes at the highest dose. Similarly, MTE showed 
increased gene fold-change values at the highest dose, whereas 
the other non-hepatotoxic chemicals showed decreased values. 
These results suggest multiple mechanisms that may lead to 
liver toxicity and require further in-depth studies on these indi
vidual chemicals to understand their mechanism of toxicity. We 
provide a complete list of all these genes together with their loga
rithmic fold-change values across all the dose conditions and 
chemicals in Table S5.

Figure 2B shows a violin plot of the distribution of logarithmic 
fold-change values for the toxicity target-driven genes, selected 
as in Fig. 2A, at the highest concentration across all the chemi
cals. The violin plots clearly show that the median value (the 
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white dot in the middle of the distribution) for the majority of the 
non-hepatotoxic chemicals was around zero. A very narrow dis
tribution shape of the data for non-hepatotoxic chemicals GIN, 
BDCA, ACR, and THU indicates that the gene expression changes 
for these chemicals were negligible, indicating no major changes 
in the downstream genes that were driven by the known toxicity 
targets. However, the median of the gene fold-change values was 
slightly shifted to positive values for MTE (�0.11), indicating mar
ginal perturbations in liver processes that are driven by the 
molecular initiating events for this chemical. We observed a sim
ilar behavior for the chemicals EE2 and TBBPA, with gene fold- 
change values indicating a negative shift in the median value 
around −0.13 and −0.19, respectively. In contrast, the median 
and interquartile range values for the hepatotoxic chemicals 
were shifted significantly toward positive values, except for 
TCPP, indicating a clear upregulated behavior. The chemical 
DE71 showed maximum perturbations with median logarithmic 
fold-change values around 0.68, followed by PUL, FUR, FEN, and 
PFOA with values of 0.54, 0.44, 0.4, and 0.38, respectively. These 
results show that for the majority of these hepatotoxic chemi
cals, the toxicity target-driven genes were significantly upregu
lated, leading to potential activation of several molecular 
initiating processes that are involved in liver toxicity.

An updated rat GSM to understand the 
mechanisms of liver toxicity
We expanded our previously developed rat GSM (iRno_ver3) by 
reviewing the literature for evidence of metabolic reactions we 
had not yet captured and adding new metabolites that partici
pated in these reactions (Wang et al. 2021). We converted our 
model to include charge balance for all the metabolic reactions 
and included a new model field with charged formulas for all the 
metabolites. Overall, we corrected 2,099 reactions for charge 

balance and added 4,486 new reactions with 2,669 metabolites 
(of which 933 are unique metabolites) into the updated rat GSM 
(Table S3). We corrected several anomalies: The metabolites phe
nylacetylglycine and chenodeoxycholic acid were duplicated, 
whereas several reactions existed as 2 unidirectional reactions, 
which we converted into a single bidirectional reaction for sim
plicity. Furthermore, based on the literature evidence, we also 
incorporated an additional compartment of inner mitochondrial 
space to accurately represent oxidative phosphorylation-related 
reactions. This curation effort resulted in a new rat GSM 
(iRno_ver4) with 13,043 reactions, 8,425 metabolites, and 3,102 
unique genes (see Supplementary Models). The developed model 
successfully captured several previously defined liver-specific 
metabolic tasks, indicating the model’s capability to simulate 
liver metabolism (Blais et al. 2017). We used this model in our 
subsequent analyses to understand the liver metabolic responses 
by integrating gene expression data from rats exposed to differ
ent drugs and environmental chemicals.

Metabolic genes show distinct expression 
patterns across hepatotoxic chemicals compared 
with non-hepatotoxic chemicals
The S1500þ platform-derived gene expression profiles for each 
chemical contain thousands of genes and provide certain expres
sion features that provide useful information regarding liver tox
icity. However, the rat GSM provides an opportunity to 
understand the liver responses specifically through the lenses of 
metabolic reactions that drive liver metabolism. Therefore, we 
mapped the genes identified in the expression data for all chemi
cals onto the rat GSM, which contains 3,102 unique metabolic 
genes, and looked at how the expression pattern of these mapped 
genes differed between non-hepatotoxic and hepatotoxic chemi
cals. Figure 3A shows a hierarchical clustering plot of logarithmic 

Fig. 1. Chemical structure-based prediction of toxicity target interaction profiles. ToxProfiler predictions for the set of 18 chemicals based on their 
structure as input (SMILES). Each octagon represents a chemical node, and each edge represents a toxicity target for the chemical. Nodes and edges 
connected by a solid red line denote a high probability of binding between the chemical and the toxicity target, and those connected by a yellow line 
indicate a potential interaction. GPCR, G protein-coupled receptor. See Table 1 for the definitions of the 18 chemicals and Table S4 for the complete list 
of toxicity targets and their downstream genes. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

158 | Pannala et al.  

D
ow

nloaded from
 https://academ

ic.oup.com
/toxsci/article/204/2/154/7959537 by U

niform
ed Srvcs U

niv of H
lth Sci user on 26 M

arch 2025

http://datadryad.org/stash/share/RM9HKUOf8PCb STlufXehShPuXyTbRenn7i_Cl6bmIQ
http://datadryad.org/stash/share/RM9HKUOf8PCb STlufXehShPuXyTbRenn7i_Cl6bmIQ
http://datadryad.org/stash/share/RM9HKUOf8PCb STlufXehShPuXyTbRenn7i_Cl6bmIQ


fold-change values of mapped genes that are common at the highest 
dose of very toxic chemicals and monitored at the highest dose across 
all chemicals. We observed a clear separation of hepatotoxic chemical 
responses in our hierarchical clustering, with the majority of the hep
atotoxic chemicals clustered together, except DEHP and TCCP, which 
were clustered close to the non-hepatotoxic chemicals. We observed 
a clear trend in that the majority of the genes were downregulated 
(indicated in green) and not statistically significant for most of the 
non-hepatotoxic chemicals (GIN, BDCA, ACR, and THU) at the highest 
dose level. We observed a similar trend for hepatotoxic chemicals at 
the lower concentrations, however, the trend was reversed as concen
tration increased and the majority of the genes were upregulated at 
the highest dose, indicating potential toxicant-mediated responses 
that may lead to liver toxicity. We could see this behavior more clearly 
in violin plots at the highest dose of each chemical, as shown in  
Fig. 3B. The median values of the distribution of logarithmic fold- 

change values were much higher for hepatotoxic versus non- 
hepatotoxic chemicals, indicating hepatotoxicant-specific metabolic 
responses in the liver. We provide a complete list of all the model- 
mapped genes together with their logarithmic fold-change values 

across all dose conditions and chemicals in Table S6.
To further understand the biological significance of changes 

in these mapped metabolic genes at the pathway level, we per

formed a KEGG pathway enrichment analysis using the genes 
mapped to the metabolic model. Table 1 shows a summary of the 
number of significantly differentially expressed genes (FDR<0.1) 
at the highest concentration or the concentration at which the 

maximum perturbations were observed for each chemical and 
how many of these genes were mapped to the rat GSM. We did 
not find many significant genes for 4 non-hepatotoxic chemicals 
(THU, ACR, EE2, and BDCA), so we omitted them from our KEGG 
pathway enrichment analysis. Figure 4 shows the significantly 

Fig. 2. Alterations in the toxicity target regulated downstream genes that changed significantly (false discovery rate<0.1) at the highest concentration 
of very toxic chemicals and monitored across all 18 chemicals at the highest concentration. (A) Hierarchical clustering of the logarithmic fold-change 
values of genes driven by toxicity targets (labels on the y-axis) at the highest dose based on row-wise clustering across the chemicals. Red and green 
indicate genes that were up- and downregulated, respectively. (B) A violin plot of the distribution of logarithmic gene fold-change values for the toxicity 
target regulated downstream genes for hepatotoxic (chemical names in black) and non-hepatotoxic chemicals (chemical names in light grey). AHR, 
aryl hydrocarbon receptor; AR, androgen receptor; ESR1, estrogen receptor 1; NR3C1, glucocorticoid receptor; PGR, progesterone receptor; PPAR, 
peroxisome proliferator-activated receptors; RXR, retinoid X receptor; VDR, vitamin D receptor. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
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altered metabolic pathways for the rest of the chemicals at the high

est dose or at the maximum gene perturbations as pathway AFC z- 

score values. The colors indicate if the metabolic pathways were 

either upregulated (red) or downregulated (green) compared with 

their control conditions. We observed a distinct pathway alteration 

behavior as several metabolic pathways were upregulated for hepa

totoxic versus non-hepatotoxic chemicals. Specifically, most of the 

hepatotoxic chemicals showed commonalities in the upregulation of 

pentose and glucuronate interconversion, ascorbate and aldarate, 

steroid hormone biosynthesis, fatty acid, arachidonate, linoleic acid, 

alpha-linolenic, glutathione, retinol, and drug metabolism-related 

pathways. We also observed several pathway alterations that are 

common for the chemicals FEN and PFOA as a pair and FUR and PUL 

as another pair. Interestingly, the non-hepatotoxic chemical TBBPA 

showed many pathway alterations that are similar to the hepato

toxic chemicals at the highest concentration, indicating its potential 

for hepatotoxicity.

Rat GSM predicts changes in serum metabolite 
levels using gene expression data
To obtain the alterations in liver metabolism due to toxic chemi

cal exposures at the metabolite level, we used our updated rat 

GSM (iRno_ver4) together with the derived gene expression data 

from HTT S1500þ studies and applied the TIMBR algorithm to 

determine the capability of the rat GSM to predict whether each 

metabolite would be produced or consumed in the serum. Here, 

we used all the genes that are mapped to the model, irrespective 

of whether the gene fold change was statistically significant, to 

make a prediction. Overall, we were able to make TIMBR predic

tions for 1,090 metabolites based on differentially expressed 

genes for each chemical and dose condition. Figure 5A shows a 
hierarchical clustering of all the predicted metabolites at the 

lowest dose across all the non-hepatotoxic chemicals compared 

with the highest dose for the hepatotoxic chemicals. The hier

archical clustering, based on metabolite z-score values, followed 

a similar hierarchy that we observed with respect to alterations 

in metabolic genes in Fig. 3A and clearly separated hepatotoxic 

chemicals from non-hepatotoxic chemicals, with all the non- 

hepatotoxic chemicals at the highest dose level clustered away 

from the hepatotoxic chemicals. We identified a distinct set of 

clustered metabolites for which the model predicted reduced 

TIMBR z-scores, indicating the metabolite was consumed (shown 

in green), for the non-hepatotoxic chemicals but increased 

z-scores, indicating production (shown in red), for the hepatotoxic 

Fig. 3. Alterations in the rat genome-scale metabolic model (GSM) mapped metabolic genes that changed significantly (false discovery rate<0.1) at the 
highest concentration of very toxic chemicals and monitored across all 18 chemicals (see Table 1) at the highest concentration. (A) Hierarchical 
clustering of logarithmic fold-change values of genes that are common for all the chemicals at the highest dose and clustered based on rows. Red and 
green indicate genes that were up- and downregulated, respectively. (B) A violin plot of the distribution of gene fold-change values for the rat GSM 
mapped genes at the highest concentration of non-hepatotoxic (chemical names in light grey) and hepatotoxic chemicals (chemical names in black). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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chemicals compared with their control conditions (Cluster 1). 
Similarly, we identified that a large portion of the metabolites 
(Cluster 2) showed the opposite behavior, with a majority of the 
TIMBR z-scores increasing for non-hepatotoxic compared with 
hepatotoxic chemicals.

To quantify the extent of similarity between the predicted 
responses, we calculated the pairwise Pearson’s correlation coef
ficients of the TIMBR z-scores for the lowest concentrations of 

non-hepatotoxic chemicals compared with the highest concen
trations of hepatotoxic chemicals as shown in Fig. 5B. As 
expected, we observed a very good correlation between metabo
lites predicted for the hepatotoxic chemicals and a negative cor
relation for the non-hepatotoxic chemicals. We observed a 
similar behavior when we looked at the distribution of TIMBR z- 
scores for each chemical at the highest dose (Fig. S2). For the hep
atotoxic chemicals, the violin plots clearly show that the TIMBR 

Table 1. Summary of the number of significantly differentially expressed genes (FDR<0.1) at the highest concentration or the 
concentration at which maximum gene perturbations were observed for each chemical and the number of genes that were mapped to 
the rat genome-scale metabolic model.

Chemical Total  
genes

DEGs  
(FDR<0.1)

Genes mapped  
to iRno_ver4

Mapped DEGs  
(FDR<0.1)

Milk thistle extract (MTE) 11,800 8,646 2,341 1,643
Ginseng (GIN) 11,964 8,200a 2,364 1,681
Bromodichloroacetic acid (BDCA) 11,783 6 2,344 3
Acrylamide (ACR) 11,972 0 2,364 0
α,β-Thujone (THU) 12,028 1 2,370 1
Ethinyl estradiol (EE2) 11,867 87 2,355 36
Tetrabromobisphenol A (TBBPA) 12,228 11,222a 2,395 2,135
Di(2-ethylhexyl)phthalate (DEHP) 11,756 163 2,346 83
Coumarin (COU) 12,035 1,059 2,373 271
Pentabromodiphenyl ether mixture (DE71) 11,364 10,596 2,308 2,095
3,30,4,40-Tetrachloroazobenzene (TCAB) 11,880 219 2,354 61
Hexachlorobenzene (HCB) 11,794 4,272 2,348 693
Methyl eugenol (MET) 11,932 10,457 2,355 2,024
Tris(chloropropyl)phosphate (TCPP) 11,796 9,203 2,352 1,780
Fenofibrate (FEN) 11,650 10,376 2,326 2,033
Perfluorooctanoic acid (PFOA) 11,557 10,330 2,323 2,036
Furan (FUR) 11,993 10,702 2,368 2,002
Pulegone (PUL) 11,735 10,387 2,340 1,908

Names in normal and bold font indicate the chemicals classified as non-hepatotoxic and hepatotoxic, respectively. DEGs, differentially expressed genes; FDR, false 
discovery rate.

a 

Maximum DEGs observed at an intermediate dose.

Fig. 4. Summary of significantly altered metabolic pathways based on genes mapped to rat genome-scale metabolic model (GSM). An aggregated fold- 
change (AFC)-based z-score value was calculated for each pathway based on significantly altered genes (false discovery rate<0.1) mapped to rat GSM 
for each chemical at the highest dose (see Table 1). Red and green indicate significantly up- and downregulated metabolic pathways, respectively. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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z-scores decreased for the majority of the metabolites, with their 
median values well below zero, and increased for only a few 
metabolites. We provide a complete list of predicted metabolites 
together with their TIMBR z-scores in Table S7.

We next looked at how metabolites in the individual pathways 
were altered due to toxic chemical exposures. Since each reac
tion in the rat GSM is classified to one of the subsystems at the 
pathway level, we identified a list of metabolites that participate 
in different metabolic pathways, such as amino acid and lipid 
metabolism, and compiled the TIMBR z-scores for this set of 
metabolites. Figure 6 shows the hierarchical clustering of TIMBR 
z-scores for some of the metabolites at the lowest dose for non- 
hepatotoxic chemicals compared with the highest dose for hepa
totoxic chemicals that participate in amino acid metabolism. 
Interestingly, for most of the amino acid-related metabolites, we 
found that their TIMBR z-scores were decreased for hepatotoxic 
chemicals, indicating their consumption due to toxicant expo
sure, whereas they were increased or unchanged for non- 
hepatotoxic chemicals. In addition, our analysis also indicated a 
dose-dependent response, with several of these metabolites 

initially produced at the lower concentrations but consumed as 
the concentration increased for the hepatotoxic chemicals (Table 
S7).

Similarly, Figure 7 shows the hierarchical clustering of TIMBR 
z-scores for some of the metabolites at the lowest dose for non- 
hepatotoxic chemicals compared with the highest dose for hepa
totoxic chemicals that participate in lipid metabolism (see Table 
S7 for the full list). Unlike the changes observed for amino acid 
metabolism, we found several distinct sets of metabolite clusters 
for lipid metabolism. We were able to identify a set of metabo
lites with an increase in TIMBR z-scores, indicating increased pro
duction in response to toxicant exposures for hepatotoxic 
chemicals, and their response was dose-dependent with a higher 
metabolite production probability at higher toxicant concentra
tions (Fig. 7). We also identified another set of metabolites with 
decreased TIMBR z-scores, indicating their consumption for hep
atotoxic compared with non-toxic chemicals (Table S7). In addi
tion, we observed a similar behavior in several metabolites 
involved in the carbohydrate and nucleotide metabolism path
ways. Overall, these results indicate that the rat GSM can serve 

Fig. 5. Rat genome-scale metabolic model (GSM) predictions of serum metabolite levels based on gene expression changes in rat metabolism caused by 
exposure to the lowest dose levels across the non-hepatotoxic chemicals and to the highest dose level for the hepatotoxic chemicals. (A) Hierarchical 
clustering of transcriptionally inferred metabolic biomarker response (TIMBR) z-score values that are common for all 18 chemicals and clustered by 
both rows (genes) and columns (chemicals). Red and green indicate metabolites that were increased or decreased in serum compared with the control 
groups, respectively. (B) Pairwise Pearson’s correlation coefficients for the altered metabolites at the lowest dose levels across the non-hepatotoxic 
chemicals and at the highest dose level for the hepatotoxic chemicals. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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Fig. 6. Heatmap of amino acid metabolism-related metabolites. Rat genome-scale metabolic model (GSM)-based predictions of serum metabolite levels 
(z-score values) that are part of amino acid metabolism compared at the lowest dose levels across the non-hepatotoxic chemicals and the highest dose 
level for the hepatotoxic chemicals. Red and green indicate metabolites that were increased or decreased in the serum compared with the control 
groups, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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as a computational platform to identify specific sets of metabo

lites that are driven by gene expression changes and can be used 
to differentiate liver-toxic from non-toxic chemical exposures.

Discussion
HTT technologies currently enable us to simultaneously measure 
thousands of different genes in a traditional RNA-seq analysis or 

allow us to measure a short list of curated sets of genes (HTT 

S1500þ) for different chemicals across multiple exposures to 

capture changes at the whole genome level (Gwinn et al. 2020). 
Although such gene lists provide valuable information regarding 
alterations across different phenotypes and play an important 
role in the downstream analysis, they alone cannot elucidate the 
complex mechanisms involved in the perturbations. Toward this 
end, to gain insights into the underlying mechanisms of liver tox
icity induced by various drugs and environmental chemicals, we 
used HTT S1500þ platform-derived whole-genome gene expres
sion changes for different chemicals across multiple conditions 
studied during a 5-day rat in vivo protocol (Gwinn et al. 2020). 

Fig. 7. Heatmap of lipid metabolism-related metabolites. Rat genome-scale metabolic model (GSM)-based predictions of serum metabolite levels 
(z-score values) that are part of lipid metabolism compared at the lowest dose levels across the non-hepatotoxic chemicals and the highest dose level 
for the hepatotoxic chemicals. Red and green indicate metabolites that were increased or decreased in the serum compared with the control groups, 
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The use of similar experimental conditions for all the chemical 
exposures and their separation into non-hepatotoxic and hepato
toxic chemicals allowed us to analyze them together and differ
entiate the non-toxic from the toxic liver responses. We used a 
chemical structure-based toxicity target analysis and identified 
potential toxicity targets in the liver and the corresponding 
downstream genes that elucidate the mechanisms behind the 
liver responses. Furthermore, we used GSMs, which enabled us 
to interpret systemic effects, understand the genotype-to- 
phenotype relationships for injury-specific pathways, and iden
tify the associated metabolite alterations in the serum that can 
differentiate toxic from non-toxic liver responses.

When the liver is exposed to xenobiotics, it undergoes adap
tive responses due to induction of hepatocellular drug metabo
lism following activation of nuclear receptors (Maronpot et al. 
2010). For example, the adaptive responses include regulation of 
gene transcription by the constitutive androstane receptor (CAR), 
the pregnane-X-receptor (PXR), PPARA, or the aryl hydrocarbon 
receptor (AHR) (Mackowiak et al. 2018). These receptors drive 
several downstream genes, including phase I drug-metabolizing 
enzymes, and the intermediate free radical molecules produced 
during this process can cause oxidative stress to hepatocytes, 
leading in extreme cases to cell death. However, more subtle 
manifestations of toxicity often include alterations in crucial 
metabolic pathways, such as fatty acid synthesis and degrada
tion or disruption of bile acid synthesis and excretion, that may 
result in several liver disease endpoints like steatosis, cirrhosis, 
cholestasis, and cancer (Padda et al. 2011; Basaranoglu et al. 
2013; Leung and Nieto 2013).

Our chemical structure-based toxicity target analysis pre
dicted that most of the hepatotoxic chemicals used in our study 
interact with nuclear receptors (Fig. 1). Nuclear receptors govern 
the expression of numerous genes involved in a wide range of 
cellular processes, including cell growth, differentiation, metabo
lism, and stress response. Our results show that out of the 11 
diverse hepatotoxic chemicals used in this study, 6 chemicals 
(DEHP, DE71, TCAB, HCB, FEN, and PFOA) bind to at least one of 
the nuclear receptors (farnesoid X receptor, PXR, CAR, and AHR) 
that control the xenobiotic metabolizing enzymes. In addition, 
most of these chemicals (DEHP, DE71, TCAB, and HCB), along 
with TBBPA, were predicted to interact with AR and ESRs, indicat
ing multiple mechanisms through which these chemicals may 
cause liver toxicity. Indeed, in several studies, AR and ESRs have 
been implicated in the development of chemical-induced hepato
cellular carcinoma (Beck et al. 2016; Kharlyngdoh et al. 2018; Liu 
et al. 2021; Chen et al. 2022). Interestingly, we did not find AR and 
ESR interaction for the chemicals FEN, FUR, and PUL, however, 
FEN along with PFOA and MET were predicted to interact with 
PPAR receptors, indicating that the well-known PPAR signaling 
pathway is a potential mechanism associated with either adap
tive or liver toxicity for these chemicals. Furthermore, we found 
that a substantial number of downstream genes associated with 
many of these transcription factors show a tendency for upregu
lation with different hepatotoxic chemicals, and many of them 
show a dose-dependent behavior (Fig. 2), which indicates that 
they should be tested further to identify them as robust markers 
for the liver toxicity.

To further understand the mechanisms through which these 
chemicals induce liver toxicity, we employed GSMs. These mod
els allow us to pinpoint the genes or proteins of interest that are 
associated with an observed phenotypic response or to character
ize the overall response to an altered state of the system. As part 
of this study, we first developed an updated rat GSM and 

validated its potential to simulate several liver metabolic func
tionalities. The developed model allowed us to identify various 
metabolic genes and pathways in rat metabolism that are specifi
cally associated with liver metabolism (Figs. 3 and 4). 
Interestingly, a majority of these metabolic genes showed a dose- 
dependent upregulation behavior for most of the hepatotoxic 
chemicals, indicating their potential for use in differentiating 
toxic from non-hepatotoxic chemical exposures. A further 
pathway-level examination of the significantly altered genes 
(Table 1) indicated that hepatotoxic chemicals modified various 
pathways in carbohydrate, lipid, and amino acid metabolism. 
Specifically, we observed significant upregulations in steroid hor
mone biosynthesis, fatty acid, arachidonate, and linoleic acid 
metabolism across several hepatotoxic chemicals, indicating dis
ruptions in lipid metabolism. Furthermore, we observed a signifi
cant upregulation in glutathione metabolism, indicating 
oxidative stress (Fig. 4). Interestingly, the observed alterations in 
the metabolic pathways qualitatively mimicked the results of 
our chemical structure-based toxicity target analysis results, 
with a majority of the hepatotoxic chemicals showing similarities 
in terms of their pathway alterations for certain groups of chemi
cals. For example, we observed several pathway commonalities 
for the chemicals DEHP, COU, DE71, TCAB, HCB, MET, and FEN. 
Similarly, we observed several pathway commonalities for the 
chemicals FEN and PFOA as they were predicted to interact with 
common toxicity targets. These results further strengthen our 
study and highlight the ability to use a combined approach to 
analyze the mechanisms behind liver toxicity.

Use of GSMs provides additional advantages as they link 
changes in gene expression with the phenotypic changes in terms 
of changes in metabolite levels in the serum, which can be 
detected non-invasively as markers for toxicity. Therefore, we 
integrated the gene expression changes across the 18 chemicals 
from the liver tissue to predict metabolite alterations in the 
serum. Overall, our results showed a dose-dependent reduction 
in a majority of the metabolites in the serum for hepatotoxic 
chemicals compared with non-hepatotoxic chemicals. Indeed, 
we observed a strong positive correlation for the hepatotoxic 
chemicals at the highest exposure levels and a negative correla
tion for the non-hepatotoxic chemicals (Fig. 5). Interestingly, as 
an indication of oxidative stress due to toxic chemical exposures, 
several amino acid-related metabolites were predicted to be con
sumed from the serum, and some of them were precursors to 
glutathione synthesis, one of the clearance mechanisms for toxic 
chemical exposures in the liver (Fig. 6). Furthermore, we identi
fied several clusters of lipid-related metabolites that are dose- 
dependently either decreased or increased for only hepatotoxic 
chemicals, indicating toxic exposure-mediated lipid alterations. 
Therefore, our framework provides a mechanistic way to select a 
set of metabolites that are common to different hepatotoxic 
chemicals and can be utilized in a targeted analysis to determine 
their potential as biomarkers to predict liver toxicity.

Although the GSM approach provided a gene expression- 
based prediction of changes in metabolite uptake and secretion, 
we were not able to validate these predictions due to the absence 
of serum metabolite measurements for any of the chemicals 
under similar conditions. Furthermore, our prior experience with 
validation of GSM model predictions indicated that these 
changes may not be directly comparable with changes in serum 
metabolite concentrations due to lack of clarity in the GSM mod
el’s capability to differentiate tissue metabolites from the serum. 
Although these predictions represent data-driven hypotheses, 
there are multiple factors that need to be considered when 
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testing these predictions in biofluids, like urine and blood. One 
limitation of the current study is that we only consider expres
sion data from liver tissue as the input under a given physiologi
cal nutrient uptake rate derived from literature studies to predict 
the probability of a metabolite being secreted or taken up by the 
liver from the serum. Alterations or variations in nutrient-uptake 
conditions and uptake/secretion from other organs can also 
affect the systemic circulation of metabolites in biofluids. 
Furthermore, our previous GSM studies indicated that gene 
expression changes alone are insufficient to fully account for 
metabolite plasma-level changes and suggest additional regula
tory factors, such as posttranslational modification, gene regula
tion, and metabolite feedback, that ultimately result in the 
observed serum metabolite levels (Pannala et al. 2018). 
Therefore, comparison of TIMBR z-scores with serum metabolite 
concentrations should be interpreted cautiously. Future studies 
that utilize datasets with paired multi-omics datasets to con
strain and validate modeling results can provide a more precise 
hypothesis-generating capability.

In summary, we utilized a combined chemical structure- 
based and systems biology approach to probe alterations in liver 
metabolism that are common to different liver-toxic chemicals 
and identified a targeted set of genes as well as global changes in 
serum metabolite levels. We identified significant commonalities 
across hepatotoxic chemicals reflecting their mechanisms of tox
icity and observed dose-dependent alterations that are maxi
mally correlated at their peak concentration levels. Furthermore, 
we developed the latest version of the rat GSM, and using these 
models, we identified several injury-specific pathways that are 
related to amino acid and lipid metabolism and identified several 
metabolites in serum that are predicted to be significantly 
altered due to toxic chemical exposures. Our results using this 
rat GSM-based approach showed good agreement with the chem
ical structure-based toxicity analysis, indicating its potential to 
serve as a useful tool to integrate high-throughput data from 
multiple toxicants, elucidate the underlying mechanism of toxic
ity, and provide ways to differentiate toxic from non-toxic chemi
cals.
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