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A B S T R A C T

Early diagnosis of liver injuries caused by drugs or occupational exposures is necessary to enable effective
treatments and prevent liver failure. Whereas histopathology remains the gold standard for assessing hepato-
toxicity in animals, plasma aminotransferase levels are the primary measures for monitoring liver dysfunction in
humans. In this study, using Sprague Dawley rats, we investigated whether integrated analyses of transcriptomic
and metabolomic data with genome-scale metabolic models (GSMs) could identify early indicators of injury and
provide new insights into the mechanisms of hepatotoxicity. We obtained concurrent measurements of gene-
expression changes in the liver and kidneys, and expression changes along with metabolic profiles in the plasma
and urine, from rats 5 or 10 h after exposing them to one of two classical hepatotoxicants, acetaminophen (2 g/
kg) or bromobenzene (0.4 g/kg). Global multivariate analyses revealed that gene-expression changes in the liver
and metabolic profiles in the plasma and urine of toxicant-treated animals differed from those of controls, even
at time points much earlier than changes detected by conventional markers of liver injury. Furthermore, clus-
tering analysis revealed that both the gene-expression changes in the liver and the metabolic profiles in the
plasma induced by the two hepatotoxicants were highly correlated, indicating commonalities in the liver toxicity
response. Systematic GSM-based analyses yielded metabolites associated with the mechanisms of toxicity and
identified several lipid and amino acid metabolism pathways that were activated by both toxicants and those
uniquely activated by each. Our findings suggest that several metabolite alterations, which are strongly asso-
ciated with the mechanisms of toxicity and occur within injury-specific pathways (e.g., of bile acid and fatty acid
metabolism), could be targeted and clinically assessed for their potential as early indicators of liver damage.

1. Introduction

The liver is one of the five vital organs necessary for human sur-
vival. Its essential functions include protein synthesis, glucose storage
and synthesis, hormone production, and bile synthesis. Importantly,
because the liver plays a major role in the metabolism and detoxifica-
tion of drugs and environmental chemicals, it is one of the organs most
susceptible to chemical injuries when endogenous defense mechanisms
become overwhelmed and/or contribute to the generation of toxic

metabolites. Several biomarkers are currently used to clinically diag-
nose and monitor liver dysfunction, disease, and incipient failure. The
most commonly used non-invasive biomarkers include two amino-
transferases, alanine aminotransferase (ALT) and aspartate amino-
transferase (AST) (Kim et al., 2008; Pratt and Kaplan, 2000). Other
biomarkers include alkaline phosphatase, total bilirubin, gamma-glu-
tamyl transferase, total serum protein, and prothrombin time
(Kaptanoglu et al., 2017; Ozer et al., 2008; Ramachandran and Kakar,
2009; Shi et al., 2010). Yet, these markers, which are useful in clinical

https://doi.org/10.1016/j.tox.2020.152493
Received 6 March 2020; Received in revised form 1 May 2020; Accepted 8 May 2020

⁎ Corresponding authors at: Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced
Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, USA.

⁎⁎ Corresponding author at: Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA.
E-mail addresses: vpannala@bhsai.org (V.R. Pannala), j.d.young@vanderbilt.edu (J.D. Young), sven.a.wallqvist.civ@mail.mil (A. Wallqvist).

Toxicology 441 (2020) 152493

Available online 30 May 2020
0300-483X/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0300483X
https://www.elsevier.com/locate/toxicol
https://doi.org/10.1016/j.tox.2020.152493
https://doi.org/10.1016/j.tox.2020.152493
mailto:vpannala@bhsai.org
mailto:j.d.young@vanderbilt.edu
mailto:sven.a.wallqvist.civ@mail.mil
https://doi.org/10.1016/j.tox.2020.152493
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tox.2020.152493&domain=pdf


practice, still have notable shortcomings (Senior, 2012). For example,
ALT and AST do not necessarily correlate with outcome in patients with
drug-induced liver injury (McGill et al., 2014), and although typically
elevated only in the late stages of disease, may not be elevated in some
cases despite histological evidence of disease progression (Marcellin
et al., 1997; Nallagangula et al., 2018; Roshan and Guzman, 2014).

Given these limitations, there is a need to identify additional bio-
markers that can be measured in conjunction with, or altogether out-
perform, current biomarkers (Drescher et al., 2019; Eguchi et al., 2014;
McGill and Jaeschke, 2019; Vilar-Gomez and Chalasani, 2018). One
promising approach to identify such biomarkers is to search for in-
dicators of pathophysiological mechanisms (McGill and Jaeschke,
2014). These indicators can appear in circulation early in the course of
tissue injury, because any event that contributes to the damage must
occur before the injury appears. However, for most toxicants, the me-
tabolites they generate and their toxicity mechanisms are unknown.
Although most drugs and environmental chemicals are not intrinsically
toxic to the liver, they can cause injury when they are bioactivated
through the production of secondary metabolites. The liver plays a
critical role in xenobiotic metabolism and promotes the excretion of
these compounds by transforming them into metabolites with increased
water solubility (Sturgill and Lambert, 1997). These functions are car-
ried out in the centrilobular hepatocytes by cytochrome P450 enzymes,
a supergene family of heme-containing, and mixed-function oxidase
enzymes (Watkins, 1992). The reactions these enzymes facilitate have
the potential to induce cellular injury via several toxicity mechanisms.
For example, P450-mediated oxidation of bromobenzene (BB) and
acetaminophen (APAP) generates highly electrophilic intermediate
compounds capable of forming covalent adducts with critical cellular
macromolecules that regulate calcium homeostasis, such as thiol-con-
taining membrane proteins (Bellomo and Orrenius, 1985). The resulting
induction of increased intracellular calcium may be one common
pathway by which such reactions lead to cell death. Furthermore, the
conjugation of secondary toxic metabolites depletes the hepatic glu-
tathione (GSH) pool, thereby reducing intracellular protection against
reactive oxygen species (ROS). This may lead to several deleterious
events that damage the cell, including lipid peroxidation, ATP deple-
tion, and mitochondrial dysfunction (Benedetti et al., 1986; Locke and
Brauer, 1991). Therefore, monitoring changes in injury-specific path-
ways might provide mechanistic indicators that are common to several
liver-specific disease processes.

Several promising candidate mechanistic markers have been iden-
tified based on models of APAP-induced liver injury. For example,
glutamate dehydrogenase (GLDH), a mitochondrial enzyme found pri-
marily in the liver, is more tissue-specific than ALT or AST (Antoine
et al., 2013). Similarly, high-mobility group box 1 (HMGB1), a chro-
matin-binding protein with proinflammatory activity, and keratin-18
(K18), a member of the keratin protein family, have been identified as
blood-based markers that are more sensitive than ALT (Antoine et al.,
2012). Several other studies have reported changes in serum microRNA
(miRNA) concentrations at an early stage of liver injury, which are
more specific to the liver than are changes in ALT (Starkey Lewis et al.,
2011; Thulin et al., 2014). In particular, miR-122 and miR-192 were the
first circulating miRNAs shown to increase after administration of toxic
doses of APAP, initially in mice and soon after in human subjects (Wang
et al., 2009). Although these emerging biomarkers show promise of
early injury detection and organ specificity, they have yet to be in-
troduced into clinical practice. Furthermore, the heterogeneity of re-
sponses to toxic chemicals or drugs among individuals, and the multi-
tude of pathways contributing to hepatic injury, make it unlikely that
any single protein or biomolecule will be sufficient as an early injury
indicator (Campion et al., 2013). Therefore, multiplexed panels of
biomolecules will likely have greater applicability across a wide range
of drug- or chemical-induced liver-injury scenarios (Alfirevic and
Pirmohamed, 2012).

High-throughput technologies, such as transcriptomics and

metabolomics, hold promise for identifying interrelated changes in
multiple genes and metabolites induced by hepatotoxic chemicals
(Beger et al., 2010; Heinloth et al., 2007). The ability to monitor a large
number of interdependent molecules (genes and metabolites) in tissues
and accessible biofluids can potentially provide information on the
underlying mechanisms of distinct forms of liver injury. Creating and
implementing such data- and modeling-driven approaches would en-
able the discovery of early diagnostic markers based on mechanistic
considerations. Because gene-expression changes influence biochemical
reactions, which in turn determine metabolite levels, a systems-level
approach that combines transcriptomics and metabolomics could allow
us to systematically analyze these changes associated with liver in-
juries. However, it remains to be seen whether we can link changes in
mRNA at the transcriptomic level to tissue-specific metabolite altera-
tions detectable in biofluids, such as blood and urine. To this end,
genome-scale metabolic models (GSMs) have proven to be a suitable
platform for integrating high-throughput data to elucidate genotype-
phenotype relationships and identify biological processes associated
with disease states (Baloni et al., 2019; Blais et al., 2017; Gille et al.,
2010; Jerby et al., 2010; Mardinoglu et al., 2014; Pannala et al., 2020;
Rawls et al., 2019; Vinnakota et al., 2019). In our previous work, we
have used GSMs to identify plasma and urine metabolite signatures that
are strongly correlated with gene-expression changes in the liver and
kidneys induced by APAP and gentamicin, respectively (Pannala et al.,
2020, 2019; Pannala et al., 2018). These studies also demonstrate that
GSM analysis of gene expression and metabolite profiles can provide
mechanistic insights into APAP-induced liver toxicity and gentamicin-
induced kidney toxicity.

In this study, we investigated the relationship between the gene-
expression profiles and metabolic phenotypes of two hepatotoxic che-
micals, as measured by RNA-sequencing, metabolic profiling, and
2H/13C metabolic flux analysis. We selected the routinely used hepa-
totoxicants APAP and BB, which deplete cellular GSH pools by con-
jugation reactions and cause cell death (Heijne et al., 2003). Using male
Sprague Dawley rats, we acquired liver and kidney transcriptomes,
plasma and urine metabolomes, and absolute hepatic flux changes in
central carbon metabolism, to capture changes occurring at the systems
level. We then analyzed the experimental data and integrated them
with a multi-tissue GSM to identify the correlation between biochem-
ical markers and gene-expression profiles for the two chemicals. Our
analyses revealed that the expression profiles of liver genes and plasma
metabolites induced by administration of APAP and those induced by
administration of BB were highly correlated (r = 0.90 and 0.60 for the
expression profiles of liver genes and plasma metabolites, respectively)
regardless of the time of assessment (5 or 10 h). Furthermore, our GSM-
based analysis provided several mechanistic insights into the liver
toxicity induced by APAP and BB, with similar genomic perturbations
in several lipid and carbohydrate metabolism pathways, as well as
distinct perturbations in amino acid-related and nucleotide metabolism
pathways. We also identified a potential panel of metabolites that could
be measured in the plasma to detect liver injury in the early stages of
disease progression. Of the total number of metabolites that sig-
nificantly changed in the plasma and mapped to the GSM, for ap-
proximately 60 %, the changes strongly correlated with changes in gene
expression in the liver. Our work suggests that these metabolite al-
terations are strongly tied to the mechanisms of injury and, therefore,
could be targeted and clinically assessed for their potential to serve as
early indicators of liver damage.

2. Materials and methods

2.1. Animals and study design

We carried out the experiments in accordance with the Guide for the
Care and Use of Laboratory Animals of the United States (U.S.)
Department of Agriculture and the National Institutes of Health, after
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obtaining protocol approval from the Vanderbilt University
Institutional Animal Care and Use Committee and the U.S. Army
Medical Research and Development Command Animal Care and Use
Review Office. We purchased male Sprague Dawley rats at 10 weeks of
age (approximately 280–320 g) from Charles River Laboratories
(Wilmington, MA) and housed them under environmentally controlled
conditions (12:12-h light-dark cycle at 23 °C). We gave the rats free
access to water and a commercially available rodent diet, Formulab
Diet 5001 (LabDiet, Richmond, IN), and allowed them to acclimatize to
the housing conditions for a week. Seven days before each experiment,
we anesthetized the rats with isoflurane and performed a catheter im-
plantation surgery for sample collection. We refer the reader to details
of this procedure in our recent publications (Pannala et al., 2020, 2019;
Pannala et al., 2018).

2.2. Preliminary studies for determining appropriate dose and time of
assessment

Two days before each study, we moved the rats from their regular
housing cages to metabolic cages (Harvard Apparatus, Holliston, MA).
To determine the appropriate dose of BB and the time of assessment
after exposure, following an initial collection of blood, we administered
to rats either vehicle (5 mL/kg of corn oil, n = 4) or BB (0.2, 0.4 or 0.6
g/kg, n = 4 per dose) by gavage at 7 a.m. Subsequently, we collected
blood and accumulated urine samples at 11 a.m., 3 p.m., and 7 p.m. on
the first day, and then at 7 a.m., 11 a.m., 3 p.m., and 7 p.m. on the
second day. During the study period, animals were allowed access to
water and food ad libitum (Fig. 1A). To evaluate liver injuries, we
measured the plasma levels of ALT and AST using the corresponding
activity assay kits (Sigma-Aldrich, St Louis, MO). Similarly, to evaluate
kidney injuries, we measured kidney-injury molecule-1 (KIM-1) using
the KIM-1 Rat ELISA kit (Abcam Inc., Cambridge, MA). We used a two-
way analysis of variance method to compare mean differences between
the dose and time points and to understand if there is an interaction
between dose and time for the ALT and AST measurements.

We included some results from a previous APAP study (Pannala
et al., 2019), in which following an initial collection of blood, we ad-
ministered to rats either vehicle (6 mL/kg of 50 % polyethylene glycol,
n = 6) or APAP (1 or 2 g/kg, n = 6 per dose) by gavage at 7 a.m. We
then collected samples of blood and accumulated urine at 5 p.m. on the
first day, and then at 7 a.m. and 5 p.m. on both the second and third
days. During the study period, animals were allowed access to water
and food ad libitum (Fig. 1B).

2.3. Studies for measuring changes in gene-expression and biofluid
metabolite profiles

Based on the results of the dose-response study, we selected 0.4 g/kg
and 2 g/kg as the appropriate doses for BB and APAP, respectively, and
two assessment times after exposure, one short (5 h, n = 8) and the
other long (10 h, n = 8), to obtain transcriptomic and metabolomic
data (Fig. 1C). For each study, following an initial collection of blood,
we gave animals either vehicle or one of the toxicants (BB or APAP) at 7
a.m., and then moved them to new housing cages where they could
access water ad libitum but not food. We collected blood samples from
the 5-h study at 12 p.m. and from the 10-h study at 5 p.m., centrifuged
the collected samples immediately, and froze the separated plasma
samples on dry ice. We collected urine samples directly from the
bladder and froze them immediately on dry ice. Subsequently, we an-
esthetized these animals with an intravenous injection of sodium pen-
tobarbital through the jugular vein catheter, and then immediately
subjected them to a laparotomy. We removed the liver and kidneys and
froze them using Wollenberger tongs precooled in liquid nitrogen. The
sample collection process required only seconds. Prior to analyses, we
stored the plasma, urine, and organ samples in a −80 °C freezer.

2.4. Studies for measuring metabolite flux

At 7 a.m. on the day of the study, we administered either BB (0.4
mg/kg, n = 8) or vehicle (corn oil, 5 mL/kg, n = 8); for the APAP
study, we administered either APAP (2 g/kg, n = 8) or vehicle (6 mL/
kg of 50 % polyethylene glycol, n = 8) (Fig. 1D). We then transferred
the animals to new housing cages, where they were allowed access to
water ad libitum but not food. At 12:50 p.m., we anesthetized the ani-
mals with isoflurane and, during this short period of anesthesia (ap-
proximately 5 min), collected 200 μL of arterial blood through the
carotid artery catheter to determine the natural isotopic abundance of
circulating glucose, after which we subcutaneously administered a
bolus of [2H2] water (99.9 %) containing 0.9 % sodium chloride to
enrich total body water to 4.5 %. After they had recovered from an-
esthesia, we placed the rats in bedded containers without food and
water, and then connected them to sampling and infusion lines. At 1
p.m. (i.e., 6 h after toxicant administration), we delivered [6,6-2H2]
glucose (80 mg/kg prime +0.8 mg/kg/min infusion) as a prime-con-
stant infusion into the systemic circulation through the jugular vein
catheter for the duration of the study. Starting 120 min after the [2H2]
water bolus, we delivered sodium [13C3] propionate (99 %) as a prime-
constant infusion (110 mg/kg +5.5 mg/kg/min infusion). We prepared
all infusates in a 4.5 % [2H2] water-saline solution unless otherwise
specified, and obtained stable isotopes from Cambridge Isotope La-
boratories (Tewksbury, MA). At each of three time points during the
last 20 min of the tracer-infusion period (100, 110, and 120 min from
the start of the infusion), we collected a 300-μl arterial blood sample in
an EDTA-coated tube. We centrifuged the collected blood samples im-
mediately to isolate plasma samples, which we stored at −80 °C prior
to any glucose derivatization and gas chromatography-mass spectro-
metry (GC–MS) analysis. Immediately after collecting the final steady-
state sample, we quickly euthanized the rats by injecting sodium pen-
tobarbital through the carotid artery catheter. We collected post-study
samples as described in the previous section.

2.5. Preparation of glucose derivatives and GC–MS analysis

We divided the plasma samples into three aliquots and derivatized
each separately to obtain di-O-isopropylidene propionate, aldonitrile
pentapropionate, and methyloxime pentapropionate derivatives of
glucose. To prepare di-O-isopropylidene propionate, we precipitated
proteins from 20 μL of plasma using 300 μL of cold acetone, and then
evaporated the protein-free supernatant to dryness in screw-cap culture
tubes. Derivatization proceeded as previously described (Antoniewicz
et al., 2011) to produce glucose 1,2,5,6-di-isopropylidene propionate.
For aldonitrile and methyloxime derivatization, we precipitated pro-
teins from 10 μL of plasma using 300 μL of cold acetone and evaporated
the protein-free supernatants to dryness in microcentrifuge tubes. De-
rivatizations then proceeded as described previously (Antoniewicz
et al., 2011) to produce glucose aldonitrile pentapropionate and glucose
methyloxime pentapropionate. We evaporated all derivatives to dry-
ness, dissolved them in 100 μL of ethyl acetate, and transferred them to
gas chromatography (GC) injection vials with 250-μl glass inserts for
GC–MS analysis. Subsequently, we performed GC–MS analysis using an
Agilent 7890A GC system with an HP-5 MS capillary column (30 m
×0.25 mm ×0.25 μm; Agilent Technologies, Inc., Santa Clara, CA)
interfaced with an Agilent 5975C Mass Spectrometer as previously
described (Pannala et al., 2020, 2019).

2.6. 2H/13C metabolic flux analysis (MFA)

We employed the in vivo MFA methodology described previously
(Hasenour et al., 2015; Pannala et al., 2018; Vinnakota et al., 2019).
Briefly, we constructed a reaction network using the INCA software
package (Young, 2014) and defined the carbon and hydrogen transi-
tions for biochemical reactions linking hepatic glucose production and

V.R. Pannala, et al. Toxicology 441 (2020) 152493

3



its associated intermediary metabolic reactions. INCA relies on the
elementary metabolite unit method to simulate mass isotopomer dis-
tributions of measured metabolites and to regress the metabolic net-
work model to fit the experimental measurements. We estimated the
flux through each reaction relative to citrate synthase (fixed at 100) by
minimizing the sum of squared residuals (SSRs) between the simulated
and experimentally determined mass isotopomer distributions of the six
fragment ions previously described, and repeated this process 50 times
by randomizing the initial values. We iteratively adjusted the flux
parameters of the model using a Levenberg–Marquardt algorithm until
we obtained optimal agreement with experimental data. We used the
chi-square test to assess goodness-of-fit, and computed 95 % confidence
intervals (CIs) by evaluating the sensitivity of the SSRs to variations in
flux values (Antoniewicz et al., 2006). The average SSR of each ex-
perimental group (APAP control: 22.69± 1.83; APAP: 27.73± 2.17;
BB control: 33.64±1.65; BB: 32.77± 1.55) fell within the 95 % CI
[13.8, 41.9] of the corresponding chi-square distribution with 26 de-
grees of freedom (i.e., the regressions were overdetermined by 26

measurements). We converted the relative fluxes to absolute values
using the known [6,6-2H2] glucose infusion rate and rat weights, and
then averaged the flux estimates for the steady-state samples to obtain a
representative set of values for each rat.

2.7. Metabolomic analysis

We carried out sample preparation at Metabolon, Inc. (Durham,
North Carolina), in a manner similar to a previous study (Hatano et al.,
2016). Briefly, this involved subjecting individual samples to methanol
extraction and then splitting them into aliquots for analysis by ultra-
high performance liquid chromatography/MS (UHPLC/MS). The global
biochemical profiling analysis comprised four unique arms: a reverse-
phase chromatography positive ionization method optimized for hy-
drophilic compounds (LC/MS Pos Polar), a corresponding method for
hydrophobic compounds (LC/MS Pos Lipid), reverse-phase chromato-
graphy with negative ionization conditions (LC/MS Neg), and a hy-
drophilic interaction liquid chromatography (HILIC) method coupled to

Fig. 1. Protocol to determine toxicant dose and time points to collect samples after exposure, and experimental design to measure early perturbations in rat
metabolism. Schedule for (A) bromobenzene (BB) or (B) acetaminophen (APAP) administration by oral gavage and collection of blood, accumulated urine, and tissue
samples for the preliminary studies. C) Experimental design to measure transcriptome and metabolome data. Before the experiment, we catheterized the rats and
allowed them to recover for 1 week. At 7 a.m. on the day of sample collection, the rats received either BB (0.4 g/kg, n = 8) or APAP (2 g/kg, n = 8) while their
corresponding controls received corn oil (for the BB study) or 50 % polyethylene glycol (for the APAP study; n = 8 each). Subsequently the collection of blood, urine,
and tissue samples occurred at 12 p.m. for the 5-h study and 5 p.m. for the 10-h study. D) Design of isotope tracer labeling study to measure absolute fluxes in central
carbon metabolism. Rats received either BB (0.4 g/kg, n = 8) or APAP (2 g/kg, n = 8) at 7 a.m., while their corresponding controls received either corn oil or 50 %
polyethylene glycol (n = 8 each). Isotope tracer infusions began at 1 p.m. Blood sample collection occurred at 5 p.m. to obtain the isotope-labeling measurements
required for metabolic flux analysis.
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negative ionization (LC/MS Polar) (Evans et al., 2014). All methods
alternated between full scan MS and data-dependent MSn scans. The
scan range varied slightly between methods but generally covered
mass-to-charge (m/z) values between 70 and 1000. The identification of
metabolites involved automated comparison of the ion features in the
experimental samples to those of a reference library of chemical stan-
dard entries, which included retention time, m/z, preferred adducts, in-
source fragments, and associated MS spectra, followed by curation via
visual inspection for quality control using software developed at Me-
tabolon. Identification of known chemical entities was based on com-
parison with metabolomic library entries of purified standards
(Dehaven et al., 2010).

We performed two types of statistical analyses: 1) significance tests
and 2) classification analyses. For all statistical analyses, which were
based on log-transformed data, we used ArrayStudio and customized
programs in R (http://cran.r-project.org). Following log transformation
and imputation of missing values (if any) with the minimum observed
value for each compound, we used Welch’s 2-sample t-test to identify
biochemicals that differed significantly (p<0.05) between experi-
mental groups. We estimated the false discovery rate (FDR: q value) to
correct for multiple comparisons.

2.8. RNA isolation, sequencing, and analysis

Because the kidneys are histologically heterogeneous, we powdered
frozen whole kidney samples in liquid nitrogen. We isolated total RNA
from the liver and powdered kidneys using TRIzol Reagent (Thermo
Fisher Scientific, Waltham, MA) and the direct-zol RNA MiniPrep kit
(Zymo Research, Irvine, CA). Subsequently, we submitted the isolated
RNA samples to the Vanderbilt University Medical Center VANTAGE
Core (Nashville, TN) for RNA quality determination and sequencing.
Following total RNA quality assessment using a 2100 Bioanalyzer
(Agilent), we used at least 200 ng of DNase-treated total RNA of high
integrity to generate poly-A-enriched mRNA libraries using KAPA
Stranded mRNA sample kits with indexed adaptors (Roche,
Indianapolis, IN). We then assessed the quality of the libraries using a
2100 Bioanalyzer (Agilent) and quantitated them using KAPA library
Quantification kits (Roche), respectively. We subjected the pooled li-
braries to 150-bp paired-end sequencing for the BB study
(NovaSeq6000; Illumina, San Diego, California) and 75-bp single-end
sequencing for the APAP study (HiSeq3000; Illumina, San Diego,
California) according to the manufacturer’s protocol. We used
Bcl2fastq2 Conversion Software (Illumina) to generate de-multiplexed
Fastq files.

We used the RNA-sequencing data analysis tool Kallisto for read
alignment and quantification (Bray et al., 2016). Kallisto pseudo-aligns
the reads to a reference, producing a list of transcripts that are com-
patible with each read while avoiding alignment of individual bases. In
this study, we pseudo-aligned the reads to the Rattus norvegicus tran-
scriptome (Rnor_6.0) downloaded from the Ensembl website
(Cunningham et al., 2019). Kallisto achieves a level of accuracy similar
to that of other competing methods, but is orders of magnitude faster.
Its speed allows for the use of a bootstrapping technique to calculate
uncertainties of transcript abundance estimates by repeating the ana-
lyses after resampling with replacement. Here, we employed this
technique to repeat the analysis 100 times. The raw and processed RNA-
seq data, which we have deposited in NCBI’s Gene Expression Omnibus
(GEO) database, are available under series accession number
GSE148853.

To identify differentially expressed genes (DEGs) from transcript
abundance data, we used Kallisto’s companion analysis tool Sleuth,
which uses the results of the bootstrap analysis during transcript
quantification to directly estimate the technical gene variance for each
sample (Pimentel et al., 2017). Briefly, we first prepared an auxiliary
table that describes the relationship between the Kallisto-derived
abundance files to control and treatment samples and constructed a

Sleuth object, which stores not only information about the experiment,
but also details of the (full) model to be used for differential testing. We
then performed a differential analysis using the Wald test to obtain the
estimated logarithmic fold changes between treatment and control
samples.

2.9. Rat multi-tissue model and algorithm for data integration and
metabolite predictions

For our systems-level analyses, we used a recently developed rat
multi-tissue model comprising the liver and kidney tissues connected
with the blood and urine compartments (Pannala et al., 2020). We then
used the transcriptionally inferred metabolic biomarker response
(TIMBR) algorithm (Blais et al., 2017) to integrate the observed gene-
expression changes in the liver and kidneys into the multi-tissue model
and make predictions for metabolite alterations in the blood and urine.
Briefly, the TIMBR algorithm uses the gene-protein-reaction (GPR) re-
lationships in the model to convert the log2 fold changes of all liver- and
kidney-specific alterations in gene expression into reaction weights. It
then calculates the global network demand required for producing a
metabolite in the blood and urine. The objective function minimizes the
weighted sum of fluxes across all reactions for each condition and
metabolite, to satisfy the associated mass balance and the optimal
fraction of the maximum network capability to produce a metabolite.
Based on values reported in the literature, we used appropriate uptake
and secretion rates for the exchange reactions of the liver and kidney
under short-term fasting conditions (Pannala et al., 2019). Thus, using
the gene-expression changes together with the uptake and secretion
rates, TIMBR provides a production score (z-score) that represents an
increase or decrease for each metabolite in the plasma and urine.

We used the experimental log2 fold changes of significantly altered
(FDR<0.10) plasma and urine metabolites from the global metabolic
profiling data and then compared the corresponding TIMBR production
scores from the multi-tissue GSM at 5 or 10 h after each toxicant
treatment. Here, we considered the metabolite levels as having in-
creased or decreased based on TIMBR production score cut-off values of
greater than 0.1 and smaller than –0.1, respectively. We considered
metabolites with scores between –0.1 and 0.1 as unchanged. To test the
robustness of the results from the multi-tissue model, we randomized
the original gene-expression data by randomly sorting the gene names
and using the resulting data as the input.

2.10. KEGG pathway analysis

To perform gene-enrichment analysis using KEGG pathways, we
used the online tool Database for Annotation, Visualization, and
Integrated Discovery (DAVID) (Huang et al., 2009) and a list of sig-
nificantly altered metabolic genes for each toxicant as the input. In
addition, we used the aggregated fold change (AFC) method (Yu et al.,
2017), which calculates significantly enriched KEGG pathways together
with their direction of change, to ascertain that the results were in-
dependent of the pathway-detection method. Briefly, the AFC method
calculates the mean fold change for each gene and defines the KEGG
pathway score as the average mean fold change of all genes in the
pathway. The sign of the pathway score represents the direction of
regulation, with positive values indicating up-regulation and negative
values indicating down-regulation. Similarly, to understand the biolo-
gical significance of metabolites, we identified those metabolites whose
levels were significantly altered in the blood or urine and which
mapped to the rat GSM as input, and used KEGG pathways to identify
molecular pathways that were significantly enriched. We used the
pathway analysis functionality in MetaboAnalyst 4 (Chong et al., 2018)
to perform this task. Briefly, we selected the Pathway Analysis tab at
MetaboAnalyst (https://www.metaboanalyst.ca/) to upload the com-
pound names (or KEGG IDs) of metabolites detected in the plasma and
urine. We then selected the hypergeometric test and relative
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betweeness centrality to perform over-representation and pathway to-
pology analyses, respectively. We used the KEGG pathways for Rattus
norvegicus to identify significantly altered pathways and the metabolites
within them for further analysis.

3. Results

3.1. Monitoring early toxicant-induced changes in liver and kidney
metabolism

To capture early changes in liver and kidney metabolism, we first
performed dose-response studies and identified the effective dose at
which current markers show abnormalities in liver or kidney function.
Fig. 2A and B show marked elevations in the levels of liver markers ALT
and AST as a function of dose and time after BB exposure, clearly in-
dicating the hepatotoxic nature of BB. However, BB exposure did not
lead to elevations in urine levels of KIM-1 (data not shown). Twenty-
four hours after BB administration, we observed peak ALT and AST
levels that depended on the administered dose, with the highest dose
resulting in the maximum perturbation relative to controls. For both
enzyme levels, a two-way analysis of variance (ANOVA) with dose and
time (from 0 up to 36 h after BB administration) as between-subject
factors revealed a significant main effect of dose [F(3, 96) = 12.5,
p<0.0001 for ALT; F(3, 96) = 40.4, p<0.0001 for AST], main effect
of time [F(7, 96) = 8.98, p<0.0001 for ALT; F(7, 96) = 14.5,

p<0.0001 for AST], and dose by time interaction [F(21, 96) = 3.2,
p<0.0001 for ALT; F(21, 96) = 4.93, p<0.0001 for AST]. In contrast,
for the first four time points (up to 12 h after BB administration), save
for a dose effect on AST level due to a slight difference in the control
compared to the other groups [F(3, 48) = 10.1, p<0.0001], no other
effect was significant. The trend was similar to that for liver markers in
a previous APAP study, although the peak elevations occurred 48 h
after APAP administration (Pannala et al., 2019). In both studies, nei-
ther of these markers showed significant elevation until 12 h after
toxicant administration. Therefore, we selected 5 h and 10 h as the two
early time points to measure changes in gene expression and metabo-
lites after a single dose of either 0.4 g/kg of BB (for the BB study) or 2 g/
kg of APAP (for the APAP study). Furthermore, given that maintaining
glucose hemostasis is one of the major functions of the liver, under
similar conditions we also examined the impact of toxicant exposure on
central carbon metabolism.

3.2. Global gene-expression changes in the liver

Consistent with the well-known hepatotoxic effect of BB, our tran-
scriptomic analysis revealed many significant gene-expression changes
in the liver (Fig. 2C and E) but fewer changes in the kidney (Fig. 2D and
F). Based on an FDR cut-off value of 0.10, we identified 551 (Fig. 2C)
and 1888 (Fig. 2E) genes that significantly changed in the liver at 5 and
10 h, respectively, after BB administration. At each time point,

Fig. 2. Time course of levels of liver-injury
markers in plasma and global changes in gene
expression in the rat liver and kidneys.
Changes in (A) plasma ALT and (B) AST levels
in rats exposed to bromobenzene as a function
of dose. Volcano plots for global gene-expres-
sion changes in the liver and kidney at 5 h (C
and D) and 10 h (E and F) after bromobenzene
exposure. Red and green dots indicate genes
significantly up- and down-regulated [false
discovery rate (FDR)<0.1)], respectively,
with their total numbers shown in the corre-
sponding colors. Black dots represent un-
changed genes. (For interpretation of the re-
ferences to color in this figure legend, the
reader is referred to the web version of this
article.)
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comparable numbers of DEGs were up- or down-regulated, with the 10-
h time point after BB administration resulting in more DEGs with
greater magnitudes of change, indicating a prolonged effect of BB on
the liver. We provide a complete list of all DEGs in Supplementary
Table S1. The results were similar for APAP, although the total number
of DEGs in the liver was higher than for BB, with 1383 and 2551 genes
at 5 and 10 h, respectively (Pannala et al., 2019). Interestingly, in both
studies, several genes that changed significantly by the first time point
(5 h) remained altered at the second time point (10 h), indicating
persistent perturbations in liver metabolism (Supplementary Table S2).

To identify common changes in liver gene-expression profiles be-
tween the two toxicants, we performed hierarchical clustering analysis
and identified the correlation between the observed changes at the two
time points (Fig. 3). As expected, comparisons of gene-expression
changes observed at both 5 and 10 h after toxicant exposure showed
that the similarity between different time points for the same chemical
was greater than the similarity between different chemicals at the same
time point. Furthermore, when we compared the different chemicals,
the gene-expression changes at 10 h were more closely clustered to-
gether than were those at 5 h (Fig. 3A). We observed a low correlation
between APAP and BB (0.36 and 0.41 for the 5- and 10-h study groups,
respectively) when we used all gene-expression changes irrespective of
their significance level (Fig. 3B and C). However, the correlation was
high (0.90 at both time points) when we restricted our analysis to
significant DEGs based on an FDR cut-off value of 0.10 (Fig. 3D and E),
indicating that these toxicants caused similar changes in many genes
involved in liver metabolism.

Overall, we identified 227 genes in the liver that significantly
changed at the 5-h time point in response to both BB and APAP ex-
posure compared to controls (Supplementary Table S2). The majority of
these genes encode proteins associated with metabolic pathways, such
as those of lipid and amino acid metabolism, as well as several cancer
pathways. Of the 227 genes, 29 and 18 were up- and down-regulated,
respectively, with more than a 2-fold change in expression levels. This
list included a diverse set of genes in several pathways, such as those of
the solute carrier family (Scl25a15 and Scl25a32), as well as those in-
volved in pyrimidine (Upp2), amino acid (Got1 and Aacs), and lipid
metabolism (Etnppl). Similarly, at the 10-h time point, we identified 831
liver genes that significantly changed in response to both BB and APAP.
Here, the contribution of genes associated with metabolic and signaling
pathways significantly increased, indicating continued cellular adjust-
ments following toxicant exposure. Compared to the 5-h time point, the
number of common genes at 10 h that were up-and down-regulated
with more than a 2-fold change increased to 45 (from 29) and 54 (from
18), respectively. Interestingly, although several new genes

significantly changed, several top-ranked genes at the 5-h time point
remained significantly changed even at the 10-h time point. Of the
genes commonly activated by BB and APAP, Hmox1 was the top-ranked
upregulated gene, whereas Adamts7 was the highest-ranked down-
regulated gene. Hmox1 plays a major role in redox regulation and the
hepatic response to oxidative stress, whereas Adamts7 is associated with
tissue morphogenesis, pathophysiological remodeling, and in vascular
biology (Bauer and Bauer, 2002; Kelwick et al., 2015; Origassa and
Camara, 2013). Supplementary Table S2 shows a complete list of sig-
nificant DEGs common to both toxicants.

3.3. Changes in absolute fluxes of central carbon metabolism

One of the major functions of the liver is to store glucose as glycogen
under sated conditions and to synthesize it under fasted conditions to
maintain blood glucose levels. Using MFA, we measured major meta-
bolic fluxes in the liver glucose production pathway 10 h after ad-
ministration of BB or APAP. Overall, MFA captured the major metabolic
fluxes induced by either BB or APAP administration, with some dif-
ferences in the pattern of fluxes for the two drugs (Fig. 4A). Compared
to controls, rats given a single dose of APAP (2 g/kg) showed significant
elevations in pyruvate cycling and reductions in glycogenolysis, while
other enzymes in the pathway remained unchanged. In contrast, we
saw no such differences between BB-treated and control animals, in-
dicating that the two toxicants differed somewhat in how they per-
turbed central carbon metabolism in the liver (Fig. 4A).

3.4. Global metabolite changes in accessible biofluids

Global metabolic profiling analysis of plasma and urine samples
revealed significant changes in a number of metabolites at 5 and 10 h
after administration of either BB or APAP. Specifically, compared to
569 and 538 metabolites detected in the APAP study (Pannala et al.,
2019), we identified 735 and 732 metabolites in plasma and urine,
respectively, for the BB study. Based on an FDR cut-off value of 0.1, 446
(Fig. 4B) and 428 (Fig. 4D) metabolites significantly changed (ap-
proximately 60 %) in the plasma at 5 and 10 h, respectively, after BB
administration (Supplementary Table S3). Interestingly, the trend was
similar for metabolite changes in the urine, with approximately 500 (68
%) metabolites significantly changing at both time points (Fig. 4C and
E, Supplementary Table S4). In contrast, for the APAP study, of the total
number of metabolites detected in plasma, approximately 40 % and 30
% significantly changed relative to their controls at 5 and 10 h, re-
spectively. These numbers were further reduced in the urine, with 20 %
significantly changing at both time points (Pannala et al., 2019). These

Fig. 3. Hierarchical clustering and correlation
analyses of differentially expressed genes
(DEGs) that were common between bromo-
benzene (BB) and acetaminophen (APAP). A)
Clustering analysis of all common DEGs (fold
changes relative to controls) in the rat liver 5
or 10 h after BB or APAP exposure. Red and
green bars indicate up- and down-regulated
DEGs, respectively; grey bars indicate un-
changed genes. Correlations between the
logarithmic fold changes of all DEGs induced
by BB and those of all DEGs induced by APAP
at 5 h (B) and 10 h (C) after toxicant exposure,
and corresponding correlations for only sig-
nificant DEGs (FDR<0.1) at 5 h (D) and at 10
h (E). (For interpretation of the references to
color in this figure legend, the reader is re-
ferred to the web version of this article.)
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results indicate that although APAP induced higher numbers of sig-
nificant DEGs in the liver, these alterations may not translate into
measurable changes in metabolite levels in accessible biofluids.

Analyses to identify common changes in the plasma metabolite al-
terations between the two studies revealed that, the similarity was
greater between different time points for the same chemical than it was
for different chemicals at the same time point (Fig. 5A). When we
compared the two chemicals, however, the changes observed at 10 h
were more closely related than were those observed at 5 h (Fig. 5A).

The correlation between the two chemicals increased when we re-
stricted our analysis to only significantly altered metabolites based on
an FDR cut-off value of 0.1 (Fig. 5B at 5 h and 5C at 10 h). We observed
a similar trend for metabolites that changed in the urine, where the data
at the 5- and 10-h time points for each toxicant clustered together
(Fig. 5D). However, the correlations between the significantly changed
metabolites in the urine were lower than those in the plasma (Fig. 5E
and F). Overall, our analysis revealed that the metabolite changes were
better correlated in the plasma (r = 0.61 and r = 0.57) than in the

Fig. 4. Absolute hepatic flux changes induced
by acetaminophen (APAP) and bromobenzene
(BB) in the glucose production pathway and
volcano plots of global changes in plasma and
urine metabolites induced by BB. A) Bar graphs
of flux measurements calculated from meta-
bolic flux analysis 10 h after treatment with
either APAP (striped bars) or BB (white bars)
compared to their vehicle groups (grey or
black bars, respectively). Abbreviations: ALDO,
aldolase; CS, citrate synthase; ENO, enolase;
GADPH, glyceraldehyde-3-phosphate dehy-
drogenase; GLCinf, [6,6]-2H2 glucose infusion;
GK, glycerol kinase; GPI, D-glucose-6-phos-
phate isomerase; G6PC, D-glucose-6-phospha-
tase; IDH, isocitrate dehydrogenase; LDH, lac-
tate dehydrogenase; OGDH, oxoglutarate
dehydrogenase; PC, pyruvate carboxylase;
PCC, propionyl-CoA carboxylase; PCK, phos-
phoenolpyruvate carboxykinase; PK, pyruvate
kinase; PYGL, glycogen phosphorylase; and
SDH, succinate dehydrogenase (#p<0.05,
*value in Hexose units). Logarithmic fold
changes in metabolites induced by bromo-
benzene (relative to those induced by vehicle)
are plotted against false discovery rates (FDRs)
in the plasma after 5 h (B) and 10 h (D) and in
the urine after 5 h (C) and 10 h (E). Red and
green dots indicate metabolites showing sig-
nificant (FDR<0.1) increases and decreases,
respectively. Black dots represent metabolites
showing no significant change. In each panel,
the total numbers of metabolites showing sig-
nificant increases and decreases are indicated
by the corresponding colors. (For interpreta-
tion of the references to color in this figure
legend, the reader is referred to the web ver-
sion of this article.)

Fig. 5. Hierarchical clustering and correlation
analyses of common metabolites detected in
the plasma and urine after exposure to bro-
mobenzene (BB) or acetaminophen (APAP).
Clustering analysis of all common metabolites
(fold changes relative to controls) in the
plasma (A) and urine (D) at 5 or 10 h after BB
or APAP exposure. Red and green bars indicate
elevated and decreased metabolites, respec-
tively; grey bars indicate unchanged metabo-
lites. Correlations between the logarithmic fold
changes of common metabolites significantly
altered [false discover rate (FDR)< 0.1)] by
BB and those significantly altered by APAP at 5
or 10 h after exposure in the plasma (B and C,
respectively) and in the urine (E and F, re-
spectively). (For interpretation of the refer-
ences to color in this figure legend, the reader
is referred to the web version of this article.)
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urine (r = 0.44 and r = 0.53) at both time points.
We identified 121 plasma metabolites that changed significantly in

both studies at 5 h (Supplementary Table S5). A majority of these
metabolites belonged to the lipid, amino acid, and nucleotide meta-
bolism pathways, among others. In particular, several metabolites of
branched chain amino acids (BCAAs), such as N-acetylisoleucine, N-
acetylleucine, and N-acetylvaline, as well as several metabolites in-
volved in lipid metabolism, such as 11-dehydrocorticosterone, doc-
osapentaenoate, margarate, corticosterone, and mead acid, increased
significantly in both studies. In contrast, several sulfated metabolites,
such as 3-(3-hydroxyphenyl)propionate sulfate, p-cresol sulfate, and
daidzein sulfate, decreased significantly in both studies. Similarly, at 10
h, 96 plasma metabolites changed significantly in both studies.
Consistent with the changes observed at 5 h, several metabolites in the
BCAA and nucleotide metabolism pathways increased, whereas several
sulfated metabolites decreased, indicating persistent perturbations in
these pathways due to toxicant exposure. In addition, several metabo-
lites in the sphingomyelin metabolism pathway increased significantly.
In contrast to the changes observed in the plasma, few urine metabo-
lites changed in both studies. Supplementary Table S5 shows a com-
plete list of metabolites that significantly changed in both studies.

3.5. Multi-tissue GSMs predict metabolites associated with mechanisms of
toxicity

The global analyses revealed several genes and metabolites that
significantly changed in both studies, along with toxicant-specific
changes. However, these analyses do not provide any mechanistic ex-
planation for the observed changes. Although gene-expression changes
are one of the major drivers, metabolites in biofluids can change due to
several factors, including contributions from all organs involved in their
systemic circulation. Therefore, we used a multi-tissue GSM (Fig. 6A) to
integrate the high-throughput data and simulated the changes in
plasma and urine metabolites based on concomitantly measured gene-
expression changes in liver and kidney tissues. Fig. 6B shows a sum-
mary of the significant alterations that mapped to the GSM from the BB
study. Approximately 1700 and 1800 metabolic genes from the liver
and kidney, respectively, mapped to the GSM at both time points.
Among the former (i.e., the mapped genes in the liver), 116 and 381
changed significantly at 5 and 10 h, respectively (Fig. 6B), indicating
that these genes could potentially drive the metabolite changes in the

plasma and urine. Similarly, of the total metabolites detected in the
global profiling analyses, only ∼30 % mapped to the GSM, with nearly
half changing significantly (Fig. 6C). The coverage was similar for the
APAP study, although the total numbers of metabolites detected in the
plasma and urine were smaller (Pannala et al., 2019).

We conducted systems-level analyses to assess the predictions of the
multi-tissue GSM against the changes observed in the global metabolic
profiling analysis (Tables S3 and S4), and identify metabolites that are
causally related to the gene-expression changes. The multi-tissue GSM
correctly evaluated the direction of change (an increase or decrease) for
approximately 60 % of the mapped metabolites that significantly
changed in both the plasma and urine 10 h after BB exposure (Fig. 6C,
Supplementary Table S6). In contrast, when we provided the GSM with
random gene-expression changes as the inputs, it evaluated the direc-
tion of change correctly for only about 30 % of the same metabolites.
Similarly, at 5 h, the model predicted the direction of change for ap-
proximately 39 % and 58 % of the metabolites that significantly
changed in the plasma and urine, respectively, showing little difference
from the condition where we used random gene-expression changes as
inputs (Fig. 6C, Supplementary Table S6). The systems-level analysis
results for BB resembled the results obtained with APAP, for which the
GSM correctly evaluated 66 % of the plasma metabolites associated
with the gene-expression changes at 10 h but fewer at 5 h (Pannala
et al., 2019). These results for APAP and BB demonstrate that many of
the metabolite changes were correlated with gene-expression changes
in the liver at 10 h, where the number of genes and their magnitude of
change were significant. Furthermore, our model assessments were si-
milar with or without the inclusion of changes in kidney gene expres-
sion, suggesting that most of the observed changes were due to tox-
icant-induced changes in liver metabolism.

3.6. Metabolites associated with mechanisms of liver toxicity

To ascertain possible causality between the gene-expression changes
in the liver and the metabolite changes in biofluids, we focused on
genes associated with metabolic pathways and processes. Fig. 7 shows
genes that changed significantly in both studies, and which are involved
in the metabolism of lipids, carbohydrates, amino acids, nucleotides,
cofactors or vitamins, and xenobiotics. In particular, a majority of the
subordinate pathways in lipid metabolism changed similarly for BB and
APAP at both time points. One exception was the pathway for

Fig. 6. Predictions of metabolite changes
driven by gene-expression changes using multi-
tissue genome-scale models (GSMs). A)
Schematic of a rat multi-tissue GSM that cap-
tures inter-organ connectivity between the
liver and kidneys via blood and urine com-
partments. Solid, dashed, and dashed bidirec-
tional arrows denote the movements of mole-
cules between compartments (uptake,
secretion, and mutual exchange, respectively).
These relationships served as constraints for
the kidney and liver to simulate the metabolite
alterations. Abbreviations: AAs, amino acids;
FAs, fatty acids; and GAA, guanidinoacetic
acid. B) Summary of significant gene-expres-
sion changes in the liver and kidney, and me-
tabolite alterations in the plasma and urine
mapped to the multi-tissue GSM. C) Summary
of model predictions for metabolites in the
plasma and urine based on the integration of
gene-expression changes in the liver and kid-
neys.
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biosynthesis of unsaturated fatty acids, in which many of the involved
genes showed marked downregulation only for BB exposure. Genes in
the glycolysis- and citrate cycle-related pathways of carbohydrate me-
tabolism were differentially regulated for the two toxicants. Similarly,
amino acid, cofactor/vitamin, and nucleotide metabolism also mark-
edly differed between the two toxicants. For example, several genes in
the nucleotide and cofactor/vitamin metabolism pathways were sig-
nificantly downregulated only by APAP. Similarly, many genes in
amino acid biosynthesis pathways showed substantial upregulation
only after APAP exposure. In particular, only APAP exposure led to
upregulation of several genes in the glycine, serine, and threonine/
glutathione metabolism pathways, indicating the extensive utilization
of GSH pools for toxicant clearance.

3.7. Metabolites in highly enriched pathways as indicators of liver toxicity

Based on the predictions of the multi-tissue GSM and pathway en-
richment analysis, we determined highly enriched pathways in liver
metabolism and compiled a plausible panel of significantly altered
plasma metabolites strongly correlated with changes in gene expres-
sion. Tables 1 and 2 show lists of these metabolites in the plasma, which
the multi-tissue model predicted correctly for both APAP and BB stu-
dies. In particular, several plasma metabolites showed opposite re-
sponses in the two studies (Table 1), reflecting the differences observed
in the gene-expression changes in amino acid metabolism. For example,
several metabolites in the arginine and proline metabolism pathways
significantly decreased only after APAP exposure. Similarly, metabo-
lites in the phenylalanine/tyrosine, tryptophan, and lysine metabolism
pathways only increased after BB exposure. Furthermore, metabolites
in the glycine, serine, and threonine metabolism pathway increased
after BB exposure but decreased after APAP exposure, suggesting their
potential to serve as toxicant-specific markers. In contrast to the
changes in amino acid metabolism, plasma metabolite changes in lipid
metabolism showed notable similarities (Table 2). For example, both
toxicants showed increases in stearate and oleate, which are metabo-
lites involved in fatty acid metabolism, as well as metabolites related to
choline and sphingosine in phospholipid metabolism. Similarly, both

toxicants led to reductions of several metabolites involved in bile-acid
metabolism, including glycocholate, chenodeoxycholate, hyodeox-
ycholate, hyocholate, and β-muricholate. These results suggest that the
mechanistic pathways impacted similarly by both toxicants, as well as
the metabolites within them, should be closely scrutinized to identify
potential indicators of liver toxicity.

4. Discussion

The prediction and early diagnosis of liver injuries due to drugs and
environmental factors is critical for ensuring the best possible man-
agement of patients, and for preventing injuries from progressing to
acute liver failure. Accordingly, there is a need to establish non-invasive
markers of liver injuries and elucidate the mechanisms underlying
disease progression. In the present study, we compared the tran-
scriptome and metabolome profiles of rats treated with one of two
classical hepatotoxicants (APAP and BB) and those of healthy controls
under identical experimental conditions. We combined the global pro-
filing analysis with a multi-tissue GSM and elucidated pathways critical
for liver metabolism, which undergo toxicant-mediated perturbations
as early as 5 h after exposure. Our findings included a marked corre-
lation between genes in the liver and metabolites in biofluids, which
were significantly altered in toxicant-treated rats when compared with
healthy controls. Furthermore, GSM-based analysis led to the identifi-
cation of several important metabolic pathways in liver metabolism
that undergo injury-specific alterations shortly after toxicant exposure.
Identification of these injury-specific metabolic pathways, in turn, al-
lowed us to identify several new metabolites in the plasma and urine
with the potential to indicate early perturbations in liver metabolism
and, thereby, detect an impending liver injury. These results demon-
strate the utility of a mechanistic approach to systematically probe
injury-specific alterations in organ metabolism, which could provide an
effective means to identify candidate markers of liver injuries in the
future.

This study represents one of the first toxicogenomics studies to
analyze acute hepatotoxicity at the transcriptomic level using RNA-se-
quencing and global metabolite profiling analysis in accessible

Fig. 7. Summary of significant metabolic
pathways identified using gene-enrichment
analysis for bromobenzene and acet-
aminophen, based on gene-expression changes
in the liver mapped to the multi-tissue GSM.
Metabolic pathways perturbed significantly for
both toxicants are shaded in grey, whereas
those perturbed selectively are shaded in
yellow (based on z-scores from the AFC
method). (For interpretation of the references
to color in this figure legend, the reader is re-
ferred to the web version of this article.)
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biofluids. We integrated the transcriptomic and metabolomic data with
a GSM to increase the sensitivity of detecting hepatotoxicity and eval-
uating relationships between gene-expression and metabolite changes
within and across different hepatotoxicants. We selected the dose and
time points for toxicant exposures so that they elicited no immediate
response but showed marked increases in the levels of current clinical
markers as time progressed. Therefore, our study design provided a way
to probe early molecular perturbations in liver metabolism before they
led to maximal toxicity, as measured by conventional methods.

Consistent with the known hepatotoxic effects of BB and APAP, our
analysis of global changes in genes at the tissue level, together with the
corresponding alterations in biofluids, indicated that these toxicants
primarily affected the liver and not the kidneys. Importantly, despite
differences in the total number of significant DEGs in the liver between
the two studies, the correlations between the DEGs were high at both
time points. Hierarchical clustering analysis revealed that the gene-
expression changes for the 10-h groups were more closely clustered
than were those for the 5-h groups when we compared changes between
the two chemicals. Our results concur with a previous microarray study
in which similar analyses were performed with a large number of he-
patotoxicants, including BB and APAP (Minami et al., 2005). Although
our study differed in experimental setup, dose, time of assessment after
exposure, and platform of detection, we identified several common
genes that were significantly up- or down-regulated similarly across
conditions and toxicants (Supplementary Table S2). For example, the
genes for heme oxygenase (Hmox1), thioredoxin reductase 1 (Txnrd1),
activating transcription factor (Atf), cathepsin L (ctsl), and DNA-da-
mage-inducible transcript 1 (Gadd45a), were commonly altered by

different hepatotoxicants across conditions, suggesting a common me-
chanism of toxicity. In particular, we identified metabolic changes as
early as 10 h after toxicant exposure, which persisted long after liver
injury became evident (48 h after toxicant exposure), as noted in a
previous study (Minami et al., 2005). The results demonstrate that, by
using advanced techniques, we can measure metabolic perturbations
well before injury occurs.

Unlike gene-expression changes in tissues, global metabolic pro-
filing allows non-invasive measurement of hundreds of different me-
tabolites in accessible biofluids using sensitive and specific methods.
Metabolomics has been used to identify markers for disease diagnosis,
disease prognosis, and toxicity assessment, as well as to gain a greater
pathophysiological understanding of the disease (Lin et al., 2011). We
identified significant changes in several plasma and urine metabolites
induced by BB, many of which were also induced by APAP. Some me-
tabolites identified in the fatty acid and amino acid metabolism path-
ways, among others, were consistent with results previously reported
for APAP (Chen et al., 2009; Kumar et al., 2012). Similarly, a global
profiling analysis for BB revealed a large number of plasma and urine
metabolites that significantly changed at both time points. Many of
these metabolite changes in pathways related to glycolysis, and the
metabolism of GSH, amino acids, and lipids, were consistent with
previous observations (Heijne et al., 2005; Waters et al., 2006). Overall,
the number of common metabolites that changed significantly in the
plasma was higher than that in the urine for both toxicants. Thus,
plasma metabolites should be probed in future studies to identify new
indicators of liver toxicity (Fig. 5 and Supplementary Table S5).

Any metabolite discovered in a global metabolic analysis could

Table 1
Significantly altered plasma metabolites in amino-acid pathways based on model predictions at 5 and 10 h after exposure to bromobenzene or acetaminophen.
Metabolites in bold indicate those that changed significantly (FDR<0.1) in both studies.

Metabolic pathway Metabolite log2(fold change)

Bromobenzene Acetaminophen

5 h 10 h 5 h 10 h

Arginine and proline Ornithine 0.20
Proline −0.20 −0.34
Citrulline −0.20
Argininosuccinate −0.36
Ornithine −0.64
trans-4-hydroxyproline −0.36 −0.71
Guanidinoacetate −0.80
5-oxoproline 0.17 0.23
Creatine 0.16 0.37 0.43
Spermidine 0.95 −0.81 1.10
5-methylthioadenosine 0.27
Putrescine 0.28
2-hydroxybutyrate 0.27

Glycine, serine, and threonine Glycine 0.31 0.41 −0.25 −0.36
Sarcosine 0.20 0.36 −0.30
Serine 0.37 0.31 −0.22 −0.42
Glycerate −0.22 −0.30
Dimethylglycine 0.36

Valine, leucine, and isoleucine 3-methyl-2-oxobutyrate 0.30
3-hydroxyisobutyrate 0.57 1.02

Histidine Urocanate 0.40
Methylimidazoleacetic acid −1.10 −1.03

Alanine, aspartate, and glutamate Asparagine 0.19 0.31 −0.36 −0.40
Glutamine 0.13
Alanine −0.14 −0.14
Aspartate −0.38
Glutamate −0.43
1-pyrroline-5-carboxylate −0.67 −0.64
N-acetylaspartate −0.43

Phenylalanine and tyrosine Phenylacetate 1.95
Tryptophan Serotonin 0.54 3.31

Picolinic acid 2.10
Anthranilate 0.57 1.04

Lysine 2-oxoadipate 0.45
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potentially be a new marker. However, to fully explore the capability of
such a metabolite, we need to establish the causality between its change
in response to toxicant exposure and the ensuing injury in the organ of
interest. Therefore, of the hundreds of metabolites that change sig-
nificantly in global metabolic profiling, we need to identify those whose
alterations causally linked to the toxicant’s mechanism of action. Using
a multi-tissue GSM, we identified several metabolites in the plasma and
urine, whose alterations were driven by gene-expression changes that
were commonly induced in the liver by both toxicants (Supplementary
Table S5). By mapping global gene-expression changes to the GSM, we
identified several metabolic genes that participate in various pathways
crucial for liver metabolism (Fig. 7). Fig. 8 summarizes key similarities
and differences in the metabolic pathways perturbed by BB and APAP.
For example, some genes changed similarly for both toxicants (i.e., in
the glycolysis, TCA cycle, and fatty acid metabolism pathways),
whereas several genes involved in glycerophospholipid metabolism
significantly changed only in response to APAP or BB (Fig. 8, top pa-
nels). Specifically, these genes were either up- or down-regulated only
by BB, indicating differences in lipid accumulation between BB toxicity
(AbdulHameed et al., 2019; Sahini et al., 2014) and APAP toxicity,
presumably due to impaired mitochondrial β-oxidation.

One of the common mechanisms through which the liver detoxifies
BB and APAP is the conjugation of GSH, a molecule that acts as a free
radical scavenger (Benedetti et al., 1986; Nelson, 1990; Ramachandran
and Jaeschke, 2018; Thor and Orrenius, 1980). However, an overdose
of BB or APAP depletes GSH pools, leading to an excess of free radical
molecules and, hence, injury. Therefore, cells must actively replenish
their GSH stores by resynthesizing GSH using amino acids (e.g., cy-
steine, glutamate, and glycine) as precursors. Several genes involved in
the metabolism of arginine and proline, as well as cysteine and me-
thionine, changed similarly for both BB and APAP, but not those in-
volved in the metabolism of serine, glycine, and proline (Fig. 8, bottom
panels). In contrast, APAP induced upregulation of genes involved in
the synthesis of glycine, which coincided with significant decreases in
plasma glycine and serine concentrations. These gene and metabolite
alterations involved in the metabolism of serine, glycine, and proline
suggest that, compared to BB exposure, APAP exposure leads to marked
depletion of GSH stores, which results in the upregulation of compen-
satory synthesis pathways for GSH replenishment. Overall, these results
show that BB and APAP exposure, despite commonly inducing changes
in several genes involved in various metabolic pathways, can lead to
different metabolite changes in accessible biofluids.

Table 2
Significantly altered plasma metabolites in lipid-metabolism pathways based on model predictions at 5 and 10 h after exposure to bromobenzene or acetaminophen.

Metabolic pathway Metabolite log2(fold change)

Bromobenzene Acetaminophen

5 h 10 h 5 h 10 h

Fatty acids Arachidonate 0.80 0.34
Palmitate 0.50
4-hydroxy-2-oxoglutarate 0.46
Stearate 0.23 0.50 0.71
Oleate 0.45 0.86
Palmitoylcarnitine 0.59 0.67
Myristic acid 0.34
Linolenate 0.44
EPA 0.98
DHA 0.61
Palmitolate 0.82 0.47
DPA 0.60
16-hydroxupalmitate 0.45
O-acetylcarnitine 0.32
Oleoylcarnitine 0.33 0.54
Stearoylcarnitine 0.51 0.83
Stearidonic acid 0.52
Mead acid 0.97
Caproate −0.49 −0.57
Azelate −1.02 −0.37
Behenic acid −1.78
Butyrate −0.39

Phospholipids, ketone, and sphingolipids Choline 0.16 0.30 0.29
Ethanolamine phosphate 0.16
(R)-3-hydroxybutanoate 0.84 1.50
Acetoacetate 0.86 0.47
Sphingosine 1.35 0.62
Sphingosine-1-phosphate 0.41 0.37
Stearoyl sphingomyelin 0.78 0.32 0.83
Sphinganine-1-phosphate 0.79 1.32

Bile acids Cholate −1.05
Glycocholate −0.64 −2.25
Chenodeoxycholate −1.43 −1.10 −1.64
Deoxycholic acid −0.94
Glycodeoxycholate −1.35
Glycochenodeoxycholate −1.15
Ursodeoxycholate −0.81
Murideoxycholic acid −1.50
Hyodeoxycholate −1.78 −2.94
α-muricholate −1.00
Hyocholate −1.83 −3.64
β-muricholate −0.76 −1.84
Glycohyodeoxycholate −1.73
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Integration of the transcriptomic data together with the network
model allowed us to decipher the metabolites in the plasma and urine
whose alterations strongly correlated with changes in gene expression.
We identified approximately 60 % of the significantly changed meta-
bolites driven by gene-expression changes in both studies
(Supplementary Table S6). Several plasma metabolites related to lipid
metabolism changed similarly in both studies, suggesting common
mechanisms of toxicity. In particular, several metabolites in the bile-
acid pathway, which are more specific to the liver than to the kidneys,
significantly decreased in the plasma at one or more time points in both
studies (Table 2). Interestingly, serum bile-acid profiles have previously
been proposed as markers of liver injury and disease in humans (Luo
et al., 2018), and have been investigated as novel candidate markers of
drug-induced liver injuries (Ma et al., 2019). Overall, our model pre-
dictions provided a set of metabolites strongly correlated with gene-
expression changes, which can be further used to investigate me-
chanism-based indicators of liver injury (Tables 1 and 2).

In summary, we systematically evaluated hepatotoxicant-induced
alterations in the endogenous metabolism of rats and identified global
changes in liver and kidney genes, as well as plasma and urine meta-
bolites. We identified significant correlations between gene-expression
changes in the liver induced by two hepatotoxicants, BB and APAP.
However, the changes in metabolites in accessible biofluids induced by
BB and APAP did not correlate to the same extent as did the changes in
gene expression in the liver. Using a multi-tissue GSM, we identified
injury-specific pathways and metabolites within them whose alterations

were causally related to the mechanism of toxicity. Thus, we identified
several toxicant-specific and common metabolites involved in amino
acid and lipid metabolism, which could serve as potential indicators of
toxicant-induced liver damage. Our results demonstrate that GSMs can
serve as useful tools to integrate high-throughput data from multiple
toxicants, elucidate the underlying mechanisms of chemical-induced
toxicity, and suggest potential strategies to identify new indicators of
organ injury.
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Fig. 8. Schematic representation summarizing
bromobenzene (BB)- and acetaminophen
(APAP)-induced perturbations of various me-
tabolic pathways in the liver of the rat. The
significantly enriched liver-metabolism path-
ways are based on genes significantly altered
10 h after exposure to either BB or APAP.
Arrows indicate the directionality of reactions.
The perturbation of a gene responsible for a
reaction, induced by exposure to BB (triangles)
or APAP (circles), is shown in red [significantly
upregulated, false discovery rate (FDR)< 0.1],
green (significantly downregulated,
FDR<0.1), or black (unchanged). (For inter-
pretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)
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