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A B S T R A C T

Acetaminophen (APAP) is the most commonly used analgesic and antipyretic drug in the world. Yet, it poses a
major risk of liver injury when taken in excess of the therapeutic dose. Current clinical markers do not detect the
early onset of liver injury associated with excess APAP—information that is vital to reverse injury progression
through available therapeutic interventions. Hence, several studies have used transcriptomics, proteomics, and
metabolomics technologies, both independently and in combination, in an attempt to discover potential early
markers of liver injury. However, the casual relationship between these observations and their relation to the
APAP mechanism of liver toxicity are not clearly understood. Here, we used Sprague-Dawley rats orally gavaged
with a single dose of 2 g/kg of APAP to collect tissue samples from the liver and kidney for transcriptomic
analysis and plasma and urine samples for metabolomic analysis. We developed and used a multi-tissue, me-
tabolism-based modeling approach to integrate these data, characterize the effect of excess APAP levels on liver
metabolism, and identify a panel of plasma and urine metabolites that are associated with APAP-induced liver
toxicity. Our analyses, which indicated that pathways involved in nucleotide-, lipid-, and amino acid-related
metabolism in the liver were most strongly affected within 10 h following APAP treatment, identified a list of
potential metabolites in these pathways that could serve as plausible markers of APAP-induced liver injury. Our
approach identifies toxicant-induced changes in endogenous metabolism, is applicable to other toxicants based
on transcriptomic data, and provides a mechanistic framework for interpreting metabolite alterations.

1. Introduction

Acetaminophen (N-acetyl-p-aminophenol, APAP) is a commonly
used analgesic and antipyretic drug, which is safe and effective when
administered appropriately at therapeutic doses. However, an acute
overdose causes liver damage by inducing centrilobular cell death
(Boyd and Bereczky, 1966; Prescott, 1980a). APAP toxicity is the most
frequent cause of acute liver failure in the U.S. and several other
countries (Bunchorntavakul and Reddy, 2013; Lee, 2008), with unin-
tentional overdoses often being more common than intentional ones

(Lee, 2017; Reuben et al., 2016). N-acetylcysteine (NAC), which is
currently the only clinically approved antidote against APAP-induced
liver damage, is most effective when administered immediately after
exposure (Larson, 2007). Therefore, identification of early markers in-
dicative of APAP overdose that can lead to liver damage are of im-
portance for effective therapeutic interventions.

The liver metabolizes APAP, and under normal conditions pre-
dominantly converts it into nontoxic glucuronide and sulfate con-
jugates, which are then safely eliminated by the kidneys in the urine
(McGill and Jaeschke, 2013; Watari et al., 1983). However, depending
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on the dose, a fraction of APAP is converted into a highly reactive in-
termediate metabolite, N-acetyl-p-benzoquinone imine (NAPQI), by
cytochrome P450 (CYP) enzymes (Patten et al., 1993). Glutathione
(GSH) effectively eliminates substantial amounts of NAPQI by con-
jugating it into APAP-cysteine and APAP-mercapturate (Prescott,
1980b). However, during an overdose of APAP, conjugation of glu-
curonide and sulfate becomes saturated and the buildup of NAPQI de-
pletes GSH, which causes further accumulation of NAPQI (Xie et al.,
2015). This leads to excess binding of NAPQI with proteins and sub-
cellular structures, and thereby induces rapid cell death (necrosis). This
in turn, can lead to acute liver failure (Bunchorntavakul and Reddy,
2018; James et al., 2003; Kon et al., 2004).

APAP-induced liver toxicity is diagnosed by evaluating liver func-
tion through serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST). Unfortunately, neither enzyme is an ideal
marker because each lacks specificity. In addition, these enzymes
cannot predict the onset or severity of liver injury because they are
elevated only when pronounced liver injury has already occurred
(Kaplowitz, 2005; Korones et al., 2001; Watkins, 2009). Advances in
high-throughput technologies have paved the way for studying tox-
icant-induced cellular perturbations at the molecular level (tran-
scriptomic and metabolomic changes) to identify toxicant-specific al-
terations of compound-specific modes of action, which may precede
traditional toxicological endpoints (Kroeger, 2006). Indeed, several
studies have evaluated changes in liver gene expression induced by
APAP in rats under various doses and exposure durations and have
provided potential indicators of adverse effects, such as mitochondrial
damage and oxidative stress associated with APAP toxicity (Eakins
et al., 2015; Minami et al., 2005; Morishita et al., 2006; Powell et al.,
2006). Similarly, various studies have identified several endogenous
metabolites in biofluids as potential markers that predict APAP-induced
hepatotoxicity earlier than do clinical chemistry markers (Bhushan
et al., 2013; Kumar et al., 2012; Luo et al., 2014; Sun et al., 2008, 2014;
Yamazaki et al., 2013).

These high-throughput platforms, which generate large volumes of
data, are increasingly being used to search for novel markers and gain a
deeper understanding of the toxic effects of drugs. The power of these
platforms can be further harnessed by concurrently measuring data
from multiple sources and analyzing them together, providing detailed
information about correlations among them and thereby allowing for
further identification of targeted organs, time courses of injury, and
markers. However, it remains a daunting task to integrate these data
into a comprehensive, mechanistic framework, which clarifies how best
to characterize the state of a cell, tissue, or organism in terms of the
underlying biological processes. To this end, genome-scale metabolic
network reconstructions (GENREs) have proven to be a good platform
for integrating high-throughput data to elucidate genotype-phenotype
relationships and identify various biological processes associated with
disease states (Blais et al., 2017; Duarte et al., 2007; Mardinoglu et al.,
2014; Pannala et al., 2018; Shlomi et al., 2009). Moreover, for most
toxicants, the metabolites they generate and the toxicity mechanisms
they engage are unknown; hence, a metabolic network-based approach
that does not rely on knowledge of how CYP450 enzymes metabolize a
toxicant can offer an alternative approach by capturing changes in the
endogenous metabolism. Metabolic network models, which account for
gene-protein-reaction relationships (GPR), offer a way to mechan-
istically incorporate transcriptomic data and thereby predict changes in
endogenous metabolites and their subsequent secretion into plasma and
urine, where they can be detected. Hence, these models provide an
opportunity to distinguish changes in biofluid metabolites that are
strongly associated with tissue-specific gene expression changes from
among all other possible metabolite alterations.

The present study employed an approach that integrated tran-
scriptomic and metabolomic data to examine and improve our under-
standing of early metabolite changes in plasma and urine collected from
rats exposed to APAP. Building on a rat genome-scale model (Blais

et al., 2017; Pannala et al., 2018), we developed a new rat multi-tissue
metabolic model comprising liver and kidney compartments connected
via exchange of metabolites with blood and urine. We integrated high-
throughput data into the multi-tissue model and investigated the me-
tabolic differences in blood and urine between control and APAP-
treated conditions. Integration of transcriptomic data obtained con-
currently from the liver and kidney exposed to APAP suggested that at
least 66% of the significantly changed metabolites in the blood were
strongly correlated with the gene expression changes in the liver. Fur-
thermore, using the metabolic network model together with pathway
enrichment analysis, we observed that most of the genes involved in
glycine, serine, and threonine metabolism were upregulated, suggesting
the use of compensatory pathways for glycine production to keep up
with the synthesis of glutathione that was depleted, owing to the high
dose of APAP. Similarly, many genes involved in pyrimidine metabo-
lism were downregulated, suggesting that APAP-mediated redox im-
balance leads to altered nucleotide metabolism. Finally, using our
computational approach, we identified a potential list of metabolites in
the blood and urine that were strongly associated with gene expression
changes, and which could be further targeted and clinically assessed for
their potential as early indicators of liver damage. As such, our ap-
proach can be used to analyze large-scale high-throughput data ob-
tained from rats exposed to other toxicants [e.g., gene expression data
in the Open TG-Gates database (Igarashi et al., 2015) obtained from rats
exposed to various drugs and chemicals], and provide an initial, hy-
pothesis-based identification of metabolites to be tested in further tar-
geted studies.

2. Materials and methods

2.1. Animal handling and treatment

Male Sprague-Dawley rats (10 weeks of age) purchased from
Charles River Laboratories (Wilmington, MA) were fed with Formulab
Diet 5001 (Purina LabDiet; Purina Miles, Richmond, IN) and given
water ad libitum in an environmentally controlled room, set at 23 °C
and on a 12:12-h light-dark cycle. All experiments were conducted in
accordance with the Guide for the Care and Use of Laboratory Animals of
the U.S. Department of Agriculture, using protocols approved by the
Vanderbilt University Institutional Animal Care and Use Committee,
and the U.S. Army Medical Research and Materiel Command Animal
Care and Use Review Office.

Rats were anesthetized with isoflurane and surgery was performed
7 days before each experiment to implant the catheters for sample
collection (Shiota, 2012). After surgery, the rats were housed in-
dividually. Two days before each study, the rats were moved from their
regular housing cages to metabolic cages (Harvard Apparatus, Hol-
liston, MA). To determine the appropriate APAP dose and time after
exposure, rats were treated with vehicle (6 ml/kg of 50% polyethylene
glycol, n= 6) or either 1 g/kg (n= 6) or 2 g/kg (n= 7) of APAP at
7 a.m. by gavage. Blood and accumulated urine were collected at 7 a.m.
and 5 p.m. daily for 3 days to measure serum ALT and AST levels for the
liver and urine creatine levels for the kidney, to examine their injury
status. Recently we showed that, ALT and AST levels increase markedly
24 h after APAP treatment for the 2 g/kg dose, and that, subsequent
histological analysis at 58 h after treatment indicates extensive liver
injury (Pannala et al., 2018).

Based on the results of these studies, we chose 2 g/kg as the ap-
propriate APAP dose and two time points, 5 h and 10 h after treatment
(n= 8 each), to obtain transcriptomic and metabolomic data.
Following blood collection, animals were given either vehicle (6 ml/kg
of 50% polyethylene glycol) or APAP (2 g/kg) by gavage at 7 a.m. and
moved to new housing cages, where they could access water ad libitum
but not food. At 12 p.m. (the 5-h group) or 5 p.m. (the 10-h group), after
blood was collected from each group, animals were anesthetized by an
intravenous injection of sodium pentobarbital through the jugular vein
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catheter and a laparotomy was performed immediately. Urine samples
were collected directly from the bladder at the two time points. The
liver and kidney were first dissected, and then frozen using
Wollenberger tongs precooled in liquid nitrogen. The collected blood,
urine, and organ samples were kept in a − 80 °C freezer prior to ana-
lyses.

2.2. RNA isolation and sequencing

Because kidney tissue is histologically heterogeneous, the frozen
whole kidney samples were powdered in liquid nitrogen. Total RNA
was isolated from the liver or powered kidney, using TRIzol Reagent
(Thermo Fisher Scientific, Waltham, MA) and the direct-zol RNA
MiniPrep kit (Zymo Research, Irvine, CA). The isolated RNA samples
were then submitted to the Vanderbilt University Medical Center
VANTAGE Core (Nashville, TN) for RNA quality determination and
sequencing. Total RNA quality was assessed using a 2100 Bioanalyzer
(Agilent, Santa Clara, CA). At least 200 ng of DNase-treated total RNA
with high RNA integrity was used to generate poly-A-enriched mRNA
libraries, using KAPA Stranded mRNA sample kits with indexed adap-
tors (Roche, Indianapolis, IN). Library quality was assessed using the
2100 Bioanalyzer (Agilent), and libraries were quantitated using KAPA
library Quantification kits (Roche). Pooled libraries were subjected to
75-bp single-end sequencing according to the manufacturer's protocol
(Illumina HiSeq3000, San Diego, CA). Bcl2fastq2 Conversion Software
(Illumina) was used to generate de-multiplexed Fastq files.

2.3. Analysis of RNA-sequencing (RNA-seq) data

The analysis of RNA-seq data involved two stages: 1) determination
of transcript abundance and 2) determination of differentially ex-
pressed genes (DEGs). To determine transcript abundance levels from
Fastq files, which consist of raw sequence reads, we used Kallisto, a
recently published software tool (Bray et al., 2016). Using this tool, we
first generated a reference transcriptome index from cDNA files based
on the rat genome assembly Rnor6.0, published on ENSEMBL Release
92 (Zerbino et al., 2018). We then determined transcript abundance
levels by pseudoaligning raw sequence reads (single) with the reference
transcriptome index. We used the analysis tool Sleuth (Pimentel et al.,
2017) to investigate differential expression of genes between the two
time points in each study from the transcript abundance levels thus
determined.

To determine statistically significant changes in gene expression
between the control and treatment groups, we used a likelihood ratio
test. We followed this with a Wald test to determine the effect sizes
(analogous to fold-change values) for all genes, and thus obtained effect
sizes for those determined by the likelihood ratio test to have changed
significantly. Genes that changed significantly, and for which the ab-
solute effect size fell within the top 10th percentile, were deemed
biologically significant.

To understand the biological significance of each such gene, we
identified the DEGs derived from Kallisto-Sleuth analyses that mapped
to the rat GENRE, and used KEGG pathways to identify molecular
pathways that were significantly enriched. We used the online tool
Database for Annotation, Visualization, and Integrated Discovery
(DAVID) (Huang et al., 2009) to perform this task.

2.4. Metabolomic analysis

Sample preparation was carried out at Metabolon Inc. (Durham,
NC), in a manner similar to a previous study (Hatano et al., 2016).
Briefly, individual samples were subjected to methanol extraction and
then split into aliquots for analysis by ultrahigh performance liquid
chromatography/MS (UHPLC/MS). The global biochemical profiling
analysis comprised four unique arms, consisting of reverse-phase
chromatography positive ionization methods optimized for hydrophilic

compounds (LC/MS Pos Polar) and hydrophobic compounds (LC/MS
Pos Lipid), reverse-phase chromatography with negative ionization
conditions (LC/MS Neg), as well as a hydrophilic interaction liquid
chromatography (HILIC) method coupled to negative ionization (LC/
MS Polar) (Evans et al., 2014). All methods alternated between full scan
MS and data-dependent MSn scans. The scan range varied slightly be-
tween methods but generally covered 70–1000m/z.

Metabolites were identified by automated comparison of the ion
features in the experimental samples to a reference library of chemical
standard entries. These included retention time, m/z, preferred adducts,
and in-source fragments, as well as associated MS spectra, and curated
by visual inspection for quality control using software developed at
Metabolon. Identification of known chemical entities was based on
comparisons with metabolomic library entries of purified standards
(Dehaven et al., 2010).

Two types of statistical analyses were performed: 1) significance
tests and 2) classification analysis. Standard statistical analyses were
performed in ArrayStudio on log-transformed data. The R program
(http://cran.r-project.org) was used for non-standard analyses.
Following log transformation and imputation of missing values, if any,
with the minimum observed value for each compound, Welch's two-
sample t-test was used to identify biochemicals that differed sig-
nificantly (p < .05) between experimental groups. An estimate of the
false discovery rate (FDR, or q-value) was calculated to take into ac-
count the multiple comparisons that normally occur in metabolomics-
based studies.

To understand the biological significance of metabolites, we iden-
tified those whose levels were altered by APAP exposure and which
mapped to the rat GENRE, and used KEGG pathways to identify mo-
lecular pathways that were significantly enriched. We used the online
tool MetaboAnalyst 4.0 (Chong et al., 2018) to perform this task.

2.5. Development of a multi-tissue rat metabolic model

The original rat genome-scale model was developed to provide a
global description of rat metabolism, without considering tissue-spe-
cific information. In general, because particular cell types in each tissue
do not use the functional capabilities of all metabolic enzymes encoded
in the genome, procedures have been developed to contextualize
genome-scale models into tissue- or cell-specific models (Jerby et al.,
2010; Pannala et al., 2018; Shlomi et al., 2008). Furthermore, to un-
derstand the importance of the tissue specificity of disease processes,
several tissue-specific metabolic reconstructions have been developed
by reducing the genome-scale models, using different algorithmic ap-
proaches based on genomic and proteomic data from the target tissues
(Chang et al., 2010; Gille et al., 2010; Mardinoglu et al., 2013; Opdam
et al., 2017; Schultz and Qutub, 2016; Wang et al., 2012). However,
tissues in multi-cellular organisms are highly interconnected, and in
several disease processes, multiple tissues (e.g., skeletal muscle, liver,
and adipose tissues in insulin resistance leading to type 2 diabetes
mellitus) regulate the secretion of metabolites in the blood. Similarly,
metabolite secretions in the blood and urine due to exposure to a tox-
icant can occur as a consequence of alterations in several tissues. Hence,
we need multi-tissue metabolic network models to interpret biofluid
metabolite changes stemming from both normal and disease-induced
perturbations arising from multiple organs.

Using the updated rat genome-scale model (Pannala et al., 2018),
and physiological uptake and secretion data available through pub-
lished literature (Banta et al., 2007, 2005; Izamis et al., 2011), we
developed metabolic reconstructions for the rat liver and kidney. To
determine the reactions specific to each tissue, we obtained information
on tissue specificity from the gene expression data by evaluating whe-
ther the gene is present or absent in the data based on the TPM (tran-
scripts per million) values (Roux et al., 2017) in our experiments. We
also used baseline expression data on the rat RNA-seq transcriptomic
body map (Yu et al., 2014) downloaded from Expression Atlas
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(Petryszak et al., 2016). Specifically, we used gene expression data from
the liver and kidney of adult rats, which exceeded the expression cutoff
values of 1 TPM to indicate the presence of the gene in the tissue of
concern.

We used the mCADRE algorithm (Wang et al., 2012) to reduce the
rat genome-scale model into tissue-specific models of the liver and
kidney. Using the gene expression data, mCADRE defined a set of core
reactions and pruned all other reactions based on their connectivity to
the core reactions using a confidence score. The algorithm then re-
moved reactions that were not necessary to support the core reaction
set and defined metabolic functionalities of the specific tissue under
reconstruction. We set the algorithm parameters such that no core re-
action could be removed unless it was accompanied by removal of a
large number of reactions with zero-expression evidence. We then
manually curated the developed reconstructions and tested them on the
metabolic functional tasks of the liver (Blais et al., 2017) and kidney
(Supplementary Table S1), using the flux balance approach (Orth et al.,
2010).

Subsequently, we integrated the tissue-specific reconstructions for
the liver and kidney into a multi-tissue model (Fig. 1a). First, we re-
named the reactions and metabolites in each reconstruction for proper
compartmentalization. Then, we constructed new blood and urine
compartments that connected the liver to the kidney as well as the
kidney to the urine compartment. We removed the exchange reactions
in the tissue-specific reconstructions, allowing only gene-associated
transporters and free diffusion for intracellular metabolite transport.
We then added exchange reactions to allow the blood compartment to
exchange metabolites with the external system (i.e., to represent the

exchange of blood metabolites with other organs of the body). We
constructed the kidney exchange reactions with the urine compartment
based on the metabolites identified in the global metabolomics data
obtained as part of this study (Supplementary Table S2). We allowed
metabolite exchange (i.e., both uptake and secretion) between the
blood compartment and the external system, but only metabolite se-
cretion from the urine compartment to the external system. Overall, the
resulting multi-tissue model contained 1982 unique genes and 12,049
reactions, connected by 7042 metabolites. We provide the complete
model in SBML format in the Supplementary Information (iRnoMT-
model).

To evaluate the consistency of the multi-tissue model, we tested it
on three functional tasks at the systems level: excretion of urea and
creatinine in the urine, and production of glucose in the blood. We
tested the capability of the liver to detoxify ammonia (NH3), and to
transport the resulting urea to the blood compartment and then into the
kidney for excretion (Fig. 1b). We achieved this by first blocking the
reactions in the kidney compartment (L-arginine aminohydrolase, EC:
3.5.3.1) that produce urea, and blood exchange of ammonia from the
external system that can lead to urea production. Similarly, for creati-
nine excretion in the urine, we blocked the production of guanidinoa-
cetate in the liver (guanidinoacetate methyltransferase, EC: 2.1.1.2),
because it is produced only in the kidney (Fig. 1c). We then evaluated
the model's ability to produce urea and its ability to produce creatinine
in the urine compartment as the objective functions, given any amino
acid exchange reaction as the input in the absence of all other carbon
sources. Finally, we assessed the ability of the model to maintain blood
glucose by constraining the respective glucose transport reactions for

Fig. 1. A rat multi-tissue metabolic model that captures systems-level functionalities. a) Overall summary of a rat multi-tissue model comprised of liver and kidney
tissues connected via a blood compartment, with the kidney connected to a urine compartment. Physiological uptake and secretion rates and gene expression changes
are supplied as constraints to the model for simulating metabolite alterations in blood and urine. b) Inter-organ connectivity of the excretion of urea in urine.
Schematic representation of urea synthesis in the liver from amino acids (AAs) and ammonia (NH3), followed by its excretion in urine by the kidneys. c) Inter-organ
connectivity of the excretion of creatinine (Crn) in urine. Schematic representation of creatine (Cr) synthesis in the liver from guanidinoacetic acid (GAA), produced
in the kidney by citrulline (Cit) and glycine (Gly). The liver transports Cr back into the blood, where it continuously degrades to Crn, which is subsequently excreted
by the kidneys in urine. d) Inter-organ connectivity of glucose homeostasis under the fasting state. Schematic representation of glucose production in the liver and
kidney from AAs, lactate (Lac), and glycerol (Glyc) under fasting conditions.
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the liver and kidney with the glucose exchange reaction in the blood
compartment as the objective function (Fig. 1d).

2.6. Algorithm for high-throughput data integration and metabolite
predictions

We used the transcriptionally inferred metabolic biomarker re-
sponse (TIMBR) algorithm (Blais et al., 2017) to integrate the observed
changes in liver and kidney gene expression into the multi-tissue model
and make predictions for metabolite alterations in the blood and urine.
Briefly, using the GPR relations in the model, the TIMBR algorithm
converts the log2 fold changes of all liver- and kidney-specific altera-
tions in gene expression into reaction weights. It then calculates the
global network demand required for producing a metabolite in the
blood and urine. The objective function minimizes the weighted sum of
fluxes across all reactions for each condition and metabolite, so as to
satisfy the associated mass balance and an optimal fraction of the
maximum network capability to produce a metabolite. Based on values
reported in the literature, we used appropriate uptake and secretion
rates for the exchange reactions of the liver and kidney under short-
term fasting conditions (Supplementary Table S3).

3. Results

3.1. Rat multi-tissue model captures systems-level functionalities

Here, we developed metabolic network reconstructions for two
major tissue types in the rat: the liver and kidney. We manually curated
and tested the quality of these reconstructions using well-defined tissue-
specific metabolic tasks. The liver reconstruction satisfied all 327 me-
tabolic tasks identified as part of the original rat genome-scale model
(Blais et al., 2017). For the kidney, we assembled a comprehensive
collection of 155 metabolic tasks, each representing a known biological
process (Supplementary Table S1). The kidney reconstruction success-
fully satisfied all 155 functionalities, thereby validating the quality of
the developed tissue-specific metabolic reconstructions we used to
generate the multi-tissue network model (see Methods for a detailed
description of the network reconstruction process).

We assessed the functional capability of the model by testing three
physiologically important metabolic states of rat metabolism that en-
compass both the liver and kidney compartments: excretion of urea in
urine, excretion of creatinine in urine, and production of glucose in the
blood. In the process of urea excretion, excess amino acids in the body
undergo deamination in the liver to be broken down into keto acids,
leaving ammonia as the by-product. While keto acids are used to pro-
duce energy and as substrates for gluconeogenesis, the liver converts
relatively toxic ammonia into relatively less toxic urea, which it re-
leases into the blood. The urea is then removed from the blood as it
passes through the kidneys. To reproduce this scenario in the multi-
tissue model, we used urea production in the urine as the objective
function, while providing AAs or NH3 from blood as input to the model
(Fig. 1b). Our model simulations showed that the reactions responsible
for urea synthesis in the liver and subsequent exchange reactions to
move it to the urine were actively carrying flux, indicating the model's
ability to capture the functional connectivity between the liver and
kidney.

Similarly, creatine is an organic nitrogenous compound that plays
an important role in cellular energy metabolism. However, once crea-
tine is synthesized in the liver and released into the blood, a portion of
it continuously degrades into creatinine, which is eliminated in urine by
the kidneys (Fig. 1c). The multi-tissue model successfully produced flux
distributions satisfying all mass-balanced steady-state assumptions
under these conditions when simulated with the appropriate boundary
conditions. Finally, under fasting conditions, one of the major functions
of the liver and kidneys is to maintain blood glucose concentrations
within a narrow range (Fig. 1d). Although both the liver and kidney

contain gluconeogenesis pathways for this purpose, the contributions
from the kidney are smaller under short-term fasting and increase as the
fasting period increases (Gerich, 2010). The multi-tissue model simu-
lated glucose from both the liver and kidney tissues, given the appro-
priate boundary conditions (e.g., imposing a lower bound constraint on
the transport reactions responsible for glucose secretion into the blood
from both tissues), suggesting the functional integrity of the developed
systems-level model.

3.2. Metabolic changes induced by APAP in the rat liver and kidney

Fig. 2 shows a summary of the APAP-induced changes at the levels
of genes and metabolites. To obtain the gene-level changes in the liver
and kidney, we analyzed the raw RNA-seq data collected from rats
exposed to a single dose of APAP (2 g/kg) and observed for 5 h or 10 h
after treatment. Overall, we identified roughly equal numbers of global
changes (Fig. 2, values not in parentheses) at both time points in the
liver (Fig. 2a) and kidney (Fig. 2b), although the total number of
identified genes was slightly higher for the kidney compared to the liver
(see details in Supplementary Table S4). Furthermore, to differentiate
the genes that drive metabolic reactions from all other genes, we
mapped all of the genes identified in the RNA-seq analysis onto the
multi-tissue model. APAP exposure showed a clear demarcation be-
tween the expression patterns in the liver and kidney when we ac-
counted for the DEGs (FDR < 0.1; Fig. 2, values in parentheses), where
the number of changes in the liver was significantly higher (1383 at 5 h)
than that in the kidney (566 at 5 h). This effect was even more pro-
nounced at 10 h, with far more changes in the liver (2551) than in the
kidney (654)—a result clearly indicating the well-known hepatotoxicity
of APAP. The effect was similar when we differentiated the metabolic
genes from non-metabolic genes in the liver and kidney, by mapping
them onto the multi-tissue model. Interestingly, changes in liver gene
expression induced as early as 5 h after a single dose of APAP, many of
which were apparent even after 10 h, indicated that persistent pertur-
bations in liver metabolism could be major contributors to the meta-
bolite alterations in biofluids.

Global metabolic profiling of plasma and urine samples revealed
significant changes in a number of metabolites at 5 h and 10 h after
APAP administration (Supplementary Tables S2 and S5). Overall, we
identified 569 metabolites in the plasma and 538 in urine. Principal
component analysis performed on both samples showed a clear se-
paration between the control and APAP-treatment groups (results not
shown). Furthermore, to differentiate the metabolites and determine
the causality of these changes in relation to gene-level changes, we
mapped all of the metabolites identified by the metabolic analysis onto
the multi-tissue model. Of the total metabolites detected in the plasma
and urine, we mapped 226 and 197, respectively, onto the model using
KEGG ID annotation and biochemical names. Fig. 2c shows a summary
of the significantly altered blood and urine metabolites (FDR < 0.1)
mapped onto the model, along with their direction of change. These
numbers show that APAP clearly induced more perturbations in the
plasma than in urine.

3.3. Gene expression-induced metabolite changes predicted by a multi-tissue
model

Using the boundary constraints on the uptake and secretion of ex-
change metabolites for the liver and kidney under fasting conditions
(Supplementary Table S3), we integrated the concomitantly measured
APAP-induced gene expression changes in the liver and kidney into the
multi-tissue model with the TIMBR algorithm. TIMBR calculates the
relative propensity score for the production of a metabolite to be ele-
vated or reduced in the blood and urine, based on the gene expression
changes, for all exchangeable metabolites between control and APAP-
treatment conditions (see Methods). We then compared the log2 fold
changes of the metabolites identified from the global metabolic
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profiling analysis (Fig. 1c and Supplementary Tables S2 and S5) with
the model predictions, and assessed how accurate the model was in
predicting the direction of APAP-induced changes in metabolite level.
When we used only the liver compartment by blocking all reactions in
the kidney, the model predicted only 41% and 57% of the plasma
metabolite changes in the correct direction at 5 h and 10 h following
APAP treatment, respectively. However, when we incorporated both
the liver and kidney compartments, the model predictions increased to
50% and 66% at the corresponding time points (Supplementary Tables
S5 and S7). The multi-tissue model also predicted 57% and 48% of the
altered metabolites in the urine compartment accurately at 5 h and 10 h
following APAP treatment. These predictions clearly indicate the im-
portance of multi-tissue models, which show greater concordance with
the data and provide better constraints by capturing the inter-
connectivity between the organs.

To further ascertain whether the gene expression changes were
causally related to the metabolite alterations in the plasma and urine,
we used the DEGs and metabolites mapped onto the model to perform
pathway enrichment analysis. Specifically, we used the significantly
altered genes (FDR < 0.1) from the liver (Fig. 2a) and kidney tissues
(Fig. 2b) and performed gene enrichment analysis using the DAVID web
tool for functional annotation. Our analysis revealed significant per-
turbations induced by APAP (Benjamini p < .1) in many metabolism-
related pathways in the liver at 10 h (Fig. 3). Genes within the nu-
cleotide, carbohydrate, and lipid metabolism pathways were sig-
nificantly altered at both time points, indicating that APAP exposure
induced persistent modifications in these pathways. In contrast, most
genes in the drug and amino acid metabolism pathways were altered
only at 10 h, indicating that APAP metabolism caused excess accumu-
lation of toxic intermediates in the APAP detoxification process leading
to progressive liver injury. A similar analysis using significantly altered
genes in kidney tissue showed that APAP altered only arginine and
proline metabolism, and had a less severe effect on glycerolipid meta-
bolism (data not shown).

After mapping the significantly altered plasma and urine metabo-
lites onto the multi-tissue model, we also performed pathway enrich-
ment analysis, using the MetaboAnalyst platform. This analysis showed
good agreement with the gene enrichment analysis, in that metabolites
in the amino acid, nucleotide, and lipid metabolism pathways were

significantly altered in the plasma and urine (Fig. 4). Specifically, me-
tabolites in the arginine and proline; glycine, serine, and threonine; and
pyrimidine metabolism pathways were significantly altered at both
time points in the plasma (Fig. 4a) and urine (Fig. 4b).

3.4. APAP overdose upregulates glycine, serine, and threonine metabolism
and downregulates pyrimidine metabolism

Using the GPR relationships in the metabolic network model to-
gether with pathway enrichment analysis, we further investigated the
alterations in genes and metabolites at the pathway level in some highly
enriched pathways. Ten hours after APAP treatment, many genes and
metabolites in the glycine, serine, and threonine metabolism pathway
were significantly altered relative to the control treatment (Fig. 5).
Most genes responsible for serine and glycine production (shown in red)
were upregulated, indicating an increased demand for serine and gly-
cine after APAP overdose. The cause for such upregulation can be
readily observed in the reduced levels of serine and glycine (Fig. 5,
green) in the plasma, together with the increase in the metabolite
precursors of choline and dimethylglycine (Fig. 5, red), which are re-
quired for glycine production. Interestingly, the multi-tissue model si-
mulations, which account for the entire network demand to calculate
the propensity of a metabolite to be secreted based on gene expression,
accurately predicted most of these metabolite changes (Fig. 5, stars).

Similarly, we analyzed the genes and metabolites that were mapped
onto pyrimidine metabolism (Fig. 6). Many genes that regulate the re-
actions driving uridine production were significantly downregulated
(Fig. 6, green), together with upregulation of some genes for RNA
synthesis. However, most genes responsible for DNA synthesis were
downregulated, indicating reduced capability after an overdose of
APAP. The multi-tissue model accurately predicted some metabolites
(cytidine, uracil, and 3-ureidopropionate) that increased significantly in
the plasma. We also analyzed glycerophospholipid metabolism (Fig.
S1), as well as arginine and proline metabolism (Fig. S2), to identify
individual changes in the reactions of these pathways, based on a
combination of gene expression and metabolite alterations. Our model
accurately predicted most metabolites in these pathways, indicating
that the metabolites detected in highly enriched pathways correlate
better with the model predictions and, hence, may serve as potential

Fig. 2. Summary of APAP-induced changes in the
metabolism of the liver and kidney of a rat. Venn-
diagrams representing the total number of global
gene expression changes observed in the liver (a)
and kidney (b) at 5 h and 10 h following APAP
treatment, and their mapping onto the multi-tissue
metabolic model. Values in parentheses show the
respective numbers of differentially expressed genes
(FDR < 0.1) for each case. c) Summary of the total
number of metabolites detected in the plasma (569)
and urine (538) metabolic profiling studies, and the
number of significantly altered metabolites
(FDR < 0.1) that were mapped onto the multi-
tissue model, along with their direction of change.
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plasma metabolite markers.

3.5. Metabolites in highly enriched pathways as markers of APAP-induced
liver toxicity

Using our multi-tissue model together with pathway enrichment
analysis, we determined highly enriched pathways and compiled a
plausible panel of significantly altered plasma and urine metabolites
that were strongly correlated with gene expression changes
(Supplementary Table S6). Our multi-tissue model accurately predicted
several metabolites in these pathways that showed a strong correlation
with the gene expression changes. Table 1 shows a potential list of these
metabolites, correctly predicted by the model in the highly enriched
pathways and arranged according to their main and subordinate
pathways. Specifically, we identified several consistently increased
metabolites in the nucleotide and lipid metabolism pathways, and

consistently decreased metabolites in the amino acid and carbohydrate
metabolism pathways (Table 1). Our computational model predicted
most of these metabolites as early as 5 h post exposure, suggesting that
they could serve as early markers of APAP-induced liver damage.

4. Discussion

Multiple studies have investigated the potential of several markers
to identify APAP-induced liver injury. For example, biomarkers such as
APAP-protein adducts can assist in diagnosing the likely cause of liver
injury and severity of overdose several days after exposure (Davern 2nd
et al., 2006). Others, such as, miR-122, full-length cytokeratin-18, and
high mobility group box 1 (HMGB1) protein, are generally considered
indicators of necrotic cell death (Antoine et al., 2009; McGill and
Jaeschke, 2014; Wang et al., 2009; Weemhoff et al., 2017). In addition
to the above markers, previous studies have also analyzed mtDNA,

Fig. 3. Pathway enrichment analysis of significantly altered metabolic genes in the liver. We used the most significantly differentially expressed metabolic genes
(FDR < 0.1) represented in the network model of the liver as input for the functional annotation with DAVID. Significantly enriched pathways are marked as bar
graphs for the 5 h (white) and 10 h (black) time points, as appropriately.
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glutamate dehydrogenase, and nuclear DNA fragments as mechanistic
biomarkers of mitochondrial damage due to APAP overdose (McGill
et al., 2014; Shi et al., 2015). However, most of these biomarkers de-
pend on cell lysis to be detectable in the plasma.

Global metabolic profiling has proven to be highly reliable and re-
producible in detecting molecular perturbations at the cellular level
before increases in AST and ALT are first detected. In numerous studies,
small changes in the physiological processes of cellular metabolism, as
observed in accessible biofluids (e.g., blood and urine), have been as-
signed to a specific toxicological mode of action. In particular, it has
been shown that plasma metabolite changes in amino acids, lipids, and
bile acids, which may be indicative of liver toxicity induced by various
drugs in animal studies, have greater potential for human translation
(Beger et al., 2015; Iruzubieta et al., 2015; Mesnage et al., 2018; Sun
et al., 2014; van Ravenzwaay et al., 2007). Several studies have re-
ported that elevated levels of fatty acids, acylcarnitines, and medium
chain fatty acids in the serum could be potential markers of liver injury
induced by APAP, although they have yet to be demonstrated as sa-
tisfactory indicators of injury progression (Chen et al., 2009; Coen
et al., 2003; Kumar et al., 2012; Luo et al., 2014; Yamazaki et al., 2013).
Similarly, studies employing transcriptomics to analyze the liver toxi-
city of APAP (Beyer et al., 2007; Heinloth et al., 2007, 2004; Kikkawa
et al., 2006) have indicated that the gene expression changes could
discriminate between sub-toxic and toxic doses of APAP examined at
different time points. Furthermore, these gene expression changes

occurred earlier than clinical chemistry markers and were closely cor-
related with these markers at later time points.

Most of the studies described above identified APAP-induced per-
turbations in gene expression at the tissue level and metabolite al-
terations in biofluids. However, the extent to which changes in the
former influence those in the latter has been unclear. In a previous
study using a rat genome-scale metabolic model, we evaluated the
plasma metabolite changes induced by liver gene expression for APAP
(Pannala et al., 2018). Our results indicated that, the model sa-
tisfactorily predicted plasma metabolite changes, suggesting that gene
perturbations in the liver alone could explain a considerable portion of
the metabolite changes and that unexplained changes could be asso-
ciated with contributions from other organs. Furthermore, our analysis
suggested that, plasma predictions could be improved by better phy-
siological bounds, such as the addition of central carbon fluxes as
constraints on the model.

Although APAP is generally known as a liver toxicant, the inter-
mediate free radical molecules, which are generated after APAP is
metabolized in the liver and transported into the blood circulation,
could affect several other organs (Craig et al., 2011; Mirochnitchenko
et al., 1999). Hence, the APAP-induced metabolite changes observed in
biofluids may not reflect changes specific to liver tissues alone or at
least have contributions from the kidney, the organ involved in APAP
elimination in the urine. Furthermore, they are difficult to distinguish
from other pathological factors. Few, if any studies, however, have

Fig. 4. Pathway enrichment analysis of significantly altered metabolites in the plasma and urine. We used the most significantly altered metabolites (FDR < 0.1)
represented in the network model as input to the MetaboAnalyist web tool for pathway enrichment with the rat pathway library, and over-representation and
pathway topology analyses using hypergeometric and relative-betweenness centrality tests, respectively. The most significantly enriched pathways are marked as bar
graphs for the 5 h (white) and 10 h (black) time points, for metabolites detected in the blood (a) and urine (b).
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considered contributions from multiple sources. We tackled this issue
here, by using healthy rats under fasting conditions with corresponding
control groups exposed to a single high dose of APAP (2 g/kg), and by
simultaneously capturing changes in gene expression in the liver and
kidney as well as changes in blood and urine metabolites. Furthermore,
use of our model-based approaches to integrate the metabolic data with
gene expression changes provides added confidence that the identified
candidate markers are specific to APAP-induced changes and may be
detected in, and not influenced by, other pathological conditions.
Building on our metabolic network model of the liver described above,
we developed a multi-tissue model that also includes the kidney and
captures the inter-organ connectivity, to understand the contributions
of each organ to gene expression-induced metabolite changes in bio-
fluids. The extended model successfully accounted for both tissue-level
metabolic functions (Supplementary Table S1) and various systems-
level tasks (Fig. 1) (e.g., urea/creatinine excretion in urine, glucose
production in the blood) encompassing both liver and kidney tissues. It
also predicted metabolite alterations in the blood more accurately than
did the liver-only metabolic network model. These results suggest that
the multi-tissue model provides the ability to predict altered metabolite
levels in both the blood and urine, given gene expression changes in the
liver only, the kidney only, or both organs.

Consistent with the notion that APAP induces liver toxicity, the
metabolic changes in the liver were more pronounced than those in the
kidney (Fig. 2). Approximately 10% and 20% of the genes were sig-
nificantly and differentially expressed in the liver at 5 h and 10 h, re-
spectively, compared to ~5% at both time points in the kidney. In

agreement with the gene expression changes, global metabolic analysis
revealed significant changes in many metabolites in the plasma and
urine. However, we could not attribute any of these changes to the gene
perturbations in the liver. Thus, we used the multi-tissue model and
simultaneously integrated the gene expression data from the liver and
the kidney, and predicted the associated changes in plasma and urine
metabolites. Interestingly, a comparison of model predictions with the
significantly changed metabolites (Fig. 2c) in the plasma indicated that
the multi-tissue model provided better predictions at both time points
(50% and 65% at 5 h and 10 h, respectively) than did the liver-only
model. These results suggest that the multi-tissue model, which cap-
tures the inter-organ connectivity between the liver and kidney, is
physiologically well constrained. Furthermore, the model allowed us to
predict APAP-induced metabolite changes in the urine, which was not
possible using the liver-only model. The level of agreement between the
model predictions and data is notable, despite the fact that the multi-
tissue network model 1) did not capture the kinetics or gene regulatory
and signaling pathways, 2) did not consider the concentration of en-
zymes, which might affect the flux bounds, and 3) lacked precise in-
formation on the physiological uptake and secretion fluxes under which
the tissues operate.

The inherently complex relationships between genes, proteins, and
metabolites have heretofore made it difficult to track the factors and
detailed mechanisms that contribute to metabolite changes in the blood
and urine. Our approach here, in which we utilized the metabolic genes
and metabolites mapped onto the network model and performed
pathway-level perturbations, made it possible to address this challenge.

Fig. 5. Summary of APAP-induced gene and metabolite perturbations in the glycine, serine, and threonine metabolism pathway. Each arrow indicates the direction of
a reaction converting a substrate into a product, with the name of the gene indicated next to the arrow. Upregulated and downregulated genes are shown in red and
green, respectively. Increased and decreased metabolites in the plasma are shown in white text with red and green backgrounds, respectively. Stars indicate model
predictions consistent with the data. Dashed arrows indicate multiple steps involved in a reaction; the dotted line indicates metabolite precursors involved in other
pathways. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The gene expression changes in several pathways in the liver were
consistent with a widely accepted mechanism of APAP-induced liver
toxicity, in which the excess APAP following an overdose is bio-
transformed into a reactive intermediate molecule (NAPQI) that over-
whelms the detoxification mechanism by GSH-conjugation. Depletion
of GSH leads to excess NAPQI in cells causing mitochondrial damage,
which in turn can causes further damage by releasing reactive oxygen
species (ROS) (Du et al., 2016). GSH also plays a major role in the
detoxification of ROS (Mailloux et al., 2013) and its depletion by
NAPQI leads to further damage by inefficient ROS removal. Genes in
amino acid metabolism pathways, which are prerequisites for GSH
synthesis, were significantly upregulated (Fig. 3), indicating that the
high dose of APAP resulted in depletion of GSH and that cells utilized a
compensatory mechanism to replenish GSH. Specifically, our integrated
analysis revealed that the metabolism of glycine, one of the three amino
acids required in the synthesis of the tripeptide GSH (Fig. 7), was sig-
nificantly upregulated at 10 h post-APAP treatment, suggesting that
glycine is another potential limiting substrate under stress conditions, a
result not readily apparent in the literature for APAP toxicity
(Mardinoglu et al., 2017). In support of this view, we also observed
significant reductions in the levels of glycine and serine in the plasma,
along with the well-known limiting factor cysteine (Tateishi et al.,
1974). Furthermore, consistent with APAP-mediated perturbations in
GSH, we also observed significant downregulation of several genes in
nucleotide metabolism pathways (Fig. 6), suggesting that APAP-medi-
ated redox imbalance leads to reduced DNA synthesis.

The network model integration and pathway enrichment analysis
revealed a set of metabolites in the plasma and urine, whose alterations
strongly correlated with the changes in gene expression induced by
APAP (Table 1). Of the metabolites that decreased, we consistently
detected reductions in arginine, proline, argininosuccinate, trans-4-
hydroxy-proline, glycine, and serine in the plasma at 5 h and 10 h post-
APAP treatment, which were also well correlated with the gene ex-
pression changes. Similarly, we consistently detected reductions in 4-
acetamidobutanoate and 5-oxoproline in urine (Fig. 5 and Table 1). Of
the metabolites that increased, we detected elevated levels of choline,
uracil, and 3-ureidopropionate in the plasma at both time points, con-
sistent with model predictions. Specifically, cytidine levels significantly
increased in the plasma and urine at both time points—an effect
strongly correlated with gene expression changes as predicted by the
multi-tissue model.

Overall, our model predictions indicate that the metabolites in the
nucleotide and lipid metabolism pathways are early indicators of APAP
exposure, whereas those in the amino acid and carbohydrate metabo-
lism pathways are late indicators. We provide a complete list of sig-
nificantly altered metabolites, re-grouped by pathway enrichment
analysis and the agreement of their changes with the alterations pre-
dicted by the metabolic network model (Table 1). These metabolites
can be further assessed in targeted analyses to identify their potential as
early markers of APAP-induced liver toxicity.

In summary, we have developed a new multi-tissue metabolic net-
work model, which considers all liver- and kidney-specific metabolic

Fig. 6. Summary of the APAP-induced gene and metabolite perturbations in the pyrimidine metabolism pathway at 10 h following APAP treatment. Each arrow
indicates the direction of a reaction converting a substrate into a product, with the name of the gene indicated next to the arrow. Upregulated and downregulated
genes are shown in red and green, respectively. Increased and decreased metabolites in the plasma are shown in white text with red and green backgrounds,
respectively. Stars indicate model predictions consistent with the data. Dashed arrows indicate multiple steps involved in a reaction. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
List of significantly altered metabolites in the nucleotide, lipid, amino acid, and carbohydrate metabolism pathways based on the model predictions for 5 and 10 h
post-APAP exposure.

Main pathway Subordinate pathway Metabolite name Log2(Fold change)

Blood Urine

5 h 10 h 5 h 10 h

Nucleotide metabolism Pyrimidine Cytidine 1.56 0.99 4.16 2.18
Deoxyuridine 1.52
3-Ureidopropionate 0.69 1.10 0.72
Thymidine 0.90 3.11
Uracil 0.72 0.51
Uridine 0.66

Purine Adenosine 2.21
Urate 0.73 0.99

Lipid metabolism Glycerolipid & phospholipid Choline 0.30 0.29
Glycerol 3-phosphate −0.47 −0.60
Acetylcholine 1.60
Phosphocholine 1.56

Sphingolipid Sphingosine 1-phosphate 0.37
Sphingosine 0.62
Stearoyl sphingomyelin 0.32 0.83

Fatty acid Margaric acid 1.48
Oleate 0.86
10-Heptadecenoate 0.83
Stearate 0.71
Mead acid 1.20
Pentadecanoate 0.55
Butanoylcarnitine −0.69 −0.60
Propanoylcarnitine −0.69 −0.68
Methylmalonate −1.06

Bile acids Tauro-α-muricholate 1.16
Taurocholate 1.97
Tauro-β-muricholate 1.95
taurochenodeoxycholate 1.77
Chenodeoxycholic acid −1.10 −1.64
Glycoursodeoxycholate −0.62
Cholate −3.84
β-muricholic acid −1.84
Glycocholate −2.25
Hyodeoxycholate −2.94
Glycodeoxycholate −3.47
Hyocholate −3.64

Amino acid metabolism Arginine and proline Proline −0.20 −0.34
Citrulline −0.20
Argininosuccinate −0.36
Ornithine −0.64
trans-4-Hydroxyproline −0.36 −0.71
Creatine 0.43
Guanidinoacetate −0.80
Spermidine −0.81 1.10 2.93
4-Acetamidobutanoate −2.12 −1.15
Agmatine −1.51

Glycine, serine, and threonine Glycine −0.25 −0.36
Dimethylglycine 0.36 0.79 0.54
Serine −0.22 −0.42
Glycerate −0.22 −0.30
Sarcosine −0.30 1.50

Cysteine and methionine N-acetylmethionine −0.27
Cystathionine −0.67
Cystein −0.56

Alanine, aspartate, and glutamate Alanine −0.14 −0.14
Aspartate −0.38
Glutamate −0.43
1-Pyrroline-5-carboxylate −0.67 −0.64
N-acetylaspartate −0.43
Asparagine −0.36 −0.40

Glutathione Oxidized glutathione −1.15
5-Oxoproline −1.15 −1.40

Histidine Methylimidazoleacetic acid −1.10 −1.03 −0.56

(continued on next page)
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functional tasks, while capturing the overall physiological systems-level
metabolism in the rat. The use of a multi-tissue model to integrate
concomitantly measured gene expression changes in the liver and
kidney facilitated a better understanding of the mechanisms underlying
the metabolite alterations in the plasma and urine compartments than
did the use of a liver-only model. Our integrated metabolic network and
pathway enrichment analyses suggest that APAP overdose invokes a
compensatory amino acid-related pathway, namely the metabolic
pathway for glycine, serine, and threonine—the precursors for GSH
production—and significant alterations in the nucleotide and lipid
metabolism pathways. Using our model predictions, we provide a
complete set of metabolite markers (Table 1) that could facilitate early
diagnosis of APAP-induced liver toxicity. The developed computational
approach has the potential to be broadly applied to other toxicant
studies to analyze omics data and identify metabolites as markers of
organ injuries.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.taap.2019.04.001.
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