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Metabolic network-based 
predictions of toxicant-induced 
metabolite changes in the 
laboratory rat
Venkat R. Pannala1, Martha L. Wall3, Shanea K. Estes2, Irina Trenary3, Tracy P. O’Brien2, 
Richard L. Printz2, Kalyan C. Vinnakota1, Jaques Reifman1, Masakazu Shiota2, 
Jamey D. Young2,3 & Anders Wallqvist1

In order to provide timely treatment for organ damage initiated by therapeutic drugs or exposure to 
environmental toxicants, we first need to identify markers that provide an early diagnosis of potential 
adverse effects before permanent damage occurs. Specifically, the liver, as a primary organ prone 
to toxicants-induced injuries, lacks diagnostic markers that are specific and sensitive to the early 
onset of injury. Here, to identify plasma metabolites as markers of early toxicant-induced injury, we 
used a constraint-based modeling approach with a genome-scale network reconstruction of rat liver 
metabolism to incorporate perturbations of gene expression induced by acetaminophen, a known 
hepatotoxicant. A comparison of the model results against the global metabolic profiling data revealed 
that our approach satisfactorily predicted altered plasma metabolite levels as early as 5 h after exposure 
to 2 g/kg of acetaminophen, and that 10 h after treatment the predictions significantly improved when 
we integrated measured central carbon fluxes. Our approach is solely driven by gene expression and 
physiological boundary conditions, and does not rely on any toxicant-specific model component. As 
such, it provides a mechanistic model that serves as a first step in identifying a list of putative plasma 
metabolites that could change due to toxicant-induced perturbations.

Adverse effects associated with acute or chronic exposure to therapeutic drugs and toxic environmental chem-
icals pose serious human health concerns, including long-term debilitation, permanent organ damage, and 
even death. Among internal organs, the liver is the first to encounter ingested or absorbed chemicals because 
of its active role in the metabolism and clearance of toxicants. For example, overexposure to acetaminophen 
(N-acetyl-p-aminophenol, APAP), a widely used over-the-counter analgesic and antipyretic drug, is a leading 
cause of acute liver failure and one of the major reasons for liver transplantation in the United States (U.S.)1. 
According to the 2012 U.S. Military Health System report2, the prevalence of APAP overdose is higher among 
military personnel than among the general populace, and higher among those aged below 45 years. Furthermore, 
drug-induced liver injury is a major challenge for developing new drugs because it is often the primary reason 
that a drug is withdrawn from the market3. Identification of injury-specific markers would allow for an early diag-
nosis and, potentially, the deployment of a more effective early treatment to mitigate injury progression.

For most toxicants, the biological mechanisms that underlie the occurrence of liver injury and its transition 
to severe liver damage remain unknown. This limits our ability to detect early toxicant-induced changes, which, 
if not countered in a timely manner, can lead to irreversible alterations and functional degradation of the liver. 
Currently used markers for diagnosing liver injury, such as serum levels of alanine transaminase (ALT) and 
aspartate aminotransferase (AST), are not ideal for several reasons. For example, because these enzymes are ubiq-
uitously expressed at similar levels in multiple organs, interpreting any change in their serum levels in response 
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to toxicant exposure can be complicated4–6. Furthermore, because ALT and AST are secreted after cell death and, 
thus, reflect events that occur late in the cell-injury process, these enzymes may not be specific for identifying 
early-stage injuries that can more readily be treated.

The development of methods to screen for robust diagnostic markers characteristic of the early injury pro-
cess remains a challenge. The emergence of multiple genome-scale and high-throughput technologies over the 
past decade has made it possible to measure multiple whole-cell physiological readouts of mRNA, proteins, 
microRNA, metabolites, protein-DNA binding, protein-protein interactions, and other molecules or molecu-
lar processes. However, it remains a daunting task to integrate these data into a comprehensive, mechanistic 
framework that clarifies how to characterize the state of a cell, tissue, or organism in terms of underlying bio-
logical processes. Metabolomics is a rapidly evolving field that can provide novel insights into toxicant-induced 
hepatotoxicity, mechanisms of disease pathogenesis, and markers for diagnosis and prognosis7–9. Here, we lev-
erage metabolomic, fluxomic, and transcriptomic measurements from in vivo studies as a means to generate 
mechanism-based predictions of metabolite profiles, using a metabolic network modeling approach that is bio-
logically constrained. Our study examines canonical cellular metabolism, i.e., endogenous metabolism excluding 
xenobiotic metabolism, to identify a sensitive and specific response to perturbations in cell physiology induced by 
exposure to a chemical toxicant. The goal of these studies is to provide a computational/experimental framework 
that can identify molecular processes specifically perturbed in a disease state and, hence, proteins and metabolites 
whose circulating levels in biofluids systematically differ between a disease group and a control group, and to 
propose these as diagnostic and prognostic markers10–15.

Cellular metabolism can be modeled by genome-scale network reconstructions (GENREs), which are mathe-
matical representations of interconnected metabolic pathways that consider stoichiometric and thermodynamic 
constraints. These models capture metabolic phenotypes under diverse physiological and genetic conditions16,17, 
and provide a framework for elucidating genotype-to-phenotype relationships18–22. Several studies have used 
GENREs to identify metabolites as markers for different disease states. For example, a human GENRE was used 
to predict metabolite markers for inborn errors of metabolism23, and a multi-tissue mouse GENRE was used to 
identify high levels of branched-chain amino acids and free fatty acids in the plasma of type 2 diabetes subjects 
by integrating gene expression data24. Recently, a reconciled rat and human GENRE was developed and used to 
study comparative toxicogenomics and metabolite marker predictions for the effect of different drugs on liver 
cells in culture16.

In studies of GENREs that integrate transcriptomic data to discover drug targets and identify metabolite 
markers, the primary data used are mRNA expression profiles, as measured by microarrays or RNA sequenc-
ing (RNA-seq), and levels of small metabolites, as quantified by chromatographic separation methods in com-
bination with mass spectrometry7–9,25. These studies implement different algorithmic approaches to link the 
different data types23,26. In particular, GENREs that incorporate genotype-to-phenotype relationships through 
gene-protein-reaction (GPR) rules provide one means for integrating transcriptomic data to identify differences 
in plasma metabolite levels between control and toxicant-treated conditions.

In the current study, we used male Sprague Dawley rats and acetaminophen (APAP) as the exemplar toxicant 
to generate in vivo transcriptomic and metabolomic data, as well as 2H/13C metabolic flux analysis to meas-
ure central carbon metabolism. We integrated these data into the recently developed rat GENRE (iRno) using a 
novel algorithm called Transcriptionally Inferred Metabolic Biomarker Response (TIMBR)16, and investigated 
the metabolic differences in plasma between control and APAP-treated conditions. We then characterized the 
efficacy of the rat GENRE in predicting the metabolites as markers of APAP-induced liver injury and identified 
the underlying pathways perturbed by APAP treatment based on changes in gene expression. Using these highly 
perturbed pathways and the metabolites within them, we identified a criterion to further classify the predicted 
metabolites as the most likely to be associated with the gene expression changes, and hence, selected as list of 
potential metabolites for further investigation. These predictions of the model may be used for further validation 
by targeted metabolomic analysis. More generally, the developed modeling strategy has the potential to identify 
a set of robustly changing metabolites as injury markers, using publicly available transcriptomic data from liver 
toxicity databases, and may be used to identify canonical metabolites as early markers of injury progression for 
other toxicant-induced organ injuries. Overall, the model developed here provides a framework for inter-relating 
multiple sources of omics-level data and generating a list of putative metabolites associated with toxicant-induced 
organ injuries based on observed changes of gene expression in vivo in specific tissues.

Results
Experimental design to monitor early physiological changes in the liver.  To identify an optimal 
APAP dose that initially causes non-symptomatic perturbations in liver physiology before inducing extensive 
liver injury, we varied the APAP dose and examined the time course of injury evolution by measuring plasma lev-
els of ALT (Fig. 1a) and AST (Fig. 1b). For animals treated with either a low (1 g/kg) or high dose (2 g/kg) of APAP, 
ALT and AST levels were unaltered compared to vehicle-treated controls for up to 10 h. After 10 h, whereas ALT 
and AST levels remained unchanged for animals given the low-dose treatment, they significantly increased for 
those given the high-dose treatment and reached peak levels at around 48 h before starting to decline. Subsequent 
histopathological analysis of liver tissue samples collected after 58 h confirmed the presence of significant liver 
injury for animals treated with the high dose. These results indicate that high-dose (2 g/kg) APAP treatment 
causes no marked elevation of ALT and AST before 10 h, but induces liver injury within 48 h after treatment.

To capture the early perturbations in liver physiology, we subjected rats to the single high-dose (2 g/kg) treat-
ment and monitored one group of rats for 5 h and the other for 10 h, before sacrificing them to collect samples to 
investigate changes of global gene expression in liver tissue and blood metabolite profiles induced by APAP under 
fasting conditions (Fig. 1c). Additionally, we performed 2H/13C tracer studies under the same single high dose 
(2 g/kg) treatment, and collected samples at the 10-h time point to identify the major fluxes within the glucose 
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production pathway of central carbon metabolism under fasting conditions (Fig. 1c; see Methods Section for 
details).

APAP-induced gene expression changes in the liver.  We used an RNA-seq analysis platform (Kallisto/
Sleuth) to analyze the raw RNA sequencing reads, and identified differentially expressed genes (DEGs) by com-
paring transcript abundance levels between control animals and two groups of rats treated with a single dose of 
APAP (2 g/kg) and observed for 5 (Fig. 2a) or 10 h (Fig. 2b) after treatment. Significantly altered genes were shown 
using a false discovery rate (FDR) cut-off value of 0.10. The total number of significantly altered DEGs induced 
by APAP was lower in the 5-h group (1,384) than in the 10-h group (2,551) (Table 1). Furthermore, the observed 
negative logarithmic base 10 FDR values for many significant DEGs were greater than 15 for the 10-h group, 
indicating that APAP-induced perturbations of liver metabolism were more robust for the 10-h group than for 
the 5 h group.

Of all the unique genes identified by RNA-seq analysis, only 10% and 20% were significantly differentially 
expressed (FDR < 0.10) for the 5-h and 10-h groups, respectively. We used Entrez gene ID annotations and 
mapped all DEGs from the RNA-seq analysis onto the iRno model using the gene-protein-reaction annota-
tions and identified the metabolic genes in the RNA-seq data (Fig. 2c,d). The proportion of metabolic genes 
from the RNA-seq analysis that mapped onto the iRno model (containing 2,324 total genes) was approximately 
15% for both time points (Supplementary Table S1). Of these mapped genes, approximately 15% and 30% were 

Figure 1.  Experimental design to measure early perturbations in rat liver metabolism. Preliminary studies 
using clinical chemistry markers to determine acetaminophen (APAP) dose and duration. Alterations in ALT 
(a) and AST activity levels (b) for control (dashed line with circles, n = 6), 1 g/kg APAP (solid line with triangles, 
n = 6), and 2 g/kg APAP (dotted line with squares, n = 7, *p < 0.05). (c) Schematic showing the design of the 
study, using Sprague Dawley rats exposed to a single dose of 2 g/kg of APAP under fasting conditions. In Study 
1, rats were administered APAP and observed for 10 h (n = 8) together with control animals (n = 8), after which 
they were infused with 2H/13C labeling to obtain flux measurements using metabolic flux analysis. In Studies 2 
and 3, rats were given APAP and observed for 5 h (n = 8) and 10 h (n = 8), respectively, with the corresponding 
control groups treated with vehicle (n = 8 each). Samples of blood and liver tissue were collected at 5 h or 10 h 
after APAP exposure and subjected to global metabolic profiling analysis or RNA sequencing, respectively (See 
Materials and Methods for further details).
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differentially expressed significantly (FDR < 0.10) 5 (Fig. 2c) and 10 h (Fig. 2d) after APAP treatment, respec-
tively. Our analysis suggests that, APAP induced perturbations in key metabolic genes, such as, low-density lipo-
protein receptor (Ldlr), tryptophan 2, 3-dioxygenase (Tdo2), and members of the solute carrier family (Slc25a15 
and Slc34a2) as early as 5 h post-treatment (Fig. 2c). Similarly, at 10 h post-treatment, there were major pertur-
bations in metabolic genes related to redox metabolism, such as, heme oxygenase 1 (Hmox1) and thioredoxin 
reductase 1 (Txnrd1), members of the solute carrier family (Slc1a4 and Slco2a1), and genes in the cytochrome 
p450 subfamily (Cyp8b1) (Fig. 2d). A summary of the total number of DEGs associated with APAP exposure and 
their corresponding mapping onto the iRno model is presented in Table 1. We also provide detailed results of the 
RNA-seq analysis for each DEG (transcript), including the p-value, FDR, logarithmic fold changes, and annota-
tions corresponding to the genes mapped onto the iRno model (Supplementary Table S1).

To identify APAP-induced DEGs that lead to metabolic pathway alterations in the liver, we performed KEGG 
pathway enrichment analysis using the DAVID functional annotation tool27. We selected highly significant DEGs 
from among the metabolic genes mapped onto the iRno model based on a strict FDR cut-off of less than 0.05. 
Using this criterion, 5 h after APAP treatment, there was enrichment of mostly global pathways, such as, met-
abolic pathways and the glycerophospholipid pathway in lipid metabolism, based on an enrichment cut-off of 

Figure 2.  Volcano plots of differentially expressed genes (DEGs) in the liver, induced by acetaminophen 
(APAP). False discovery rates (FDRs) plotted against APAP-induced log2 fold changes in DEGs for one group 
of rats collected at 5 h (a) and a second group at 10 h (b). Genes from the RNA-seq data mapped onto the 
iRno model at 5 h (c) and 10 h (d). Circles in red/green show genes/transcripts that were significantly up-/
down-regulated (FDR < 0.10), whereas black circles show those that were unchanged. Cyp8b1: Cytochrome 
P450 family 8 subfamily B member 1; Daglb: Diacylglycerol lipase, beta; Fads1: Fatty acid desaturase 1; Fdft1: 
Farnesyl diphosphate farnesyl transferase 1; Hmox1: Heme oxygenase 1; Hsd17b2: Hydroxysteroid (17-beta) 
dehydrogenase 2; Ldlr: Low density lipoprotein receptor; Slco2a1: Solute carrier organic anion transporter 
family, member 2a1; Slc1a4: Solute carrier family 1 member 4; Slc25a15: Solute carrier family 25 member 
15; Slc34a2: Solute carrier family 34 member 2; Tdo2: Tryptophan 2,3-dioxygenase; Tnxrd1: Thioredoxin 
reductase1; Upp2: Uridine phosphorylase 2.

Time (h)
Total number of 
genes

DEGs 
FDR < 0.10

Genes mapped 
to iRno

Mapped DEGs 
FDR < 0.10

5 11,721 1,384 1,710 241

10 11,659 2,551 1,701 512

Table 1.  Number of differentially expressed genes (DEGs) 5 or 10 h after exposure to APAP (2 g/kg) and 
number of genes mapped to the iRno model. FDR: false discovery rate.
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FDR < 0.10. In contrast, 10 h post-treatment, there was significant enrichment of several other pathways, includ-
ing, among others, pathways in nucleotide metabolism (pyrimidine and purine), lipid metabolism (steroid and 
steroid hormone biosynthesis; fatty acid degradation; and glycerolipid and glycerophospholipid metabolism), 
amino acid–related metabolism (tryptophan; cysteine, and methionine; glycine, serine, and threonine; arginine 
and proline; and glutathione metabolism) and carbohydrate metabolism (pyruvate; glyoxylate, and dicarboxy-
late; glycolysis/gluconeogenesis and citrate cycle). These results indicate that the APAP-induced perturbations 
in pathways were moderate at 5 h post-treatment. However, the majority of pathway perturbations observed 
at 10 h post-treatment indicated progression towards liver injury. We provide a complete summary of the 
KEGG-enriched pathways, along with the number of genes (and their Entrez gene IDs) mapping to each pathway 
and the associated significance tests in Supplementary Table S2.

APAP treatment increases metabolic flux through pyruvate cycling and decreases glycogen-
olysis.  Under fasted conditions, the rat liver maintains plasma glucose levels using various gluconeogenic 
substrates (e.g., amino acids, lactate, and glycerol). However, APAP-induced alterations in the reaction fluxes 
of the glucose production pathways under such conditions are unknown. To identify these changes and thereby 
constrain the iRno model, we performed 2H/13C- tracer labeling to assess the major metabolic fluxes in the liver 
glucose production pathway 10 h after administration of a single dose of APAP (2 mg/kg) under fasting con-
ditions. Using a minimal network (Fig. 3) to calculate the metabolic fluxes for the respective enzymes based 
on the tracer enrichment data [i.e., by applying metabolic flux analysis (MFA)], we found significant elevations 
in the rate of pyruvate cycling in the APAP-treated animals in comparison to control animals (Fig. 4a). The 
APAP-treated group also showed a significant decrease in the rate of glycogenolysis, the process of breaking down 
stored glycogen to produce blood glucose. However, the metabolic fluxes of other enzymes in the pathway were 
not significantly altered between the two groups. We previously observed these same flux changes of increased 
pyruvate cycling and decreased glycogenolysis when comparing two groups of mice, one subjected to long-term 
fasting and the other to short-term fasting28. Therefore, the metabolic response to APAP seems to accelerate the 
transition to a long-term fasting phenotype. This conclusion is supported by prior studies in mice29 and perfused 
rat livers30, which reported an elevated rate of glycogen depletion in response to APAP treatment.

Figure 3.  The minimal network used for estimating flux measurements in the tracer dilution study. 
Abbreviations shown are names of enzymes for which absolute flux was calculated based on metabolic flux 
analysis. ALDO: Aldolase; CS: Citrate synthase; ENO: Enolase; GADPH: Glyceraldehyde-3-phosphate 
dehydrogenase; GK: Glycerol kinase; GPI: D-glucose-6-phosphate isomerase; G6PC: D-Glucose-6-
phosphatase; IDH: Isocitrate dehydrogenase; LDH: Lactate dehydrogenase; OGDH: Oxoglutarate 
dehydrogenase; PC: Pyruvate:carbon-dioxide ligase (ADP-forming); PCC: Propionyl-CoA carboxylase; 
PCK: Phosphoenolpyruvate carboxykinase; PK: GTP:pyruvate 2-O-phosphotransferase; PYGL: glycogen 
phosphorylase; SDH: Succinate dehydrogenase.
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In our experimental design, we observed rats under fasting conditions for 5 and 10 h after APAP treatment, 
but measured fluxes only for 10 h for the control and treatment conditions. Therefore, we calculated the approx-
imate major fluxes in the glucose production pathway in animals fasted for 5 h (Fig. 4b) based on a survey of the 
literature31–33. Briefly, the fractional contributions of glycerol, lactate and amino acids, and glycogenolysis to liver 
glucose production reported in the literature were used to compute the central carbon fluxes corresponding to 
a twenty percent higher glucose output flux at 5 h when compared to that at 10 h34. We then compared the fluxes 
calculated at 5 h (Fig. 4b) with the measured metabolic fluxes of control animals fasted for 10 h (Fig. 4a, filled 
bars). As expected, glycogenolysis was the major contributor to glucose production under short-term fasting 
(5 h) conditions, whereas it was markedly reduced under extended fasting (10 h) conditions. During extended 
fasting, contributions from gluconeogenesis significantly increased (Fig. 4a). These metabolic flux measurements 
provide the means to integrate the gene expression changes into the iRno model and validate the resulting flux 
distributions under control conditions. Furthermore, they can also be used as further constraints in solving for 
metabolite alterations in the iRno model.

Global metabolic changes induced by APAP and metabolite mapping to the iRno model.  In 
order to identify the APAP-induced early perturbations in plasma metabolites that could serve as potential mark-
ers for liver injury, we collected blood samples from rats given a single dose of APAP and observed for 5 h and 
10 h, and measured global metabolic profiles (Fig. 1c). We detected 569 metabolites in the plasma overall at both 
time points (Fig. 5a,b). Based on a relaxed FDR cut-off of less than 0.10, approximately 40% and 30% of these 
metabolites were significantly altered relative to controls at 5 and 10 h post-treatment, respectively. These results 
indicate that APAP-induced alterations in the number of plasma metabolites were higher at 5 h post-treatment 
and decreased at 10 h post-treatment. A two-way analysis of variance (ANOVA) of all plasma metabolites with 
time and treatment as the between-subject factors revealed a significant APAP-treatment effect for several metab-
olites (235) mapping to various metabolic pathways (Supplementary Table S3). For example, many metabolites 
involved in amino acid metabolism, such as those in the N-acetyl branched-chain amino acid pathway (leu-
cine, N-acetylleucine, valine, and N-acetylvaline), significantly increased at both time points. Similarly, multiple 
metabolites involved in glutathione metabolism (oxidized glutathione, L-cystathionine, and cysteine) decreased 
due to APAP treatment.

Of all the metabolites detected in the plasma, we excluded those related to drug metabolism from analysis 
because the current iRno model does not account for them, and mapped the remaining metabolites onto the 
model. Because the exchange reactions for some of these mapped metabolites were not included in the original 
model, we further updated the model to simulate their alterations in the plasma (see Materials and Methods). 
Of the 569 metabolites detected, we were able to map 226 to the model based on KEGG ID annotation and 
name matching. Using the FDR criterion of <0.10, 103 and 67 of these 226 metabolites were significantly 
altered at 5 (Fig. 5c) and 10 h (Fig. 5d) after APAP treatment, respectively. Our analysis suggests that, of the total 

Figure 4.  Acetaminophen (APAP)-induced absolute flux measurements in the glucose production pathway 
obtained from the tracer dilution study under fasting conditions. (a) Bar graphs of flux measurements 
calculated from metabolic flux analysis 10 h after treatment with APAP (unfilled bars) or vehicle (filled bars). 
(b) Bar graph of approximate absolute flux values derived from the literature for control rats studied after 5 h of 
fasting31–33 (*p < 0.05, #values in Hexose units and abbreviations as in Fig. 3).
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metabolites mapped onto the iRno model, metabolites in tryptophan metabolism (anthranilate, kynurenate, and 
xanthurenate) and secondary bile acid metabolism (hyocholate and hyodeoxycholate) were ranked high among 
the other significantly altered metabolites for the 5 h group (Fig. 5c). Similarly, metabolites in pyrimidine metab-
olism (cytidine, deoxycytidine, and 3-ureidopropionate) and glutathione metabolism (GSSG and ophthalmate) 
were ranked high among the other significantly altered metabolites for the 10-h group (Fig. 5d). We consistently 
observed that cytidine and xanthurenate were significantly altered at both time points among the most signifi-
cantly changed metabolites. We present a complete list of mapped metabolites along with their significance levels 
in the Supplementary Table S4.

Identifying transcriptomics-driven metabolite changes using the iRno model.  To predict 
metabolite alterations and elucidate the mechanism underlying their changes between control and APAP-treated 
conditions, we used constraint-based modeling techniques with the iRno model. Specifically, we integrated 
the APAP-induced gene expression changes in liver metabolism into the TIMBR algorithm with physiological 
boundary conditions, with or without the measured fluxes in the central carbon metabolism pathways (Fig. 6). 
Because the APAP-treatment experiments were performed under fasting conditions, we used uptake rates of 
amino acids, lactate, and free fatty acids from rat fasting studies in the literature (see Materials and Methods, and 
Supplementary Table S5). The remaining boundary conditions pertaining to essential vitamins, oxygen, and car-
bon dioxide were set as unconstrained as in the original iRno model. Furthermore, we assumed these boundary 
conditions to be the same for both control and APAP-treated groups.

We simulated the flux distributions of liver glucose production that would correspond to the fasting condi-
tions, using the inputs to and outputs from the liver to constrain the iRno model. We predicted the central carbon 
metabolic fluxes that were measured via MFA, using isotope enrichment data (Figs 3 and 4a). Although the iRno 
model provided multiple solutions to generate glucose from the given inputs, we were able to obtain the measured 
flux distributions in the glucose production pathway in the iRno model by constraining their lower and upper 
bounds within the experimental standard deviations of the MFA data. Thus, the model simulated production of 
glucose, urea, and ketone bodies under fasted conditions for the given input and output conditions.

The iRno model cannot predict a list of plasma metabolite alterations in the absence of gene expression data. 
Therefore, to test its accuracy against the chance of randomly selecting this list, we randomly generated a set of 
normally distributed gene expression changes, which we converted to reaction weights using the TIMBR algo-
rithm, and predicted metabolite alterations. The model predicted ~34% of the significantly altered metabolites 
(FDR < 0.10) observed in the plasma metabolite data (Supplementary Tables S4 and S6). This suggests that a 

Figure 5.  Volcano plots of global plasma metabolite changes induced by acetaminophen (APAP). False 
discovery rates (FDRs) plotted against APAP-induced log2 fold changes in plasma metabolites for one group 
of rats collected at 5 h (a) and a second group at 10 h (b). Metabolites mapped onto the iRno model based on 
KEGG ID annotation at 5 h (c) and 10 h (d). Red/green circles show metabolites significantly elevated/depressed 
(FDR < 0.10) for 5 and 10 h post APAP treatment, respectively; symbols in black show unchanged metabolites.
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significant portion of observed metabolite changes was embedded in the network structure itself, coupled with 
the physiological boundary conditions of fasting. Based on these conditions, we then evaluated the iRno model by 
providing the actual gene expression changes between control and APAP-treated groups as the inputs to identify 
a list of metabolite alterations for two conditions: 1) one in which flux measurements obtained from MFA were 
not used as constraints (No MFA) and, 2) another in which they were (MFA).

MFA constraints improve metabolite predictions of the iRno model.  The gene expression changes 
obtained from RNA-seq analysis at 5 and 10 h after APAP treatment were converted to reaction weights for each 
control and treatment group and integrated into the TIMBR algorithm. Here, TIMBR converts all gene expression 
fold changes into reaction weights and inherently accounts for the significant changes, thereby avoiding the use 
of cut-off values that can result in loss of information (see Materials and Methods for details). Using the input and 
output boundary constraints under fasting conditions, we predicted TIMBR production scores, which represent 
altered plasma levels of metabolites that were either secreted or consumed as a result of APAP treatment. We then 
compared the log2 fold changes of metabolites identified from the global metabolic profiling analysis (Fig. 5c,d 
and Supplementary Table S4) with the iRno model predictions and assessed the accuracy of the model in pre-
dicting the direction of change in metabolite level due to APAP treatment (Fig. 7 and Supplementary Fig. S1). 
Of the 226 metabolites mapped onto the iRno model from the plasma metabolomics data, the model provided 
predictions for 182 at 10 h post-treatment (Supplementary Table S7). Of these, only 58 significantly changed 
between control and treatment conditions (FDR < 0.10). Our model correctly predicted the direction of change 
for 57% of the metabolites when we used gene expression changes alone to drive the TIMBR predictions with the 
rate of glucose secretion as the only constraint in the glucose production pathway (Fig. 7, no MFA). Similarly, 

Figure 6.  Schematic representation of how multi-omics data were integrated into the iRno model. The TIMBR 
algorithm estimates the network feasibility of producing a metabolite given changes in gene expression to 
the iRno model16. Here we integrated TIMBR with in vivo multi-omics data. We used in vivo differential gene 
expression data to determine the reaction weights (W) in the iRno model, and then used flux measurements 
(MFA) from a tracer labeling study (vmfa) as well as the physiological boundary conditions of exchange 
metabolites (vex) to constrain the model. TIMBR then calculates the global network demand required for 
production of a metabolite (Xmet) by minimizing the weighted sum of flux across all reactions, under a control 
(Xcontrol) or treatment (Xtreatment) condition. We next z-transformed each raw metabolite production score (Xraw) 
to calculate the TIMBR production score (Xs) for that metabolite, which we compared with the global metabolic 
profiling data to assess whether its level had increased or decreased under the treatment condition relative to the 
control condition.
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Figure 7.  Heat map of TIMBR production scores compared to metabolic profiling data obtained 10 h after 
APAP treatment under fasting conditions. iRno model predictions calculated under two integration conditions 
were compared against log2 fold changes of metabolites that significantly (FDR < 0.10) changed in the global 
metabolic profiling data (Data). In one condition, only gene expression changes were used (No MFA), whereas 
in the other both gene expression changes and MFA data were used as constraints (MFA). The numbers in 
the heat map show the log2 fold changes of the metabolic profiling data (left column) and TIMBR production 
scores under the no MFA (center column) and MFA (right column) conditions. The color scheme on the far 
right shows the degree of change in the level of a plasma metabolite, from highly increased (dark red) to highly 
decreased (dark blue).
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when we used only the gene expression changes at 5 h post-treatment, the iRno model correctly predicted only 
41% (Supplementary Fig. S1, No MFA) of the 95 metabolites that were experimentally changed. This reduction in 
model correspondence for the 5-h group may have occurred because the number of significant DEGs was lower 
at 5 h than at 10 h after APAP treatment (Table 1).

Interestingly, with the same input and output constraints under the fasting state, when we used the flux 
measurements from MFA as constraints along with the gene expression changes, our model correctly predicted 
the direction of change for 65% of the significantly altered metabolites (FDR < 0.10) 10 h after APAP treatment 
(Fig. 7, MFA). The results were slightly better (68%) when we used a less stringent criterion for comparison of 
significantly altered metabolites (Supplementary Fig. S2, MFA). The trend was similar when we used approx-
imate flux values obtained from the literature for the fasting state at 5 h post-treatment: the model correctly 
predicted the direction of change for 53% of the altered metabolites, a 12% increase from the no MFA condition 
(Supplementary Fig. S1, MFA). Overall, the model predicted reductions more accurately than increases when 
we used only gene expression changes. When we also used MFA data, the model predicted increases more accu-
rately than reductions for data obtained 5 h after APAP treatment. However, 10 h after treatment, when the num-
ber of significant DEGs was higher (Table 1), the model correctly predicted more than 55% of the significantly 
altered metabolites regardless of the direction of change. These results show that the predictions of the iRno model 
showed better correspondence with the measured metabolite changes (65%) when gene expression data at 10 h 
after APAP treatment were incorporated together with some of the measured fluxes as constraints. However, 
when the model was provided with gene expression data alone (without MFA constraints), its prediction capabil-
ity decreased (57%), indicating the importance of integrating multiple data sources to obtain better predictions.

To further differentiate the metabolites that could be changing in the plasma because of changes in gene 
expression, we combined the highly enriched pathways obtained from KEGG pathway enrichment analysis 
(Supplementary Table S2) with the observed pathway-specific metabolite alterations in the data (Supplementary 
Table S3). Based on the KEGG pathway annotations, we identified the metabolites significantly altered at 10 h 
after treatment and associated them with the highly enriched pathways from the gene expression analysis 
(Supplementary Table S7, List of potential metabolites). Subsequent comparison of the model-predicted metab-
olite alterations with the metabolite alterations at the pathway level are shown in the Supplementary Table S7 
(pathway-level concordance). The network model comparisons provided better predictions for the case of amino 
acid−related pathways compared to other pathways (such as nucleotide metabolism), as indicated by the high 
correlations for the gene expression-induced metabolite changes in these pathways. Overall, our data suggest that 
the developed framework can serve as a potential tool to integrate multiple omic datasets to identify a putative 
list of plasma metabolites that were associated with the toxicant-induced gene expression changes. In such an 
application, the predicted metabolite alterations would serve as testable hypotheses, which could be confirmed or 
rejected by targeted metabolomic analysis to assess the changes in individual metabolites.

Discussion
The diverse mechanisms underlying toxicant-induced injuries of excretory organs complicate the process of iden-
tifying markers common to the detection and progression of injuries. Nevertheless, the processes involved in the 
initiation of such injuries and subsequent adaptations are likely to influence the metabolism of many associated 
endogenous substances. If so, then measuring these perturbations might help identify early toxicant-specific 
markers of injury progression without extensive knowledge on the toxicant’s mechanism of action. Indeed, a 
panel of genes was recently identified as a marker of toxic liver injuries, using gene expression patterns associated 
with liver histopathology in rats exposed to environmental toxicants13, and serum metabolites were identified as 
markers of acute liver toxicity10. To the best of our knowledge, however, no study has attempted to integrate the 
highly interconnected toxicant-induced perturbations of gene expression and changes in metabolic processes 
into a mechanistic framework to determine the extent to which gene expression changes correlate with metab-
olite alterations. Here, we developed an integrated experimental/computational approach using GENREs and 
demonstrated how changes in liver gene expression induced by APAP treatment could drive plasma metabolite 
alterations, which in turn can serve as the markers for liver injury.

Using results from studies on rats exposed to APAP (Fig. 1), we devised an experimental strategy that allowed 
us to simultaneously collect transcriptomic and metabolomic data from the same group of rats to control for 
inter-animal variability. A single dose of APAP treatment (2 g/kg) increased levels of ALT and AST at time points 
consistent with the histopathology associated with liver injury (Fig. 1a,b). However, 5 h or 10 h after APAP treat-
ment, before ALT and AST levels were elevated; a comparison of the gene expression changes observed in the two 
groups showed that the number of significant DEGs increased with the time elapsed after exposure (Fig. 2). The 
high number of DEGs identified in the 10-h group may be due to APAP-derived intermediates causing more gene 
perturbations than in the 5-h group. These observations, which clearly reveal APAP-induced liver perturbations 
without elevated levels of ALT and AST, suggest that we can monitor these alterations to identify liver pathology.

Interestingly, heme-oxygenase 1 (Hmox1) was the most significantly altered gene (>23 fold change) 10 h after 
APAP treatment (Fig. 2d and Supplementary Table S1). In a recent study, proteomic analysis of APAP-induced 
hepatotoxicity identified the protein Hmox 1, the gene product of Hmox1, as a potential marker of liver injury35. 
However, Hmox1 was not significantly changed 5 h after APAP treatment, suggesting that the upregulation 
observed 10 h after treatment could reflect injury progression. Similarly, thioredoxin reductase 1 (Txnrd1), 
another key gene upregulated 10 h after APAP treatment, plays an active role in redox reactions involving hydro-
gen peroxide detoxification36 along with glutathione, which is perturbed because of acetaminophen toxicity37. 
Observations of the top three genes at both time points (Fig. 2c,d) indicate that genes in members of the solute 
carrier family were consistently perturbed, but more perturbations specific to acetaminophen toxicity were appar-
ent at 10 h. A similar result was obtained with the KEGG pathway-level gene enrichment analysis, where only 
alterations of lipid-related metabolic pathways were observed 5 h after treatment. These modifications may be due 
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to early changes caused by APAP-metabolism and the fasting state. At 10 h post-treatment, however, we observed 
changes in more focused pathways (Supplementary Table S2), including those of retinol metabolism; tryptophan 
metabolism; glycine, serine, and threonine metabolism; as well as cysteine and methionine metabolism. These 
expanded alterations 10 h after APAP treatment (Supplementary Table S2) suggest that a progressive change in 
molecular pathways occurred over time, with numerous pathway perturbations consistent with the known mech-
anisms of APAP-induced toxicity38–40. Specifically, high-dose APAP exposure overwhelms glutathione levels in 
cells, causing its depletion within 10 h after treatment in rats. Replenishment of glutathione requires increased 
synthesis rates for its constitutive components (i.e., cysteine, glutamate, and glycine). Consistent with this view, 
our analysis suggests that APAP exposure leads to early perturbations of specific metabolic pathways in the liver 
(e.g., glycine, serine, and threonine metabolism; cysteine and methionine metabolism), which compensate for 
glutathione depletion by upregulating the majority of genes involved in these pathways.

Although the APAP-induced alterations in gene expression described above are indicative of adverse effects 
in the liver, they cannot serve as injury markers detectable in easily accessible biofluids. In contrast, the outcomes 
of these gene perturbations, such as alterations in protein and metabolite levels, can serve as liver injury markers 
that are readily detected in plasma by existing techniques.

Our approach takes advantage of the GPR rules in GENREs and utilizes gene expression changes to predict 
a list of plasma metabolite alterations that can serve as potential markers for further investigation. In general, 
GENREs contain gaps in their networks and are iteratively and progressively updated with the latest information 
from the literature. In the current study, we updated the original iRno model and incorporated several reactions 
based on literature evidence (Supplementary Table S9), which increased the number of metabolites correspond-
ing to the metabolic profiling data. We were able to make model predictions for 40% of metabolites found in the 
metabolic profiling data (Fig. 5c,d). Interestingly, a comparison of the directionality of changes in metabolites 
driven by alterations in gene expression with the measured log2 fold changes in metabolites indicated that the 
model correctly predicted the direction of change (an increase or decrease) for 65% of the metabolites 10 h after 
APAP treatment (Fig. 7, MFA) but only 53% 5 h after treatment (Supplementary Fig. S1, MFA), owing to the 
fewer APAP-induced gene perturbations observed at this time point (Table 1). When metabolic flux constraints 
were not used, model performance was approximately 10% lower at both time points (Fig. 7 and Supplementary 
Fig. S1, No MFA). These predictions highlight the existence of multiple solutions for genome-scale models and 
the need to incorporate more physiological constraints to yield results that are applicable and robust under in vivo 
conditions.

To ascertain the robustness of the iRno predictions and the contribution of each independent change in gene 
expression and physiological boundary condition, we performed local and global sensitivity analyses for each 
input category. Adding a small amount of Gaussian noise to the APAP-induced gene expression data did not alter 
model performance. However, as expected, adding increased random Gaussian noise reduced model perfor-
mance (<45% correspondence) compared to that for unaltered gene expression data (Supplementary Table S6). 
Furthermore, the iRno model showed only ~34% correspondence when a randomly generated gene expression 
fold changes (from normal distribution) were used, suggesting that APAP-induced gene expression changes were 
indeed the driving force for the observed metabolite changes. Similarly, local and global perturbations in the 
boundary constraints of uptake rates reduced model correspondence with the data, showing the importance 
of physiological boundary conditions in improving predictions. We also investigated methods other than the 
TIMBR algorithm, such as a constraint-based modeling (CBM) approach based on flux variability analysis23, 
and an expression-guided flux minimization (E-Fmin) approach using the flux minimization principle41 for inte-
grating gene expression changes into the iRno model to predict metabolite alterations. However, none of these 
methods yielded better results (data not shown).

Many plasma metabolites, which were significantly altered owing to APAP-induced perturbations to the liver 
(Supplementary Table S3), may serve as markers for liver injury. In this study, we focused on metabolite altera-
tions that were mapped onto the iRno model and could be driven by changes in gene expression (Supplementary 
Table S4). Changes in gene expression are not perfectly correlated with protein and metabolite alterations—the 
final outcome of gene perturbations. Consistent with this common knowledge, our experimentally obtained 
gene expression changes (Tables 1 and S1) were not correlated strongly with the metabolite alterations induced 
at different time points following APAP treatment. Whereas the numbers of significantly altered DEGs 5 h 
post-treatment were lower than those 10 h after treatment, the numbers of significantly altered metabolites 
showed the opposite trend. In contrast, the model predictions for metabolite alterations correlated well with 
changes in gene expression, with model performance improving for increased numbers of significant DEGs. 
Overall, the model provided better predictions (~65%) when constrained by MFA data and physiological bound-
ary conditions. However, the model predicted many false positives for metabolites that did not show experimen-
tally significant changes. These findings suggest that gene expression changes alone are insufficient to explain 
all metabolite perturbations, and underscore the role of additional regulatory factors, such as posttranslational 
modification, gene regulation, and metabolite feedback, which result in the penultimate phenotypic response 
observed in plasma metabolite levels. Furthermore, although the predictions were based on satisfying the phys-
iological constraints for only liver metabolism, the observed plasma metabolite alterations could have resulted 
from non-transcription–driven metabolite alterations in different organs. Hence, TIMBR scores tend to overes-
timate actual physiological changes leading to false positives. Improvements in the experimental design, such as, 
measuring plasma metabolite changes directly from the liver circulation, and incorporating further details into 
GENREs, and considering additional information on the physiological conditions under which these modifica-
tions occur, might improve the model predictions.

Despite the aforementioned limitations, we predicted many metabolite alterations consistent with the global 
metabolic profiling data. To identify metabolites whose alterations were strongly correlated with gene expres-
sion changes, we further applied a selection criterion, where we used toxicant-induced pathway-level gene 
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perturbations and identified significantly altered metabolites within them together with GENRE predictions. 
A comparison of model predictions against metabolites in the highly changed pathways resulted in far greater 
concordance with respect to specific amino-acid related pathways (Supplementary Table S7). Using this, for 
extended APAP treatment, the model correctly predicted highly increased levels of plasma metabolites, such 
as spermine, spermidine, 3-ureidopropionate, and cytidine (Fig. 7 and Supplementary Table S7). Similarly, the 
model correctly predicted many highly decreased metabolites, such as cysteine, glycine, serine, glutathione 
disulfide, and ornithine. Furthermore, our model predictions were consistent at both time points (5 and 10 h 
after APAP treatment) for a set of altered plasma metabolites, including cytidine, the sphingomyelin pool, ura-
cil, choline, proline, glycine, trans-4-hydroxy-L-proline, and chenodeoxycholic acid, some of which are known 
plasma markers of APAP-induced liver injury14,42–44. Based on our analysis, we have provided a potential list of 
metabolites that could be highly correlated with gene expression changes (Supplementary Table S7). Our results 
suggest more focused experiments that can be designed in the future to identify other plasma metabolite markers 
of APAP-induced liver injury.

In summary, using changes in gene expression induced by acetaminophen—an exemplar liver toxicant—we 
identified GENRE-driven metabolite changes in the plasma and compared the model outcomes with those of 
global metabolic profiling data extracted under the same conditions. We found that the model predictions were 
much better than a random chance when using gene expression changes alone as the input. However, adding 
more physiological information, such as measured fluxes in the central carbon metabolism pathways, consider-
ably improved the model predictions. The model predictions for metabolite alterations were consistent with the 
APAP-induced changes in liver gene expression after short (5 h) and extended (10 h) exposures, with the latter 
yielding more gene perturbations in greater concordance with metabolite alterations. Furthermore, we identified 
metabolite alterations—driven by changes in gene expression consistent with the model predictions—which can 
be further evaluated to assess their ability to serve as markers of APAP-induced liver injury. Our results suggest 
that the platform developed here, could serve as a tool in the initial step of identifying putative plasma metabolites 
as markers of toxicant-induced organ injuries, and has the potential to be applied broadly to other studies in drug 
development and metabolite marker discovery.

Materials and Methods
Animals.  Male Sprague-Dawley rats, 10 weeks of age, were purchased from Charles River Laboratories 
(Wilmington, MA). The rats were fed with Formulab Diet 5001 (Purina LabDiet; Purina Miles, Richmond, IN) 
and were given water ad libitum in an environmentally controlled room, set at 23 °C and on a 12:12-h light-dark 
cycle. All experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals 
of the United States Department of Agriculture and the National Institutes of Health, and all protocols were 
approved by the Vanderbilt University Institutional Animal Care and Use Committee, and the U.S. Army Medical 
Research and Materiel Command Animal Care and Use Review Office. The investigators adhered to the Animal 
Welfare Act Regulations and other Federal statutes relating to animals and experiments involving animals.

Experimental Design.  Surgery for implanting the catheters was performed 7 days before each experiment 
as previously described45. Rats were anesthetized with isoflurane. For studies to determine the appropriate APAP 
dose and exposure time and those to measure changes in gene expression and plasma metabolite profiles, the 
right external jugular vein was cannulated with sterile silicone catheters (0.51 mm inner diameter [ID]/0.94 mm 
outer diameter [OD]). For studies to measure metabolic flux, the carotid artery and the right external jugular vein 
were cannulated with sterile silicone catheters (0.51 mm ID/0.94 mm OD). The free end of the catheter was passed 
subcutaneously to the back of the neck where it was fixed. The catheter was occluded with a metal plug following 
a flush of heparinized saline (200 U heparin/ml). After surgery, rats were housed individually.

Preliminary studies for determining appropriate dose and exposure time.  Two days before each study, the rats 
were moved from their regular housing cages to metabolic cages (Harvard Apparatus, Holliston, MA). To deter-
mine the appropriate dose and exposure time of APAP, they were treated with either vehicle (6 ml/kg of 50% 
polyethylene glycol, n = 6) or either 1 g/kg (n = 6) or 2 g/kg (n = 7) of APAP at 7 a.m. by gavage. Blood and accu-
mulated urine were collected at 7 a.m. and 5 p.m. daily for 3 days.

Studies for measuring changes in gene expression and plasma metabolite profiles.  We chose 2 g/kg as the appro-
priate APAP dose and two exposure times, one short (5 h, n = 8) and the other long (10 h, n = 8), based on the 
results of the dose-response study (Fig. 1a,b). Following blood collection, animals were given either vehicle or 
APAP by gavage at 7 a.m. and moved to new housing cages, where they could access water ad libitum but were 
not given food. At 12 p.m. (5-h group) or 5 p.m. (10-h group), after blood was collected from each group, animals 
were anesthetized by an intravenous injection of sodium pentobarbital through the jugular vein catheter and a 
laparotomy was performed immediately. The liver was dissected and frozen using Wollenberger tongs precooled 
in liquid nitrogen. The collected plasma was kept in a −80 °C freezer prior to analyses.

Studies for measuring metabolite flux.  For flux measurements, at 7 a.m. on the day of the study, rats were admin-
istered either APAP (2 g/kg, n = 8) or vehicle (50% polyethylene glycol, 6 ml/kg, n = 8) by oral gavage, and food 
and water were subsequently removed. At 12:50 p.m., they were anesthetized with isoflurane, and following col-
lection of 200 µl of arterial blood through the carotid artery catheter to determine the natural isotopic abundance 
of circulating glucose, a bolus of [2H]2water (99.9%) was delivered subcutaneously to enrich total body water 
to 4.5%. At 1 p.m. (i.e., 6 h after dosing), after they had recovered from anesthesia, the rats were placed in bed-
ded containers without food or water and connected to sampling and infusion lines. A prime-constant infusion 
of [6,6–2H2]glucose (80 mg/kg prime + 0.8 mg/kg/min infusion) was administered into the systemic circulation 
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through the jugular vein catheter for the duration of the study. Sodium [13C3]propionate (99%) was delivered as 
a prime-constant infusion (110 mg/kg + 5.5 mg/kg/min infusion) starting 120 min after the [2H]2water bolus. 
All infusates were prepared in a 4.5% [2H]2water-saline solution unless otherwise specified. Stable isotopes were 
obtained from Cambridge Isotope Laboratories (Tewksbury, MA). Blood glucose was monitored (AccuCheck, 
Roche Diagnostics, Indianapolis, IN) and donor erythrocytes were infused to maintain hematocrit throughout 
the study. Three blood samples (300 μl each) were collected over a 20-min period following 100 min of [13C3] 
propionate infusion. Arterial blood samples were centrifuged in EDTA-coated tubes for plasma isolation, and the 
three 100 μl plasma samples were stored at −20 °C prior to glucose derivatization and gas chromatography-mass 
spectrometry (GC-MS) analysis. Rats were rapidly euthanized through the carotid artery catheter immediately 
after the final steady-state sample.

Preparation of glucose derivatives.  Plasma samples were divided into three aliquots and derivatized separately to 
obtain di-O-isopropylidene propionate, aldonitrile pentapropionate, and methyloxime pentapropionate deriva-
tives of glucose. For di-O-isopropylidene propionate preparation, proteins were precipitated from 20 µl of plasma 
using 300 µl of cold acetone, and the protein-free supernatant was evaporated to dryness in screw-cap culture 
tubes. Derivatization proceeded as described previously46 to produce glucose 1,2,5,6-di-isopropylidene propi-
onate. For aldonitrile and methyloxime derivatization, proteins were precipitated from 10 µl of plasma using 
300 µl of cold acetone, and the protein-free supernatants were evaporated to dryness in microcentrifuge tubes. 
Derivatizations then proceeded as described previously46 to produce glucose aldonitrile pentapropionate and 
glucose methyloxime pentapropionate. All derivatives were evaporated to dryness, dissolved in 100 µl of ethyl 
acetate, and transferred to GC injection vials with 250-µl glass inserts for GC-MS analysis.

Measurement of tissue injury markers in blood.  Plasma levels of ALT and AST were measured using 
ALT and AST activity assay kits (Sigma-Aldrich, St Louis, MO), respectively.

GC-MS analysis.  GC-MS analysis was performed using an Agilent 7890 A GC system with an HP-5 ms 
(30 m × 0.25 mm × 0.25 μm; Agilent J&W Scientific) capillary column interfaced with an Agilent 5975 C Mass 
Spectrometer. Samples were injected into a 270 °C injection port in splitless mode. Helium flow was main-
tained at 0.88 ml∙min−1. For analysis of di-O-isopropylidene and aldonitrile derivatives, the column tempera-
ture was held at 80 °C for 1 min, ramped up at 20 °C∙min−1 to 280 °C and held for 4 min, then ramped up at 
40 °C∙min−1 to 325 °C. For methyloxime derivatives, the same program was used except the ramp up to 280 °C 
was 10 °C∙min−1. After a 5 min solvent delay, the mass spectrometer collected data in scan mode from m/z 300 
to 320 for di-O-isopropylidene derivatives, m/z 100 to 500 for aldonitrile derivatives, and m/z 144 to 260 for 
methyloxime derivatives. Each derivative peak was integrated using a custom MATLAB function47 to obtain 
mass isotopomer distributions (MIDs) for six specific ion ranges: aldonitrile - m/z 173–177, 259–265, 284–288, 
370–374; methyloxime - m/z 145–149; di-O-isopropylidene - m/z 301–308. To assess uncertainty, the root mean 
squared error was calculated by comparing the baseline MID of unlabeled glucose samples with the theoretical 
MID computed from the known abundances of naturally occurring isotopes.

2H/13C metabolic flux analysis (MFA).  The in vivo MFA methodology employed in these studies has pre-
viously been described in detail48. Briefly, a reaction network was constructed using the INCA software package49 
(http://mfa.vueinnovations.com/mfa). This network defined the carbon and hydrogen transitions for biochemical 
reactions linking hepatic glucose production and associated intermediary metabolic reactions. The flux through 
each reaction was estimated relative to citrate synthase (fixed at 100) by minimizing the sum of squared residuals 
between the simulated and experimentally determined MIDs of the six fragment ions previously described. Flux 
estimation was repeated 25 times from random initial values. Goodness-of-fit was assessed by the chi-square test, 
and 95% confidence intervals were computed by evaluating the sensitivity of the sum-of-squared residuals to 
variations in flux values50. The average SSR of each experimental group fell within the 99% confidence interval of 
the corresponding chi-square distribution with 22 degrees of freedom (i.e., the regressions were overdetermined 
by 22 measurements). Control SSR: 29.65 ± 7.05; APAP SSR: 41.87 ± 2.47. 99% CI = [8.6, 42.8]. Relative fluxes 
were converted to absolute values using the known [6,6-2H2]glucose infusion rate and rat weights. Flux estimates 
for the steady-state samples were averaged to obtain a representative set of values for each rat.

Metabolomic analysis.  Sample preparation was carried out at Metabolon Inc. (Durham, NC), in a manner 
similar to a previous study51. Briefly, individual samples were subjected to methanol extraction and then split into 
aliquots for analysis by ultrahigh performance liquid chromatography/MS (UHPLC/MS). The global biochemical 
profiling analysis comprised four unique arms, consisting of reverse-phase chromatography positive ionization 
methods optimized for hydrophilic compounds (LC/MS Pos Polar) and hydrophobic compounds (LC/MS Pos 
Lipid), reverse-phase chromatography with negative ionization conditions (LC/MS Neg), as well as a hydrophilic 
interaction liquid chromatography (HILIC) method coupled to negative ionization (LC/MS Polar)52. All methods 
alternated between full scan MS and data-dependent MSn scans. The scan range varied slightly between methods 
but generally covered 70–1000 m/z.

Metabolites were identified by automated comparison of the ion features in the experimental samples to a 
reference library of chemical standard entries that included retention time, molecular weight (m/z), preferred 
adducts, and in-source fragments as well as associated MS spectra, and curated by visual inspection for quality 
control using software developed at Metabolon. Identification of known chemical entities was based on compar-
ison to metabolomic library entries of purified standards53.

Two types of statistical analyses were performed: 1) significance tests and 2) classification analysis. Standard sta-
tistical analyses were performed in ArrayStudio on log‐transformed data. The R program (http://cran.r‐project.org)  

http://mfa.vueinnovations.com/mfa
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was used for non-standard analyses. Following log transformation and imputation of missing values, if any, with 
the minimum observed value for each compound, Welch’s two-sample t-test was used to identify biochemicals 
that differed significantly (p < 0.05) between experimental groups. An estimate of the FDR (q‐value) was calcu-
lated to take into account the multiple comparisons that normally occur in metabolomics‐based studies.

RNA isolation and sequencing.  Frozen whole liver was powdered in liquid nitrogen. Total RNA was iso-
lated from the liver using TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA) and the direct-zol RNA 
MiniPrep kit (Zymo Research, Irvine, CA). The isolated RNA samples were then submitted to the Vanderbilt 
University Medical Center VANTAGE Core (Nashville, TN) for RNA quality determination and sequencing. Total 
RNA quality was assessed using a 2100 Bioanalyzer (Agilent, Santa Clara, CA). At least 200 ng of DNase-treated 
total RNA with high RNA integrity was used to generate poly-A-enriched mRNA libraries, using KAPA Stranded 
mRNA sample kits with indexed adaptors (Roche, Indianapolis, IN). Library quality was assessed using the 2100 
Bioanalyzer (Agilent), and libraries were quantitated using KAPA library Quantification kits (Roche). Pooled 
libraries were subjected to 75-bp single-end sequencing according to the manufacturer’s protocol (Illumina 
HiSeq3000, San Diego, CA). Bcl2fastq2 Conversion Software (Illumina) was used to generate de-multiplexed 
Fastq files.

Analysis of RNA-seq data.  We analyzed RNA-seq data with Kallisto, a recently developed RNA-seq data 
analysis tool for read alignment and quantification. Kallisto pseudo-aligns reads to a reference, producing a list 
of transcripts that are compatible with each read while avoiding alignment of individual bases54. In this study, we 
pseudo-aligned the reads to the rat transcriptome downloaded from the Kallisto web-site (http://bio.math.berke-
ley.edu/kallisto/transcriptomes). Kallisto achieves a level of accuracy similar to that of other methods but is orders 
of magnitude faster; this allows calculation of the uncertainty of transcript abundance estimates, via the bootstrap 
technique of repeating analyses after resampling with replacement from the data. Here we employed bootstrap-
ping by repeating analyses 100 times with resampling for each data set. Considering that the average number of 
reads per data set is 35 million (25 to 51 million single-end reads), using other software tools to perform the same 
bootstrap analysis becomes prohibitively expensive.

To identify DEGs from transcript abundance data quantified by Kallisto, we used the companion tool Sleuth, 
which uses the results of the bootstrap analysis during transcript quantitation to estimate the technical variance 
directly for each sample55. Many software tools for differential gene expression analysis of RNA-seq experiments 
assume that the technical variance of gene counts follows a Poisson distribution, in which the variance equals 
the mean56. However, for many genes, the technical variance can be much higher than the expected Poisson 
variance57. A distinct advantage of Sleuth is that it models biological and technical variances explicitly with a 
response error model.

To understand the biological significance of the lists of genes whose expression levels were altered by APAP 
exposure, we used the DEGs derived from Kallisto-Sleuth analyses and identified significantly altered DEGs that 
were mapped to the rat GENRE, and used KEGG pathways to identify molecular pathways that were significantly 
enriched. We used the online tool Database for Annotation, Visualization, and Integrated Discovery (DAVID)27 
to perform this task.

Rat GENRE and model curation.  We reconstructed a functional rat GENRE (iRno), using orthology 
annotations from genes in the Human Metabolic Reaction 2 (HMR2) database58, and manually reconciled sev-
eral reactions by referring to the experimental literature and annotation databases16. The developed model, which 
contains 2,324 genes and 5,620 metabolites in 8,268 reactions connected by GPR rules, was validated for simulat-
ing 327 liver-specific metabolite functions successfully representing liver metabolism16. In this work, we further 
updated the iRno by incorporating new reactions or modifying some of the existing reactions based on exper-
imental evidence (Supplementary Table S8). For example, although the pyruvate kinase reaction (EC: 2.7.1.40) 
was reported as a reversible reaction in the original model, the Gibb’s free energy of the reaction under physio-
logical conditions suggests that it is irreversible59. Similarly, for the heme:oxygen oxidoreductase reaction (EC: 
1.14.14.18), we corrected the substrates and stoichiometry of the reaction components for consistency60. Using 
the metabolite evidence from the global metabolic profiling of plasma samples in the current study, we added 90 
transport and 105 exchange reactions to the original model to increase the number of metabolites mapping to the 
data. We provide the updated iRno model with these modifications in Supplementary Table S9.

Boundary conditions for iRno in the fasting state.  Our experimental design involved subjecting rats 
to APAP treatment under fasting conditions to maintain similar weight loss in the control and treatment groups. 
During fasting, the liver takes up gluconeogenic substrates, such as amino acids (AAs), lactate, and glycerol, to 
produce blood glucose, urea, and ketone bodies and takes up free fatty acids (FAs) for energy maintenance. Thus, 
the input fluxes (uptake rates) to our model are those of 1) AAs, 2) lactate, and 3) FAs and glycerol. The output 
fluxes (secretion rates) are those of 1) glucose derived from glycogenolysis and gluconeogenesis, as well as 2) urea 
and ketone bodies.

Multiple studies have used rats fasted overnight to deplete glycogen and measured input (AAs and lactate) and 
output (urea and ketone bodies) fluxes, using liver perfusion and in situ MFA61–66. In these studies, sham-treated 
control animals subjected to fasting conditions showed significant uptake rates of AAs and lactate with subse-
quent production of glucose, urea, and ketone bodies62. Furthermore, most of these studies measured the uptake/
secretion rates from rats fasted for about 24 h and evaluated the metabolic state of the liver under ex vivo per-
fusion conditions61,62,64–66. We noted considerable inconsistency in the uptake rates reported in these studies 
(Supplementary Table S5). In contrast, the study by Izamis et al.63 measured uptake/secretion rates from rats 
fasted overnight and used metabolite concentrations and flow rates in the major vessels entering and leaving the 
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liver under in situ conditions to evaluate the metabolic state of the liver. These conditions were similar to those in 
our experimental design. Thus, we used the majority of the approximated uptake and secretion rates derived from 
the study by Izamis et al. to constrain the respective input and output conditions for simulating metabolite alter-
ations. In doing so, we strictly enforced the values for all of the uptake rates by constraining the lower and upper 
bounds in our model, while we constrained the values for the secretion rates only in terms of the lower bounds. 
We provide a detailed summary of the uptake and secretions rates from these studies in Supplementary Table S5.

Transcriptionally inferred metabolic biomarker response (TIMBR) algorithm for metabolite pre-
dictions.  TIMBR is a novel method used for predicting toxicant-induced perturbations in metabolites by inte-
grating gene expression changes into GENREs16. Briefly, it converts log2 fold changes of all DEGs into weights (W) 
for each of the GPRs in the GENRE. These reaction weights are then transformed into larger (or smaller) weights 
to represent relative levels of expression between the control and toxicant-treated conditions. TIMBR then calcu-
lates the global network demand required for producing a metabolite (Xmet) by minimizing the weighted sum of 
fluxes across all reactions for each condition and metabolite, so as to satisfy the associated mass balance and an 
optimal fraction of maximum network capability (vopt) to produce a metabolite as follows16 (see ref.16 for details):

∑= ⋅
. . ≥ < < ⋅ =

X W v
s t v v v v v S v

min
: ; ; 0 (1)

met

X opt lb ub

where W denotes the vector representing the reaction weights, v is a vector of reaction fluxes, and S is the stoichi-
ometric matrix. We integrated the aforementioned boundary conditions for uptake and secretion rates into the 
algorithm by fixing the respective lower (vlb) and upper bounds (vub) of the exchangeable reactions (vex) in the 
model (Eq. 2). Similarly, we integrated measurements from the 13C-labeled tracer studies for some of the central 
carbon metabolism fluxes into the TIMBR algorithm by constraining the lower and upper bounds of the respec-
tive reactions in the model (vmfa) (Eq. 3).
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Using this method, we determined the relative production scores for all metabolites (Xraw) from control 
(Xcontrol) and toxicant-treated (Xtreatment) conditions (Eq. 4), and then calculated the TIMBR production scores (Xs) 
as the z-transformed scores across all exchangeable metabolites (Eq. 5).
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The schematic in Fig. 6 depicts the overall integration strategy. More detailed descriptions of the TIMBR algo-
rithm and the corresponding codes are available in the original publication16.

We used the experimental log2 fold changes of significantly altered (FDR < 0.10) plasma metabolites from the 
global metabolic profiling data (Supplementary Table S3) and then compared the corresponding iRno model pre-
dictions under no MFA and MFA conditions 5 or 10 h after APAP treatment (Supplementary Tables S4 and S7). 
Here, the model predictions of altered metabolite levels were considered as having increased or decreased based 
on TIMBR production score cut-off values of greater than 0.1 and less than −0.1, respectively. Metabolites with 
scores that were between −0.1 and 0.1 were considered as unchanged.

Data and code availability.  Normalized gene expression data from the RNA-seq analysis and genes 
mapped to the iRno model are provided in Supplementary Table S1. The results of KEGG pathway enrichment 
analysis using the mapped genes are provided in Supplementary Table S2. The results from global metabolic pro-
filing are provided in Supplementary Table S3. Metabolites mapped to iRno model are provided in Supplementary 
Table S4. The physiological boundary constraints required to simulate the metabolite predictions are provided in 
Supplementary Table S5. TIMBR predictions under random gene expression changes and addition of noise to the 
gene expression changes are provided in Supplementary Table S6. TIMBR predictions (Figs 7 and S1) are provided 
in Supplementary Table S7. Details of the modifications made to the iRno model are provided in Supplementary 
Table S8. An Excel file of the updated iRno model is provided in Supplementary Table S9. Additional information 
required to reproduce the figures can be obtained via the code made available as part of this publication at https://
github.com/BHSAI/APAP_toxicity_liver. Detailed explanations for TIMBR algorithm are available as part of the 
original TIMBR publication16 at www.github.com/csbl/ratcon1.
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