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a b s t r a c t

The physiology analysis system (PAS) was developed as a resource to support the efficient

warehousing, management, and analysis of physiology data, particularly, continuous time-

series data that may be extensive, of variable quality, and distributed across many files.

The PAS incorporates time-series data collected by many types of data-acquisition devices,

and it is designed to free users from data management burdens. This Web-based system

allows both discrete (attribute) and time-series (ordered) data to be manipulated, visual-

ized, and analyzed via a client’s Web browser. All processes occur on a server, so that the

client does not have to download data or any application programs, and the PAS is inde-

pendent of the client’s computer operating system. The PAS contains a library of functions,
Data base management system written in different computer languages that the client can add to and use to perform spe-

cific data operations. Functions from the library are sequentially inserted into a function

chain-based logical structure to construct sophisticated data operators from simple func-

tion building blocks, affording ad hoc query and analysis of time-series data. These features

support advanced mining of physiology data.

variable quality. A description of such files, based on data
1. Introduction

Advances in physiology sensors and data acquisition tech-
nology increasingly support collection of time-series data
from patients in locations other than the clinic or labora-
tory. These data provide new opportunities to analyze the
physiological state of individuals at times when such infor-
mation is most valuable, both in real-time and for post hoc
data mining. However, as the capability to collect time-series
data advances, data may be collected under suboptimal con-

ditions, such as during the monitoring of subjects engaged
in various states of physical activity, or during transport of
patients from a site of injury to hospital. These conditions can
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degrade the quality of the collected data. For example, cursory
examination of physiology waveform data, such as electrocar-
diograms (ECG) collected during transport of patients shows
that the waveforms are subject to patient movement arti-
facts, and yield records that exhibit intermittent periods of
good- and poor-quality recordings [1]. Before time-series data
can be comprehensively mined, it is necessary to efficiently
warehouse, manage, and analyze the data files, which can,
generally, be characterized as extensive, numerous, and of
ommand, MRMC/TATRC, Building 363, Miller Drive, Fort Detrick,
3.

collected from trauma patients, will be given below.
The physiology analysis system (PAS) was designed as

a research platform to facilitate the extraction of knowl-

erved.
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dge from physiology time-series data. Its essential features
educe the data management task faced by investigators,
hile providing data analysis capabilities in an environ-
ent that promotes ad hoc queries of the databases. The

ystem includes: (1) a platform to integrate storage, query
nd analysis of attribute (i.e., discrete) and time-series data,
2) a structure in which all system operations are executed
ia the Internet, and (3) an interface and logical struc-
ure that is as flexible and user-friendly as possible. The
AS requires only that clients have Internet access and a
eb-browser; all data storage, access, analysis, and graph-

cs functions reside on a server. Besides query and analysis,
he client can visualize all attribute and time-series data,
utput results in reports, export the results or raw data as
les, and share data and analytic routines amongst other
sers.

Ultimately, it is expected that the system will be used to
evelop knowledge that can be incorporated into algorithms
hat will, for instance, continuously monitor physiology vari-
bles during transport of a patient and provide a continuous
ead-out of the physiologic stress the patient is experiencing.

similar application is to use the mining-derived knowl-
dge to synthesize algorithms that will allow diagnosis of
njury type and severity, and prognosis of outcome based on
eal-time physiology data inputs from vital sign monitors, as
ommonly used during transport of injured civilians.

. Data specification

he PAS is independent of specific physiology data acquisi-
ion devices; it can incorporate data collected by any device,
s long as the time-series data can be expressed as ASCII files.
he PAS hosts multiple physiology databases in a common

nterface, and it currently incorporates three databases: (1)
ata collected during transport of patients from the site at
hich they were injured to a hospital [2], (2) data collected

rom subjects while they were engaged in varying intensities
f physical activity [3], and (3) data collected from subjects
uring transport on an instrumented platform similar to a

itter [4]. The time-series data were collected by a variety of
ata acquisition devices, including the Propaq Encore, Model
06-EL (Welch Allyn, Skaneateles Falls, NY), Lifeshirt (VivoMet-
ics, Ventura, CA), Schiller Cardiovit AT-6 (Schiller Inc., Baar,
witzerland), SensorMedics Model 2900 (SensorMedics, Yorba
inda, CA), and a respiratory flow track board (Novametrics
edical Systems, Wallingford, CT).

A data mining example, drawn from the trauma patient
atabase, will be used throughout this paper to illustrate
eatures of the PAS. This database consists of attribute and
ime-series vital signs data collected from approximately 900
atients during helicopter transport from the site of injury to
Level-1 trauma center at the University of Texas Health Sci-

nce Center at Houston, TX. The attribute data include items
uch as patient demographic information, injury description,
nd treatments. There are 100 variables of this type for each

atient, and these data have already been subjected to a
ining exercise [2]. In addition, twelve time-series variables
ere collected by Propaq 206 vital sign monitors [5] during

ransport; these include blood pressures, ECG, pulse oxime-
b i o m e d i c i n e 8 6 ( 2 0 0 7 ) 62–72 63

try, respiration, end-tidal CO2, and additional time-series data
files that are derived from the original waveforms, such as
heart and respiratory rates, and arterial blood oxygen satura-
tion.

The types of data described above have data management
and analysis challenges. These include: (1) variable data fre-
quencies, which result from data acquisition and output limits
specific to vital signs monitors and the algorithms used to
calculate derived values. In the trauma database, time-series
frequencies range from 182 Hz for the ECG waveform to 1 Hz
for derived values, such as heart rates, to sub Hz for blood
pressures (i.e., single-point blood pressures are measured by
employing a cuff, at intervals between 2 and 10 min), (2) the
sheer volume of data—the record for an average patient is
approximately a half million data points (approximately 2MB),
(3) both attribute and time-series data that must be analyzed
at the same time, and (4) a large number of data files to manage
(e.g., more than 14,500 time-series files, which consist of the
original waveform data and their associated derived values,
currently stored in the database).

Existing database management systems are not optimal
for the management and analysis of time-series data, since
they were not built with this objective [6,7]. Their storage
architecture is not structured to effectively handle time-series
data and simple time-series operations are poorly supported.
Querying the data requires writing statements in some form
of query language [7]; this is acceptable in business applica-
tions where the same queries are performed repetitively, but
becomes burdensome when the database is subject to ad hoc
queries, as is typical of medical data mining research applica-
tions.

3. Computational methods and theory

3.1. Function chain-based data query and analysis

The PAS works via function chains in which data are passed
through distinct functions that are sequentially executed until
the analytical objective is attained. For example, a simple
function chain consisting of two functions could be con-
structed by first applying a function to data in the trauma
database to select only individuals that suffer blunt injury, fol-
lowed by a second function to compute heart rate from their
ECG waveforms. There can be many functions to calculate
heart rate, each using a different method to do so, and the
user determines which one to insert into the chain.

A function chain accomplishes two objectives. The first is
to select a subset of subjects from the database, i.e., a query,
based on client-supplied constraints that can be applied to
attribute and/or time-series data. In the example, a constraint
was used to select only individuals with blunt injuries in the
trauma database.

A second function chain objective is the mathematical
analysis of time-series data that is associated with each sub-
ject, to yield new time-series or scalar data. In the example,

the calculation of heart rate from an ECG waveform yields new
heart rate time-series data that did not previously exist.

Function chain architecture, because of its inherent mod-
ularity, allows substantial flexibility in performing ad hoc
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queries and analyses of attribute and time-series data.
Attribute data can be queried in a fashion similar to ‘stan-
dard’ database queries, while the original time-series data, or
derived (new) time-series or scalar data that result after appli-
cation of functions to the original time-series data, can be both
queried and analyzed. For instance, using the example above,
after calculating heart rates from ECG waveform data for a set
of patients (analysis), a subset of the patients can be identified
that have mean heart rates greater than 100 beats per minute
(query).

3.2. Types of functions and their use in chains

In practice, each function in a chain is configured by pick-
ing the function from a library of functions, the variable(s)
it acts upon, parameters for the function, and optionally, a
constraint to be applied to the function’s output. Parame-
ters supply information necessary for a function to perform
the desired action; for instance, a function that calculates
the percentage of values in a time-series that fall within a
value range needs to have the upper and lower limits of the
value range provided as parameters. A constraint, in contrast,
compares the output from a function against an objective
standard, e.g., calculated heart rates must average greater
than 100 beats per minute (bpm). In this case, the constrained
function only passes on the variable values that pass the
constraint, and the corresponding ID subset for the indi-

viduals that meet the constraint. The interactions between
data type (attribute or time-series), parameters, constraints,
and function output result in three function applications
(Fig. 1):

Fig. 1 – Function applications. Application (a) always applies a co
of the original subjects (checkerboard box); the attribute variable
time-series data (horizontal lines) to generate new time-series o
Application (c) always generates new scalar data from input scal
applied to the derived data to select a subset of the original subj
n b i o m e d i c i n e 8 6 ( 2 0 0 7 ) 62–72

(1) Functions which are similar to those in a standard
database or spreadsheet. These functions are applied
exclusively to attribute data and always select subjects
that meet user supplied constraints (i.e., they produce
a reduced set of subjects while the variable remains
unchanged, Fig. 1a). Examples of such functions are ones
that select subjects (IDs) based on injury type, gender, or
whether they received more than 1 unit of blood in a hos-
pital.

(2) Functions that always mathematically manipulate time-
series data to generate new, derived time-series data
(Fig. 1b). These functions only generate derived data; the
set of subjects remains the same. An example of such a
function is one that extracts a specified range of data from
time-series files or that calculates a heart rate time-series
from ECG waveforms. In these cases, new time-series that
are smaller than the original ones are generated for each
subject.

(3) Functions that always mathematically manipulate scalar
or time-series data to generate new scalar data; in addi-
tion, if the user applies constraint criteria to the output of
the function, the function also selects a subset of subjects.
This type of function may be viewed as a hybrid between
the first and second functions described above; it gener-
ates new data and can change the set of subjects (Fig. 1c).
For example, this kind of function can calculate the length
of time-series data files for each subject, in which case the

lengths of the time-series files are generated as new data,
but the number of subjects is unchanged. However, if the
user specifies a minimal length constraint, then the out-
put from this step will be the time-series file lengths for

nstraint on attribute variables (open box) to select a subset
is not changed. Application (b) always takes as input

utput (speckled box); the set of subjects is not changed.
ar or time-series data; in addition, a constraint may also be
ects.
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drop-down menus; parameters or constraints on the functions
are selected from drop-down menus or typed in text boxes.

The system work flow is shown as a schematic in Fig. 2. In
general, the program flows from an initial login and database

Fig. 2 – The PAS work flow. Flow follows the broad arrows,
i.e., login, select database, assemble and execute a function
chain, view results in a report page, and view time-series
results graphically in the data viewer. The export files page
c o m p u t e r m e t h o d s a n d p r o g r a m

only the subjects that meet the length constraint (i.e., both
new data and a subset of subjects are generated).

.3. Function interactions

ecause function chains pass information sequentially from
preceding function to the next one in the chain, the PAS

ransparently ensures that only functions that can process
he output from the previous function can be added within
r at the end of a chain. Any function that meets the basic
equirement for meshing of inter-function data exchange can
e incorporated into a chain.

An important feature of the PAS is that it supports func-
ions that process multivariate inputs. As a result, because
unctions can accept as input newly generated values from
reviously executed functions, different function chains can
e assembled to progressively ‘feed’ their analytic output as

nput into other chains. In essence, instead of each element
n a function chain being a function, elements in this type of
unction chain are function chains in their own right.

.4. Function library

he PAS currently incorporates a library of over 60 functions
hat embody operations that can be applied to attribute or
ime-series data. The functions can be written in MATLAB, C,
++, Java, or FORTRAN, and the analytic objective of any func-

ion is limited only by the imagination of the investigator that
odes the function. Any function placed in the PAS library is
vailable to all users of the system. The system includes gen-
ral purpose functions that can process a wide variety of time-
eries variables by, for example, segmenting or concatenating
hem, applying filters, extracting features, or performing

athematical manipulations, such as difference, max, min,
nd other statistical analyses. However, narrow purpose func-
ions, which have very limited or specific inputs or outputs, are
lso incorporated; examples of this type are algorithms that
alculate a Glasgow coma score (a measure of head injury)
rom certain attribute physiologic variables, or perform a
ower spectrum analysis on ECG time-series data. Some of the
unctions analyze data on a per-subject basis, e.g., calculate
he standard deviation of heart rate for each patient; others act
n an across-subject fashion, e.g., compute the mean value of
he heart rate standard deviation for a set of selected patients.

.5. Boolean query

utput at each step in a function chain where subjects are
elected (i.e., a constraint is applied to decrease the set of sub-
ects) is controlled by Boolean logic. All functions in a chain,

here selection occurs, execute in a default Boolean ‘AND’
ashion. However, each step where selection occurs can alter-
atively be executed according to Boolean ‘AND’, ‘OR’, or ‘NOT’
perators, which can be parenthetically ordered.
.6. Optimized execution

he function chain-based logical structure of the PAS allows
he construction of very complex data analyses from sim-
le function-based building blocks. Function chain execution
b i o m e d i c i n e 8 6 ( 2 0 0 7 ) 62–72 65

and the evaluation of Boolean relationships are therefore
optimized, by algorithms developed in-house, to minimize
computational load. Furthermore, individual function results
are ‘remembered’ during execution of a function chain so that
they do not have to be recalculated if the function chain is par-
tially modified and re-executed. To minimize storage burden,
only the function chains are stored from session to session; the
chains are re-executed to generate the derived values from the
individual functions, when necessary.

4. System description

The user interface of the PAS is composed of several Web pages
with links to switch between them. The pages have a simple,
consistent HyperText Markup Language (HTML)-based inter-
face for selecting data and entering parameters. This plain
interface is used to allow the system to be accessed by dif-
ferent kinds of client Web browsers or computer operating
systems; in this configuration no downloads of any kind are
necessary to use the PAS. All attribute or time-series variables
and the functions that operate on them are selected from
is used for exporting time-series files to the client’s
computer for out-of-PAS analysis of the data. Two pop-up
pages (dotted) display additional information about
time-series or attribute data for a subject.
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selection page to one in which the data analysis is set up and
run, then to a report page that shows the results of the analysis
and ultimately to a data viewer page to display time-series
data graphically.

An optional page allows the user to export time-series files
in the PAS databases from the server to the client. A primary
feature of the PAS is its ability to identify a subset of subjects,
and their associated time-series data files that are appropriate
for advanced data mining procedures. Some of these analyses
will require computational capabilities that cannot reason-
ably be incorporated into the PAS as a set of functions; hence
the user can select and export any time-series files in the
databases; in a special case, this capability is linked with a
report page so that any newly created time-series data asso-
ciated with the subset of subjects may also be exported. The
user may select text or XML (Extensible Markup Language) as
the output file format.

The PAS automatically saves function chains each time
they are executed. This precludes the need to actively save
function chains as they are updated as the user changes
functions, variables, parameters, or constraints. The function

chains persist from session to session, and they can be shared
amongst users by transferring copies to other users’ directo-
ries. The PAS incorporates links to an extensive help page that
describes all variables, and functions and their parameters.

Fig. 3 – Schematic of the example query and analysis. All patien
panels (b–d) show results for a single patient from this set that e
rectangle), and a heart rate greater than 100 bpm (c, dotted rectan
patient is identified as simultaneously meeting all of the criteria
(dotted rectangle).
n b i o m e d i c i n e 8 6 ( 2 0 0 7 ) 62–72

The help page also details the experimental protocol by which
data were collected for each database in the system.

5. Example

Suppose one wanted to identify patients who may suffer
occult internal bleeding during transport to the hospital. A
subset of patients would be searched for with the following
features, which may hypothetically be associated with occult
internal bleeding (Fig. 3):

(a) From patients injured by all means (penetrating, blunt,
and unknown), find those with blunt injuries (Fig. 3a).

(b) Find patients with a narrow pulse pressure that falls
between 5 and 20 mmHg (pulse pressure is calculated
as systolic blood pressure (SBP) minus diastolic blood
pressure (DBP) and should normally be about 40 mmHg,
Fig. 3b).

(c) Find patients with an elevated heart rate that is greater
than 100 bpm for at least 20 s (Fig. 3c).
(d) From all of the patients above (a–c), find those that first
exhibit a diminished pulse pressure and simultaneously
express an elevated heart rate within 300–600 s after start-
ing transport to the hospital (Fig. 3d).

ts with a blunt injury (a) are selected. The subsequent
xhibits a pulse pressure between 5 and 20 mmHg (b, dotted
gle). The query and analysis is finished in (d), where the
within a 300–600 s window after the start of transport
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Fig. 4 – A screenshot of the example function chain. Each link indicates where a selection of a subset of patients occurs, i.e.,
the patient population is reduced. Link 1 incorporates a single function to select patients that suffered blunt injury.
However, link 2 consists of six functions; the first five functions in this link manipulate time-series data but do not select a
subset of patients, while the sixth function (“Intervals Start Time”) has a constraint applied to it that allows it to select the
final subset of patients. The time-series data output from the “Intervals Filter” function in sub-chain 2.2 ‘feeds’ into the
“Intervals Intersection” function in sub-chain 2.1. Data entry boxes for entering variables, parameters, and constraints pop
up for each function when it is clicked, but these are not shown for clarity. The Boolean relationship between links can be
modified by entering the link numbers and operators in the Boolean Expression box; in this example the default ‘AND’
r
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elationship is shown.

.1. Function page

ig. 4 shows a screenshot of a function chain to identify
he patients of interest. The chain consists of seven func-
ions, which are distributed into two logical groupings termed
inks. Each link denotes a step in the function chain at which

selection occurs, i.e., the patient population is changed.
n the example, a starting population of 898 patients is
educed to 778 patients at link 1, where only those with
lunt trauma are selected, and finally to 9 patients at the
nd of link 2, where only the patients meeting the requisite
ime-series features are selected. Although link 2 contains
ix functions; the first five functions only manipulate time-
eries data but do not select a subset of patients, while
he sixth function (“Intervals Start Time”) manipulates time-
eries data and also has a constraint applied that allows it
o select the final subset of patients. The “Intervals Intersec-
ion” function accepts multivariate input, where the output
rom the first two functions in sub-chain 2.1 and the output
rom 2.2 feed into it. Boxes for entering variables, param-
ters, and constraints pop up for each function when it is
licked, but these are not shown in the figure for clarity.
he flow of data through the function chain is shown in
ig. 5.

.2. Report page
report page, which shows the output after executing the
unction chain, is shown in Fig. 6. Report pages consist of
wo parts; an upper portion in which the functions are listed,
omplete with all of their parameters and constraints, and a
lower portion in which results are displayed in a format sim-
ilar to a spreadsheet, in which each row is a subject, and
the columns include the IDs of the selected subjects, their
attribute or scalar data, and hyperlinks to their associated
time-series data. Three other pages can be opened from the
report page to provide specialized views of the results. Report
pages are dynamic and incorporate multiple features:

(1) A click on the ‘Detail’ hyperlink for any subject opens a
new page that displays all of their attribute variables in a
tabular format (100 in the case of the trauma database).

(2) A click on a ‘patient id’ number opens a data viewer page
(see below) where all of that subject’s time-series variables,
both original and any newly generated by functions in the
function chain, can be viewed graphically.

(3) The remaining columns display the associated attribute or
scalar values, which met the constraints that were used to
select the subjects. If the final output of a function chain is
a time-series instead of an attribute or scalar value, then
the column will display a ‘time-series data’ hyperlink for
each subject. Clicking the hyperlink will open a page that
shows all of the time-series data output from the last func-
tion for that subject.

(4) An ‘Add Variable’ button allows the client to add variables
that were not used by the function chain to the report, if
desired.

(5) Checkboxes and the ‘Refresh’ and ‘Original’ data buttons

allow the client to manually reduce or restore the subject
subset.

(6) An ‘Export Report’ button allows the report page to be
exported to the client’s computer as a comma separated
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Fig. 5 – A graphical representation of function, variable, and data flow within a function chain designed to fulfill the
example query and analysis shown in Figs. 3 and 4. The chain is composed of seven functions (numbered), and small
graphs that show the input into and output from each function. The original input variables are listed on the right margin
(injury type, systolic blood pressure, SBP; diastolic blood pressure, DBP; ECG derived heart rate, ECG HR). (1) (Patient History)
is an application “a” function (Fig. 1a) that accesses the injury type attribute data and selects (passes on) only the subset of
IDs from patients that were injured by blunt injury. (2) (Difference) is an application “b” function (Fig. 1b) that takes two
original time-series variables, in this case systolic and diastolic blood pressures (units are mmHg, and time in s), and
generates (outputs) a new time-series by subtracting one from the other on a point-by-point basis. The patient ID subset is
not changed. (3) (Intervals Search) is an application “b” function that takes the output from the previous function and
generates a new time-series in which difference values that are greater than or equal to 5 and less than or equal to 20 are
identified (output from this and subsequent functions are coded 1 if values fall within the parameters, zero otherwise). (4)
(Intervals Search) accesses original ECG derived heart rate time-series data for patients identified by the preceding Patient
History function and identifies heart rates greater than 100 bpm. (5) (Intervals Filter) is an application “b” function that takes
the output from the previous function and generates a new time-series that identifies intervals that are at least 20 s long. (6)
(Intervals Intersection) is an application “b” function that takes the outputs from functions (3) and (5) and generates a new
time-series that identifies intervals where overlaps (i.e., 1 values) occur between the time-series from both functions. (7)
(Intervals Start Time) is an application “c” function (Fig. 1c) that takes the output from the preceding function, identifies the
times at which the met conditions (i.e., 1 values) occur and then applies a constraint that the first identified interval must
start between 300 and 600 s after the onset of data collection. The output from this function is a list of patient IDs that met

that
this constraint and a scalar value for each of these patients

values file that can be opened in standard spreadsheet
programs for out-of-PAS analysis of the results.

(7) An ‘Export Time-Series’ button allows the client to select

any of the original or newly derived times-series variables,
for any or all of the subject ID set, and to export them to
their computer as text or XML files for use in other pro-
grams.
give the time when the constraint was met.

(8) A ‘Save ID List’ button will save the selected subset of
patient IDs for use in different function chains.
5.3. Data viewer page

All time-series data in the system, including original and any
new time-series data calculated by functions can be exam-
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Fig. 6 – A screenshot of the report page generated after execution of the example function chain in Figs. 4 and 5. The top
portion of the figure lists the functions that comprise the chain, along with their associated parameters and constraints.
The table at the bottom of the report shows the result from executing the function chain; the first column (checkboxes)
allows removal of individual subjects from the table, if desired, the ‘detail’ link in the second column opens a page showing
all attribute data for a subject, the third column lists the IDs of the selected subjects (clicking on the ID number will open the
data viewer to view time-series data for the subject), the fourth column (Link: 1) shows the attribute data which was used in
the selection of the subset of subjects, while the fifth column (Link: 2) shows the start of the time interval where the
constraints in the function terminating this link are met. In this case, all of the selected subjects suffered blunt injury
(column four) and had intervals during which their heart rate was greater than 100 bpm for at least 20 s, their pulse pressure
fell to between 5 and 20 mmHg, and the two intervals became coincident between 300 and 600 s after the start of transport
t
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o the hospital (column five).

ned in the data viewer. All of the small time-series graphs in
igs. 3 and 5 are screenshots from the data viewer. All standard
raphics capabilities are available, including the capability to
xpand or decrease the size of the graph, set upper and lower
anges of the ordinate and abscissa axes, set line thickness,
tyle, color, and markers. Time-series for multiple subjects
nd their associated variables can be plotted in one graph; up

o nine different graphs can be shown at the same time on the
age. All graphics rendering occurs on the server by a MAT-
AB engine (see below). Image display requires only a small
utomatic download of PNG (portable network graphics) files
to the client’s data viewer page. It is not necessary to install
any viewer program or browser plug-ins in the client com-
puter, any of the common browsers can be used, and graphics
display does not depend on the power of the client’s computer.

6. Hardware and software specifications
The PAS is constructed from open-source software around a
MATLAB [8] computational core, and is hosted on a Dell Pow-
erEdge 2650 server that is configured with two 2.8 GHz, 512KB
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Fig. 7 – Architecture of the

Cache Intel Xeon Processors in a hyper-threaded configura-
tion, 4GB of double-data-rate memory, a 300GB hard drive,
and running the Slackware [9] 10.0 distribution of Linux. It
is a server based system (Fig. 7), and like any Web applica-
tion, requires a Web-server to host it. We use Apache HTTP
Server [10] for this purpose. Apache receives and serves the
requests for HTML and RHTML (Ruby-embedded HTML files)
pages from the client’s browser. RHTML pages are codes writ-
ten using ‘eruby’ [11], a language that allows developers to
embed Ruby scripts in HTML pages. Ruby [12] is the scripting
language used in PAS. In order to speed up the invocation of the
embedded Ruby scripts, Apache uses a tool called ‘mod ruby’
[13] that embeds the Ruby interpreter into Apache, thereby
allowing the scripts to be executed natively. Depending on the
processing involved, these Ruby scripts or other Ruby codes
invoked by these scripts may interact with:

(1) A MySQL database [14] using MySQL/Ruby [15], which is
the MySQL application programming interface (API) mod-
ule for Ruby. It allows Ruby to talk to MySQL databases.
MySQL provides a full relational database functionality.
While relational databases are not very good at managing
time-series data, they are optimized for attribute data; the

open source MySQL relational database is used to manage
the attribute data within the PAS.

(2) MATLAB via a MATLAB API for Ruby (termed MAT-
LAB/Ruby) that was developed in-house. It was developed
siology analysis system.

using the C interface provided by MATLAB and a software
development tool termed SWIG [16] (Simplified Wrapper
& Interface Generator) that allows us to connect pro-
grams written in C and C++ with Ruby. MATLAB is a
commercial software package that serves as the numeric
computational engine in PAS to execute both standard and
custom-programmed MATLAB functions; MATLAB also
serves as the graphics engine. Depending on the require-
ment, MATLAB accesses MySQL for attribute data using
the inherent API, or accesses HDF5 (Hierarchical Data For-
mat 5) files for time-series data. HDF5 [17] is a file structure
with a highly portable and extensible data format, and an
associated software library that is used to store, access
and manage complex data. All of the time-series data
are stored in these files, because the HDF5 file structure
allows a faster retrieval of time-series data, compared
to relational database management systems (DBMS). For
instance, the time required to load 990,000 rows of ECG
time-series waveforms (approximately 218,000 data points
per row) from a MATLAB data file into an Oracle 9i Release 2
DBMS Index Organized Table, versus into a HDF5 file is 37 s
versus 1 s, respectively. The reverse operation, extracting
500,000 rows worth of the ECG waveform data into MAT-

LAB from the Oracle DBMS versus the HDF5 file, required
147 s versus 0.11 s, respectively. To further increase the
speed of the system, we have developed C programs to
interact with HDF5 files using the HDF5 C library, and
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compiled them using MATLAB to create MEX files (i.e.,
MATLAB Executable files; these files can be run from
within MATLAB in the same way as MATLAB built-in func-
tions), thereby allowing us to access the HDF5 files directly
from MATLAB.

. Availability

he human physiology and other medical data are collected by
rganizations external to our research group, the Bioinformat-

cs Cell (BIC), and uploaded to the PAS server in batch mode.
he BIC only accepts human data that have been stripped of

dentifiers in accordance with Health Insurance Portability and
ccountability Act (HIPAA) requirements and, as such, these
ata are not further subject to HIPAA. The data are stored

n multiple databases on a redundant array of independent
isks, on a firewalled, secure shell-enabled, and user-name-
nd password-protected server. Sharing of retrospectively and
rospectively collected data between the organizations col-

ecting the data, the BIC, and third parties is performed under
ppropriate data sharing agreements.

Our objective is to use the PAS as a tool to advance the abil-
ty to develop algorithms to accurately diagnose a patient’s
hysiological state. Within the regulatory constraints that
ertain to the use and sharing of human data, the BIC will
ndeavor to make the PAS available as a data repository and
nalysis resource for military relevant medical research appli-
ations.

. Discussion

he PAS was designed as a turn-key system to warehouse,
anage, and analyze physiology time-series and attribute

ata. A primary design objective was to balance the conflict-
ng demands of functionality and simplicity. Many features of
he system, such as the supervision of interactions between
unctions, and data management and access, are transparent
o the client. Simplicity of use follows from the server-based
rchitecture of the system in which there is no requirement
or plug-ins, a simple HTML interface (no applet downloads
equired), no necessity to write database queries (e.g., in SQL),
nd the fact that system upgrades are only performed at the
erver so that the latest version is always available to the
lient.

The PAS is not static; data may easily be added to existing or
ew databases, and new, user-defined functions inserted into
he function library. Because each function is a unique calcu-
ation algorithm, it can be anything the user wishes to code
nto the function. For instance, a variable such as heart rate

ay be derived from time-series data by distinct algorithms
hat use various waveforms (ECG, pulse oximetry), and differ-
nt features of the waveforms (QRS fiduciary points, baseline
rossings) to calculate the heart rate. If it is necessary to calcu-
ate heart rate by yet another algorithm, then a new function

an be coded to perform the desired action and inserted into
he function library. User-defined functions expand the num-
er of analytic methods that can be applied to the data, and
herefore expand data mining capabilities.
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A feature that is particularly important for mining time-
series data is the ability to curate the data in the system.
The quality of time-series data, particularly those collected
in the field, is not assured. We have developed algorithms
to qualify ECG, pulse oximetry, and respiration waveforms,
to independently calculate waveform derived variables, such
as heart and respiratory rates, and to assign a point-by-point
quality value to these physiological variables [1,18]. Results
from these algorithms are incorporated into the PAS as new
time-series variables that can be searched in exactly the
same fashion as the original raw data files. This allows the
client to select only the best information for data mining,
even if the data are plagued by periods of poor fidelity. For
instance, based on our data qualification algorithms, we find
that only 48%, 30%, and 24%, respectively, of ECG, pulse oxime-
try, and respiratory waveform time-series data in the trauma
database are of good quality, but it is still possible to under-
take extensive data mining using only the good portions of the
waveforms.

To our knowledge, no software system exists with the same
capability, flexibility, and ease of use as the PAS. A cooperative
project between researchers at Beth Israel Deaconess Medi-
cal Center, Harvard Medical School, Boston University, McGill
University, and MIT, under the auspices of the National Cen-
ter for Research Resources of the National Institutes of Health,
has resulted in an exceptionally capable system (termed Phy-
sioNet) for the banking and analysis of physiology time-series
data [19]. However, before using this system, a UNIX emula-
tor and additional software must be downloaded, installed,
and configured on the client computer. Analysis of time-series
data not in the PhysioNet data bank requires conversion of the
data into a specific format, and storage and management of
the data files always need to be done on the client’s computer.
Furthermore, while elegant analysis of the data can be accom-
plished, this system does not perform time-series queries.

A system such as the PAS supports the investigation of
time-series data under a condition where the research objec-
tive is known, but many potential approaches to extract the
desired knowledge from the data exist. For instance, the U.S.
Army has a program termed “Warfighter Physiological Sta-
tus Monitoring” that seeks to use an array of biosensors to
continuously monitor responses of individual soldiers to envi-
ronmental stressors, such as heat or altitude, and to improve
the likelihood of survival after wounding by providing diagnos-
tic and treatment decision tools to first responder caregivers
[20]. The number of biosensors that can be used to meet these
objectives are limited, due to weight and power constraints,
and the optimal combination of biosensors and time-series
features (e.g., those intrinsic to individual waveforms, or com-
plex relationships between several waveforms) to be derived
from the time-series data are unknown. The PAS, which sup-
ports the management of time-series data, and extraction of
features from data of variable quality via a flexible query and
analysis capability, can potentially accelerate the identifica-
tion of useful diagnostic or prognostic features.

Ultimately, the PAS bridges informatics with physiologic

data. While attribute data are part of the conventional med-
ical record, physiology time-series data have not historically
been so. The PAS combines conventional database functions
with conventional physiology time-series analysis capabilities



m s i

r

72 c o m p u t e r m e t h o d s a n d p r o g r a

that do pre-exist and that have been captured in the system
functions. However, to truly combine these two pre-existing
functionalities, a system must allow time-series data to be
manipulated in a way similar to other medical record data,
i.e., the system lets one treat time-series data as any other
part of the medical record. The PAS provides such a capability.
This utility offers the possibility that voluminous time-series
data and complex analyses could increasingly become part of
the medical record itself.

Disclaimer

The opinions or assertions contained herein are the private
views of the authors and are not to be construed as official or
as reflecting the views of the U.S. Army or the U.S. Department
of Defense.
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