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The Importance of Different Frequency Bands
in Predicting Subcutaneous Glucose Concentration

in Type 1 Diabetic Patients
Yinghui Lu, Andrei V. Gribok, W. Kenneth Ward, and Jaques Reifman*

Abstract—We investigated the relative importance and predic-
tive power of different frequency bands of subcutaneous glucose
signals for the short-term (0–50 min) forecasting of glucose con-
centrations in type 1 diabetic patients with data-driven autoregres-
sive (AR) models. The study data consisted of minute-by-minute
glucose signals collected from nine deidentified patients over a
five-day period using continuous glucose monitoring devices. AR
models were developed using single and pairwise combinations of
frequency bands of the glucose signal and compared with a ref-
erence model including all bands. The results suggest that: for
open-loop applications, there is no need to explicitly represent ex-
ogenous inputs, such as meals and insulin intake, in AR models;
models based on a single-frequency band, with periods between
60–120 min and 150–500 min, yield good predictive power (error
<3 mg/dL) for prediction horizons of up to 25 min; models based
on pairs of bands produce predictions that are indistinguishable
from those of the reference model as long as the 60–120 min pe-
riod band is included; and AR models can be developed on signals
of short length (∼300 min), i.e., ignoring long circadian rhythms,
without any detriment in prediction accuracy. Together, these find-
ings provide insights into efficient development of more effective
and parsimonious data-driven models for short-term prediction of
glucose concentrations in diabetic patients.

Index Terms—Autoregressive prediction models, continuous
glucose monitoring (CGM), diabetes, glucose dynamics, glucose
signal frequency analysis.

I. INTRODUCTION

R ECENT developments in continuous glucose monitoring
(CGM) offer new opportunities and challenges in data
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collection and analysis [1], as these CGM devices can sam-
ple subcutaneous glucose concentrations as frequently as every
minute and store the sampled time series for up to several days
for retrospective analysis. On one hand, this abundance of infor-
mation opens new opportunities in data analysis and the under-
standing of the mechanisms of glucose regulation, while on the
other hand, it poses additional challenges in terms of informa-
tion processing and interpretation. Long and frequently sampled
time-series data collected from CGM devices have naturally in-
vited the use of techniques that require continual availability
of glucose data, such as Kalman filtering [2] and techniques
that are purely data driven, such as autoregressive (AR) mod-
els [3], for short-term prediction of glucose concentrations in
diabetic patients [4]–[8]. The obvious advantages of AR mod-
els are their analytical tractability and their ability to linearly
extrapolate future time-series values, producing a reliable and
accurate forecast. However, to yield accurate predictions, AR
models need to be fitted to a “training” signal and the fitting
procedure should lead to a sequence of AR model coefficients
that capture the major frequency components (or bands) in the
glucose signal.

The frequency bands in blood glucose signals reflect the
physiological mechanisms of glucose regulation, with different
mechanisms driving different frequency bands. For example, in
healthy individuals, the pulsatile insulin secreted by the pancreas
is reflected in patterns of blood glucose signal oscillations with
periods between 4 and 15 min [9]. Similarly, the patterns associ-
ated with postprandial glucose regulation of healthy individuals
have predominant periods ranging from 51 to 112 min [10],
with larger amplitude oscillations observed after evening meals
and smaller ones after morning meals, reflecting the circadian
rhythmicity of glucose regulation [11].

Recently, Rahaghi and Gough suggested that the spectrum
of oscillations in blood glucose signals of healthy individuals
could be characterized by four major frequency bands [12]. They
suggest that the lowest frequency band, corresponding to peri-
ods of at least 700 min (Band IV), reflects patterns of glucose
regulation associated with ultradian rhythms of long periodicity
and circadian rhythms. The first midfrequency band, spanning
oscillations with periods from 150 to 500 min (Band III), is
believed to be primarily associated with the schedules of ex-
ogenous inputs, such as the time of meals and insulin boluses
intake, while the second midfrequency band, spanning peri-
ods from 60 to 120 min (Band II), is deemed to reflect insulin
secretion in response to continuous enteral nutrition, constant
intravenous glucose infusion, or ingestion of a meal or insulin
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boluses [10], [13]. These oscillations are considered to be intrin-
sic responses [12] because they can be interpreted as a step, or an
impulse, response of the glucose regulatory system. The highest
frequency band, with periods between 5 and 15 min (Band I), is
assumed to be generated by rapid pulsatile insulin secretion by
pancreatic β cells and is best observed in fasting, nondiabetic
subjects [9]. However, because β cells are destroyed in type
1 diabetic patients and insulin is not produced, these high fre-
quencies are absent in the blood glucose signals of this patient
population [14].

In contrast to blood glucose, there is a limited body of work
concerning the frequency analysis of subcutaneous CGM sig-
nals, which, due to time delays and signal attenuation from
blood-to-interstitial transport, may differ from that of the blood
glucose, requiring additional independent studies. By and large,
the existing studies of the spectrum of CGM signals are limited
to Fourier series analysis [15], [16] and are not guided to edu-
cating the development of predictive glucose models. For exam-
ple, Breton et al. performed Fourier analysis for determining the
minimal sampling periods of blood and subcutaneous CGM sig-
nals of type 1 diabetic patients and concluded that CGM signals
of periods shorter than 36 min are nonexistent [15]. This loss of
information is attributed to the lowpass filtering effect caused by
the blood-to-interstitial transport of glucose concentration. In a
separate Fourier analysis study, Miller and Strange [16] suggest
that, in type 1 diabetic patients, the amplitude of the second and
third harmonics of CGM signals are correlated with mean HbA1
c values and that, in type 2 diabetic patients, the frequency con-
tent with periods shorter than 72 min is characterized by white
noise.

The efficient development of glucose concentration predic-
tive models for type 1 diabetic patients, in particular data-driven
AR models, where the model coefficients capture the frequency
content of the signal [4], [5], require a more detailed analysis
of the frequency components of the CGM glucose signal so
that the relative importance and predictive power of the differ-
ent frequency bands are properly characterized. In particular,
the answers to the following key, yet unknown, questions need
to be addressed: 1) How to optimize the glucose signal filter-
ing process so as to eliminate uninformative signal components
while keeping the important ones? 2) Which frequency com-
ponents must be present in an AR model to yield accurate,
short-term predictions? 3) Whether there is a need to explicitly
represent exogenous inputs, such as meals and insulin intake,
into the model? and 4) How much data are needed to develop
an accurate AR model?

In this paper, we attempt to address the aforementioned ques-
tions by first associating the frequency content of subcutaneous
glucose signals with those of blood glucose signals and then in-
vestigating the relative importance of the different frequency
bands of the subcutaneous glucose signal in AR modeling.
Based on the four major frequency bands suggested by Rahaghi
and Gough [12], we applied subband AR modeling [17] to CGM
signals of type 1 diabetic patients and determined the predictive
power of the different frequency bands and their dependencies
on prediction horizon. We found that, provided enough training
data were available, the AR models captured all the frequency

information present in the subcutaneous glucose concentration
signal, obviating the need to explicitly represent exogenous in-
puts into the model, such as meals and insulin, for open-loop
applications. We also found that the frequency band associ-
ated with the intrinsic response of glucose regulation was in-
dispensable for obtaining accurate predictions up to 50 min
ahead, although the energy content of this frequency band in
the glucose signal is low (∼1.5% of the total signal’s energy).
Finally, we concluded that a training signal as short as 300 min,
i.e., one that excludes low circadian rhythm frequencies, was
capable of producing accurate predictions, potentially shorten-
ing data collection time and expediting model development.
Together, these findings provide insights into the development
of more effective and parsimonious AR models for short-term
predictions of subcutaneous glucose concentrations in diabetic
patients.

II. METHODS

A. Study Population

In this paper, we analyzed the temporal dynamics and fre-
quency content of subcutaneous glucose time-series data of nine
deidentified type 1 diabetic patients. Subcutaneous glucose mea-
surements were collected on a minute-by-minute basis for each
of the nine subjects for approximately 5 days with the iSense
CGM system [4], [6]. Subjects were confined to the investiga-
tional site for the whole duration of the study and limited to mild
physical activity. Subjects were included if they were between
18 and 70 year of age, had been diagnosed with type 1 diabetes
and treated with insulin for at least 12 months, had a body mass
index of <35.0 kg/m2 , and had glycated hemoglobin (HbA1 c)
of >6.1%. Subjects were excluded if they had acute and severe
illness apart from diabetes, had a clinically significant abnor-
mal electrocardiogram, hematology, or biochemistry-screening
test, or had any disease requiring the use of anticoagulants.
In addition, subjects were excluded if they were pregnant or
lactating.

The subjects were provided three meals per day at 9 A.M.,
1 P.M., and 7 P.M. (plus a midafternoon snack at 4 P.M.) and
continued their normal insulin therapy, which was provided ei-
ther by an external continuous insulin pump or by multiple
daily subcutaneous injections. In addition, each subject received
a bolus of regular or ultra rapid insulin immediately before
each meal (excluding the snack) either by subcutaneous in-
jection or via the subcutaneous catheter of the insulin pump.
Fig. 1(a) shows the raw CGM signal for one patient (subject
#6) in our study collected over 4000 min (66.7 h), where the
time points of food and insulin intake are illustrated by verti-
cal lines. The figure illustrates the typical daily variations in
glucose concentration, including a drastic increase in concen-
tration between 6 and 9 A.M. although no food or other nu-
trients were taken during the night. This is due to a circadian
rhythm known as the “dawn phenomenon,” which is explained
by an increase in insulin resistance caused by certain hormones,
and occurs in both diabetic and nondiabetic individuals alike
[18], [19].
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Fig. 1. Subcutaneous glucose concentration of a typical type 1 diabetic patient.
(a) Raw and reference (i.e., filtered) glucose signals. (b) Relative magnitude
of the corresponding bandpass-filtered time series of the original raw signal
representing the four major frequency bands.

B. Frequency Analysis

To study the relative importance and predictive power of
the four major frequency bands suggested by Rahaghi and
Gough [12] for subcutaneous CGM signals, we developed four
bandpass filters, where each filter only passed glucose signals
in one of the four period bands (Band I: 5–15 min, Band II: 60–
120 min, Band III: 150–500 min, and Band IV: ≥700 min) of a
raw CGM time-series signal. Fig. 1(b) shows the corresponding
four bandpass-filtered signals extracted from the raw time-series
signal in Fig. 1(a). For example, through bandpass filtering of
Band IV, only patterns associated with circadian rhythms, such
as the 24-h dawn phenomenon, and ultradian rhythms with pe-
riodicities ≥700 min were extracted from the raw signal. How-
ever, because the Band I frequencies in Fig. 1(b) are expected
to consist mainly of measurement noise devoid of any signifi-
cant physiological information [15], [16], we performed limited
analysis for this high-frequency band.

We also developed multibandpass filters that only passed the
frequencies associated with each of the pairwise combinations
of three of the four bands, II, III, and IV. For example, for filters
that passed the pairwise combination of bands II+III, we used
a multibandpass filter that only passed the frequencies in each
of these two bands, eliminating all other frequencies, including
those in the 120–150 min gap between these bands. To ob-
tain a reference glucose concentration signal and corresponding
model against which all other subband signals and models could
be compared with, we used a lowpass filter with a cut-off fre-
quency of 1/3600 Hz (equivalent to a period of 60 min), which
removed the high-frequency content of the CGM signal up to the
lower bound of Band II. This cut-off frequency was selected for
two reasons. First, as discussed above, Fourier series analysis
from different studies of diabetic patients provides substantial
evidence that CGM signals with periods shorter than 36 min
are nonexistent [15] and that periods shorter than 72 min are
characterized by white noise [16]. Second, our group has shown

that, to obtain consistent AR coefficients and robust models
from CGM signals, it is necessary to remove frequencies with
periods shorter than ∼90 min [4]. The resulting reference signal
is illustrated in Fig. 1(a).

Finally, to analyze the overall frequency content of glucose
concentration signals of type 1 diabetic patients, we used the
Welch’s method with a Hamming window of 50% overlap to
compute the power spectral density (PSD) of the raw CGM
signals [20].

C. Autoregressive Modeling

An AR model is a type of linear model where a future
signal yn+1 , at discrete time n + 1, is represented by a lin-
ear combination of previous signal observations yn−i , i =
0, 1, 2, . . . ,m − 1, plus white noise εn+1

yn+1 =
m−1∑

i=0

biyn−i + εn+1 (1)

where m denotes the order of the model, i.e., the number of
previous observations used to represent yn+1 , and bi represents
fixed model coefficients. The coefficients bi describe the tem-
poral correlations between each of the previous signals yn−i ,
i = 0, 1, 2, . . . ,m − 1, and the next one yn+1 , and capture the
frequency content of the underlying signal [3]. Therefore, we
may use the set of coefficients bi and previous signals yn−i to
make one-step-ahead predictions for yn+1, i.e.,

ŷn+1 =
m−1∑

i=0

biyn−i (2)

where ŷn+1 denotes the predicted value for yn+1. Equation
(2) can also be used to make k-step-ahead predictions, with
k = 2, 3, . . . , by iteratively substituting the k − 1 predicted val-
ues for the corresponding k − 1 yet unobserved signals. For
example, we may make two-step-ahead predictions ŷn+2 by
substituting the predicted value ŷn+1 for its unobserved signal
yn+1 in the right-hand side of (2).

An AR model can also be represented in the frequency
domain. By performing a Z-transform of (1), we can con-
vert its discrete-time representation into a frequency-domain
representation

H(z) =
1

1 +
∑m−1

i=0 −biz−(i+1)
(3)

where H(z) denotes the corresponding transfer function of the
AR model. Because the coefficients bi in an AR model capture
the frequency content of the glucose signal, the PSD P (ω) of
this all-pole transfer function H(z)

P (ω) =
1

∣∣∣1 +
∑m−1

i=0 −bie−jω (i+1)
∣∣∣
2 (4)

where ω denotes the radian frequency, can be used to ap-
proximate the spectrum of the underlying glucose signal
[21].

To investigate the relative importance and predictive power
of each of the three Bands (II, III, and IV) associated with
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Fig. 2. Power spectral densities (PSD) of the raw glucose time series of nine
patients and their averaged spectrum estimated using the Welch’s method. The
four gray areas correspond to the four modeled frequency bands.

the different dynamics of glucose regulation, we applied the
method of regularized least squares to fit the coefficients bi and
obtain AR models of order 30 (m = 30), as proposed in [4].
Regularization yields smoothly varying AR-model coefficients
bi , a requirement for obtaining stable and accurate models with
clinically acceptable time lags [4]. For all calculations, we used
consecutive 2000 min (or 2000 data points) of the glucose signal
of a subject to fit the AR model. For each subject, we developed
separate AR models for each of the three bands as well as for the
three pairwise combinations of bands. For comparison purpose,
we also developed (reference) AR models for each subject using
the reference signal consisting of all three bands. Moreover, to
further investigate the glucose dynamics within the different
frequency bands and their combinations and compare them to
the spectrum estimated from the raw CGM signal using the
Welch’s method, we calculated the PSD using (4) for each of
the AR models.

The predictive power was quantified by root mean squared
error (RMSE) deviations, defined as the square root of the mean
of the squared differences between the predicted value ŷn and
the observed value yn . The predictive performance of the models
was evaluated for each subject using their corresponding testing
data between 2000 and 4000 min, and each model was evaluated
for different prediction horizons, ranging from 1 to 50 min.

III. RESULTS

Fig. 2 shows the PSDs estimated using the raw CGM signals
for each of the nine patients in the study, where the signal
energy was plotted as a function of the signal period instead of
frequency to facilitate physiological interpretation. The majority
of the signal’s energy fell within the two longest period ranges,
Bands III and IV. In contrast, Band II contained a relatively small
amount of the total energy (∼1.5%), while the energy in Band
I was only ∼0.6% of the total, which supports the conclusion
that, as in blood glucose signals [14], CGM signals of type 1

Fig. 3. (a)–(c) Mean power spectral densities (PSD) of single-frequency
bands and (d)–(f) pairwise-frequency bands estimated through the AR-model
coefficients.

diabetic patients lack high-frequency pulsatile insulin secretion
patterns.

Fig. 2 also illustrates the differences in the signal spectrum
profile for each of the frequency bands. For example, Band
IV was characterized by two distinct peaks at ∼12 and ∼24 h
associated with well-established ultradian and circadian periods
[11]. Similarly, Band III was characterized by five distinct peaks
at approximately 3.0, 3.5, 5.0, 6.0, and 8.0 h. The periods at 3.0
and 6.0 h exactly coincided with meal and insulin schedules at
1 P.M., 4 P.M., and 7 P.M., whereas the periods at 3.5 and 5.0 h
were likely related to the 4.0 h time interval between meal and
insulin schedules at 9 A.M. and 1 P.M. We speculate that the
8.0 h period is not associated with meal and insulin schedules,
but rather with ultradian oscillations associated with sleep [13].
Finally, analysis of the spectrum profile for Band II indicated a
number of peaks, including two predominant ones with periods
at ∼80 and ∼105 min (results not shown in the scale used
in Fig. 2). This finding is corroborated by the work of Simon
et al. [10], who identified the predominant period of the intrinsic
regulatory response in blood glucose to vary from 51 to 112 min.

Fig. 3 shows the mean PSDs (averaged over the nine sub-
jects) for Bands II, III, and IV and their pairwise combinations
estimated from the corresponding AR-model coefficients using
(4). The results show that, as expected, each AR model only
captured the frequency content of the corresponding frequency
band(s) of the CGM signals. Comparison with Fig. 2 indicated
that the PSDs estimated by the subband AR models were, in
general, less resolved than the ones obtained from the raw sig-
nal. For instance, Fig. 2 shows five salient periods in Band III
while Fig. 3(b) depicts only two of them, at ∼3.0 and ∼6.0
h. This is mainly attributed to the constraint, or regularization,
imposed on the fitting of the AR model coefficients bi [4].

Fig. 4 shows the predictive performance of the subband AR
models, where RMSEs, averaged over the nine subjects, were
plotted as a function of prediction horizon for the reference
model as well as for the single-band models [see Fig. 4(a)] and
the pairwise-band models [see Fig. 4(b)]. As expected, Fig. 4(a)
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Fig. 4. Average RMSE of the autoregressive model predictions as a function
of prediction horizon for the reference model based on all frequency bands, and
for models based on: (a) single-frequency bands and (b) pairwise-frequency
bands.

shows that the reference model, which captured the full dy-
namic range of the glucose signal, yielded the smallest RMSEs
across the 0–50 min prediction horizons. For prediction hori-
zons of <25 min, the AR models obtained with Band II or
Band III frequencies had essentially the same predictive per-
formance as the model obtained with the reference signal. This
result is instructive because it suggests that, for short prediction
horizons, middle-frequency dynamics, resulting from intrinsic
oscillations or schedules of exogenous inputs, are sufficient to
produce accurate models and that low-frequency dynamics, as-
sociated with circadian rhythms, may not be necessary. For
longer prediction horizons (25–50 min), Band III models outper-
formed Band II models because the former contained more low-
frequency content required for predicting longer horizons. This
was evident by the performance of Band IV model, which had
the worst predictive performance for short horizons (<40 min)
while outperforming Band II and III models for prediction hori-
zons of >45 min. We also confirmed that Band I signals were
not informative, as simulations showed that models based solely
on this frequency band consistently underperformed the other
models (results not shown).

Fig. 4(b) compares the performance of the pairwise-band
models. In stark contrast with the single-band models, the re-
sults indicate that when we considered frequencies from Band
II, with either Band III or Band IV, the resulting pairwise mod-
els were as predictive over the 0–50-min prediction horizon as
those obtained with the reference model. These results suggest
that although a frequency band may not have sufficient pre-
dictive power by itself, in combination with other bands, the
resulting models could be very accurate. Importantly, they also
indicate that the energy content of a signal alone was not neces-
sarily an appropriate metric for indicating its predictive power
(as discussed earlier, Band II accounts for only ∼1.5% of the
total energy of the glucose signal). Conversely, models con-
structed using frequencies from Bands III+IV, which account

Fig. 5. (a)–(c) Reference glucose signal for subject #6 (solid line), 35-min-
ahead autoregressive model predictions (dotted line), and associated RMSE
for models based on single-frequency bands and (d)–(f) pairwise-frequency
bands.

for ∼93.0% of the signal’s total energy, showed inferior per-
formance when compared with the other pairwise models and
some of the single-band models.

These results suggest that the prediction accuracy of AR mod-
els is highly dependent on which frequencies of the CGM signal
are captured by the AR model coefficients bi and weakly depen-
dent on the resolution of the captured frequencies. For example,
as discussed earlier, the AR models for Band III only captured
two [see Fig. 3(b)] of the five salient periods in this frequency
band (see Fig. 2). Nevertheless, for a 25-min prediction horizon,
the Band III AR models yielded an average RMSE of <2 mg/dL
[see Fig. 4(a)].

To provide further insights into the role of the different fre-
quency bands in AR-model predictions, we analyzed 35-min-
ahead predictions for a typical patient (subject #6) for models
based on the six possible combinations of single and pairwise
frequency bands, as illustrated in Fig. 5.

Fig. 5(a) shows that while the Band II model was capable of
yielding smooth predictions for the high-frequency oscillations,
such as those around 3000 min, it either underpredicted or over-
predicted the low-frequency trends, systematically generating a
prediction bias. Conversely, Fig. 5(b) shows that the Band III
model yielded accurate, albeit nonsmooth, predictions for the
low-frequency trends while overpredicting the high-frequency
excursions. These were further accentuated by the Band IV
model [see Fig. 5(c)], which produced predictions with large
oscillations. In contrast, Fig. 5(d) and (e), show that when
Band II was combined with, either Band III or Band IV, the
resulting models were extremely accurate, yielding negligible
RMSEs. Importantly, the exclusion of the Band III frequencies
[see Fig. 5(e)], which are deemed to reflect the schedules of
exogenous inputs, such as meals and insulin intake, did not neg-
atively impact the predictive power of the Band II+IV model.
This supports the finding of Finan et al. [22], which suggests that
providing the model with timing information about exogenous
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inputs may be redundant. Moreover, the exclusion of the cir-
cadian rhythms in Band IV from the model did not impact the
predictive power of the Band II+III model [see Fig. 5(d)]. This
observation is important from a model development point of
view, because it indicates that the training data can be obtained
from time segments much shorter than 24 h. This conclusion is
supported by simulations shown in Fig. 4(a), where the RMSE
profile over the entire prediction horizon for a model trained
on only 300 min of the reference signal (dashed line) coin-
cided with that of the reference model trained on the entire
2000 min. Fig. 5(f) shows that a model based on the combination
of Bands III+IV did not produce accurate predictions (RMSE
= 12.5 mg/dL), supporting our finding that the inclusion of
Band II frequencies was required to achieve high-fidelity mod-
els. Finally, we confirmed that models based on Band I frequen-
cies lacked predictive power, yielding 35-min-ahead prediction
RMSEs ranging from 25 mg/dL for pairwise-band models to
247 mg/dL for single-band models (results not shown).

IV. CONCLUSION AND DISCUSSION

In this paper, we linked the different frequency bands of
the subcutaneous glucose signal with the corresponding ones
from blood glucose and their physiological mechanisms of glu-
cose regulation. Using subband analysis of CGM signals from
type 1 diabetic patients, we investigated the relative importance
and predictive power of these frequency bands for short-term
AR-model predictions by addressing four outstanding issues:
1) How to optimize the glucose signal filtering process so as
to eliminate uninformative signal components while keeping
the important ones? 2) Which frequency components must be
present in an AR model to yield accurate, short-term predic-
tions? 3) Whether there is a need to explicitly represent exoge-
nous inputs, such as meals and insulin intake, into the model?
and 4) How much data are needed to develop an accurate AR
model?

First, we showed that the high-frequency signals in Band I
associated with pulsatile insulin secretion in healthy individ-
uals are nonexistent and, hence, lack predictive power in the
forecast of type 1 diabetic patients. This is supported by the
work of Gough et al. [14] who show that high-frequency signals
with periods shorter than 18 min should be treated as noise in
type 1 diabetic patients. Moreover, the work of Breton et al.
[15] suggests that signals with periods shorter than 36 min
are noninformative in type 1 diabetic patients, supporting our
recommendation to filter out signals with frequencies above
1/3600 Hz, i.e., periods below 60 min, before the development
of AR models. Such filtering has been found to be required to
yield consistent AR coefficients and robust models [4].

We hypothesize that similar filtering would be required to
develop AR models for type 2 diabetic patients because while
pulsatile secretion of insulin is not completely absent in this
patient population it is drastically attenuated [9]. This hypoth-
esis is corroborated by Miller and Strange [16] who suggest
that, for type 2 diabetic patients, CGM signals with periods
shorter than 72 min are characterized by white noise, and by
our recent work, which shows that when signals with periods

Fig. 6. Comparison of the average RMSE of glucose predictions for models
based on the original range of Band III (150–500 min) and the wider range
of Band III (120–700 min), where the latter eliminates the gaps between the
bands.

below ∼90 min are filtered out the resulting AR models become
portable from individual-to-individual regardless of the type of
diabetes [5]. It is not evident, however, whether this filtering
should be performed in signals from nondiabetic, fasting indi-
viduals with healthy β cells and prominent periods between 5
and 15 min [12].

Second, we showed that, among the single-band models,
those based on Band II frequencies, which account for the in-
trinsic response of glucose regulation, and Band III frequencies,
which represent the responses to external schedules, resulted
in modest prediction errors (<3 mg/dL) for prediction hori-
zons of up to 25 min. For models based on pairs of frequency
bands, the inclusion of Band II, with either Bands III or IV,
was imperative to achieving accurate predictions over the 0–
50 min range of prediction horizons, matching those obtained
by the reference model including all three bands. Overall, the
pairwise-band models containing Band II outperformed each of
the single-band models. These results strongly suggest that, for
accurate AR-model predictions, Band II frequencies must be
captured from the CGM signal. While this finding should have
been expected from the well-established glucose dynamics in
response to meals and insulin represented by the Band II fre-
quencies, it is somewhat surprising that the energy content of
these frequencies only account for ∼1.5% of the signal’s total
energy.

While the stratification of the glucose signal frequency into
the four bands used here follows those suggested by Rahaghi and
Gough [12], we note that other studies suggest slightly different
ranges for the frequency bands and examine their underlying
driving mechanisms from different perspectives [9]–[13], [15],
[16], [18], [19]. Moreover, the chosen bands are not exhaustive,
as there are uncovered frequency ranges, or gaps, between the
selected bands. To determine the effect of the uncovered fre-
quencies in our results, we extended each side of Band III to
cover the entire range between 120 and 700 min, i.e., we closed
the gaps between Band II and Band III and between Band III and
Band IV, and recomputed the corresponding model predictions.
Fig. 6 shows that, as expected, the wider Band III (120–700 min
versus the original 150–500 min) produced smaller predic-
tion errors, however, the improvements were marginal for both
the single-band and the pairwise-band models. These results
suggest that short-term AR-model predictions are not very
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sensitive to slight variations in the selection of the ranges of
the frequency bands.

Third, we found that the frequency content of Bands II, III,
and IV capture the dynamics of glucose regulation of type
1 diabetic patients, obviating the need to explicitly represent
and model exogenous inputs, such as caloric content of meals,
amount and type of insulin, and their schedules, for short-tem
(0–50 min), open-loop, glucose concentration predictions. This
is likely attributed to many factors: the blood-to-interstitial trans-
port attenuation of the high-frequencies in the CGM signal be-
low our Band II cutoff; the multiple periodicity of the insulin
regimen in our study, where patients received daily bolus in-
sulin and either continuous basal insulin or multiple long-acting
insulin injections; and the observation that the most important
periods for short-term predictions are those between 60 and
120 min (Band II), which encompass the time constants associ-
ated with the responses to meals and insulin intake.

The lack of a requirement to explicitly represent exogenous
inputs for short-term predictions with autoregressive models
is also supported by our recent work [5], which shows that
an AR model based on the frequencies in Bands II–IV from
one diabetic patient was able to accurately predict the glucose
concentration of 33 other patients from three distinct studies,
regardless of—among other factors—the different meals and
insulin intake regimens. Moreover, Finan et al. have also re-
ported that autoregressive models with exogenous inputs, i.e.,
ARX models, do not perform better than AR models that ex-
clude such information [22]. Because information about these
exogenous inputs is usually not readily available, the ability of
AR models to make accurate predictions solely on the basis
of prior CGM signals—for example, for open-loop alarms to
prevent hypo- and hyper-glycemic episodes—provides a signif-
icant advantage over more traditional first-principle models that
require such inputs. Conversely, for a model to be useful for a
closed-loop artificial pancreas, it must represent and infer the
effects of exogenous inputs.

Fourth, we found that AR models could be developed based
on time-series signals of short length (∼300 min), i.e., excluding
circadian rhythm information, without any detriment in predic-
tion accuracy. This observation simplifies and expedites model
development by significantly shortening data-collection time.

In conclusion, we have analyzed the relative importance of
the different frequency bands of subcutaneous glucose signals
in type 1 diabetic patients within the context of developing
data-driven AR models. This analysis provides insights, which
should be useful for efficient development of more effective and
parsimonious data-driven models for short-term prediction of
glucose concentrations in diabetic patients.
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