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SUMMARY
Electroencephalography (EEG) recordings during sleep are often con-
taminated by muscle and ocular artefacts, which can affect the results of
spectral power analyses significantly. However, the extent to which these
artefacts affect EEG spectral power across different sleep states has not
been quantified explicitly. Consequently, the effectiveness of automated
artefact-rejection algorithms in minimizing these effects has not been
characterized fully. To address these issues, we analysed standard 10-
channel EEG recordings from 20 subjects during one night of sleep. We
compared their spectral power when the recordings were contaminated
by artefacts and after we removed them by visual inspection or by using
automated artefact-rejection algorithms. During both rapid eye move-
ment (REM) and non-REM (NREM) sleep, muscle artefacts contami-
nated no more than 5% of the EEG data across all channels. However,
they corrupted delta, beta and gamma power levels substantially by up to
126, 171 and 938%, respectively, relative to the power level computed
from artefact-free data. Although ocular artefacts were infrequent during
NREM sleep, they affected up to 16% of the frontal and temporal EEG
channels during REM sleep, primarily corrupting delta power by up to
33%. For both REM and NREM sleep, the automated artefact-rejection
algorithms matched power levels to within ~10% of the artefact-free
power level for each EEG channel and frequency band. In summary,
although muscle and ocular artefacts affect only a small fraction of EEG
data, they affect EEG spectral power significantly. This suggests the
importance of using artefact-rejection algorithms before analysing EEG
data.

INTRODUCTION

Muscle and ocular artefacts corrupt electroencephalography
(EEG) signals recorded during sleep and alter their spectral
power, potentially affecting the interpretation of such signals
and their linkage to psychological disorders (Buysse et al.,
2001; Cohen et al., 2013; Woodward et al., 2000). Hence, to
process increasingly large streams of EEG recordings, some
research groups use well-established, automated artefact-
rejection algorithms (Brunner et al., 1996; Cohen et al., 2013;

Doman et al., 1995), which provide for objective and consis-
tent screening. However, the use of such algorithms has not
been adopted universally, because the extent to which muscle
and ocular artefacts affect spectral power values has not been
quantifiedexplicitly for whole-night rapid eyemovement (REM)
and non-REM (NREM) sleep. In addition, the extent to which
these algorithms help match spectral power to their artefact-
free levels has not been assessed fully. Providing a quantita-
tive characterization of the effects of artefacts on spectral
power and the effectiveness of artefact-rejection algorithms

ª 2017 European Sleep Research Society98

J Sleep Res. (2018) 27, 98–102 Methodology

http://orcid.org/0000-0001-7292-2029
http://orcid.org/0000-0001-7292-2029


will help to increase awareness for the need to properly post-
process EEG signals before they are analysed.
The objective of this report is twofold: (1) to quantify the

effects of muscle and ocular artefacts on the average EEG
spectral power across different sleep states and EEG
channels and (2) to assess the effectiveness of two
previously developed automated algorithms—one for muscle
artefacts (Brunner et al., 1996) and the other adapted for
rejecting potential ocular artefacts (Cohen et al., 2013;
Doman et al., 1995)—in minimizing the differences in the
average spectral power of whole-night EEG recordings with
respect to their artefact-free levels (annotated by visual
detection and rejection).

METHODS

We analysed visually curated polysomnography (PSG)
recordings of 20 subjects during 1 night of in-laboratory
sleep from a previously conducted study (Cohen et al., 2013)
at the University of Pittsburgh School of Medicine. The PSG
recording montage consisted of bilateral frontal (F3 and F4),
central (C3 and C4), temporal (T3 and T4), parietal (P3 and
P4) and occipital (O1 and O2) EEG channels; right and left
electro-oculogram (EOG) channels; and a bipolar submen-
talis electromyogram channel. We referenced the EEG and
EOG channels to linked mastoids, filtered the channels to
include frequencies from 0.3 to 100 Hz and sampled the data
at 256 Hz. Both the University of Pittsburgh Institutional
Review Board and the US Army Medical Research and
Materiel Command Human Research Protection Office
approved re-analyses of the data.
We analysed 74 NREM–REM cycles in total, consisting of

122 recording hours, scored previously in 20-s epoch
segments according to the criteria of Rechtschaffen and
Kales (1968). We partitioned each 20-s epoch into five non-
overlapping 4-s epochs and used the 4-s epoch (channel by
channel) as the basic unit for all subsequent analyses.
We inspected each EEG channel visually and annotated

each 4-s epoch (one channel at a time) for artefacts,
including muscle (possibly co-occurring with body/head
movement), ocular, cardiac, sweat, respiration and technical
(such as electrode pop, lead movement and environmental
interference) artefacts (Anderer et al., 1999). One rater
scored the EEG signals visually for artefacts and a second
rater reviewed the scored artefacts. Any disagreements were
resolved by consensus between the two raters. We used 4-s
epochs without any artefact in each EEG channel to compute
the (clean) spectral power PC, which we used as the ‘ground
truth’ for comparison.
To minimize the impact of muscle artefacts, we rejected

transient high-frequency activities at 4-s epochs from each
EEG channel (one EEG channel at a time, whenever the
power between 26.25 Hz and 32.00 Hz of the 4-s epoch
exceeded the moving median in a 3-min window centred
around the 4-s epoch by a factor of 4), using a previously
validated algorithm (Brunner et al., 1996). To minimize the

impact of ocular artefacts during REM sleep, we first applied
a previously developed algorithm for identifying REM events
by detecting sharp opposite-phase deflections in the two
EOG channels (Doman et al., 1995). We then rejected the 4-
s epochs equally from all EEG channels during which at least
one REM event was detected (because a REM event in EOG
channels indicates a potentially contaminated 4-s epoch in all
EEG channels). We note that Cohen et al. (2013) adopted
the same procedure to reject potential ocular artefacts.
First, to assess the effects of muscle and ocular artefacts

on EEG spectral power, for each NREM–REM sleep cycle
(from each subject) and each sleep state (REM and NREM),
we computed the power from the power spectral density
estimated using standard periodograms (Campbell, 2009) by
averaging the power spectra over all 4-s epochs devoid of
other contaminations but muscle artefacts (PC+M) and all 4-s
epochs devoid of other contaminations but ocular artefacts
(PC+O). We used visual inspection to label the 4-s epochs.
Subsequently, we compared them with the clean spectral
power PC by computing the percentage error (P – PC)/
PC 9 100%, where P denotes either PC+M or PC+O.
Secondly, to assess the effectiveness of the previously
developed algorithms in minimizing the effects of muscle and
ocular artefacts for each NREM–REM sleep cycle (from each
subject) and each sleep state (REM and NREM), we
computed the percentage errors between the spectral power
following exclusion of all 4-s epochs flagged by the auto-
mated algorithms (PBD) and the clean spectral power PC. We
performed the above analysis for each of the six frequency
bands [delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
sigma (12–16 Hz), beta (16–32 Hz) and gamma (32–50 Hz)]
and 10 EEG channels. We reported the average percentage
errors across the NREM–REM cycles obtained from the 20
subjects.

RESULTS

Effects of muscle and ocular artefacts on EEG spectral
power

During REM sleep, based on visual inspection, muscle
artefacts contaminated fewer than 5% of the 4-s epochs; they
equally contaminated each EEG channel (Supporting infor-
mation, Table S1). As expected, muscle artefacts resulted in
disproportionally large increases in delta (49–126%), beta
(66–171%) and gamma power (362–938%) (Fig. 1a, left
panel; Supporting information, Table S1) and moderate
increases in sigma (23–47%) and alpha power (10–19%).
The spectral power of temporal EEG channels appeared to
be more susceptible to muscle artefacts than that of other
EEG channels (e.g., on average, the gamma power and beta
power of temporal EEG channels increased by 870 and
154%, respectively, whereas the corresponding power of
other channels increased by 459 and 86%). Ocular artefacts,
in contrast, contaminated mainly the frontal (16% of the 4-s
epochs), temporal (12%) and central EEG channels (12%),
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and affected primarily delta power (25–33%) derived from
temporal and frontal channels (Fig. 1a, right panel; Support-
ing information, Table S1). During NREM sleep, muscle
artefacts were the main source of contamination, affecting
approximately 3% of the 4-s epochs and causing increases of
32–71% in beta power and 118–262% in gamma power
across different EEG channels.

Effectiveness of automated artefact-rejection algorithms

During REM sleep, applying both algorithms together effec-
tively matched the spectral power to within ~10% of the PC

values for each EEG channel and frequency band (Fig. 1b,
right panel; and Supporting information, Table S2). Applying
both algorithms rejected between 25.5 and 26.4% of the 4-s
epochs, most of which were rejected by Doman’s algorithm.
Fewer than 1% of the 4-s epochs were rejected by both
algorithms (Supporting information, Table S3). Importantly,

neither algorithm alone could match the spectral power to
within 10% of the PC values. Applying Brunner’s algorithm
alone left the delta power of frontal and temporal EEG
channels largely uncorrected (27–38% error relative to PC),
whereas applying Doman’s algorithm alone failed to match
the beta power (35–88%) and gamma power (177–543%)
across all EEG channels. During NREM sleep, Brunner’s
algorithm rejected fewer 4-s epochs (< 2%) than did visual
inspection. Despite this lower rejection percentage, Brunner’s
algorithm effectively matched the NREM spectral power to
within ~10% of the PC values for each EEG channel and
frequency band.

DISCUSSION

Although muscle and ocular artefacts affect only a small
fraction of EEG data (3–16%), they inflate the spectral
power of EEG signals significantly. The power spectra of

Figure 1. Topographical patterns of the effects of muscle and ocular artefacts on electroencephalography (EEG) spectral power (a), and the
effectiveness of automated artefact-rejection algorithms (b) during rapid eye movement (REM) and non-REM (NREM) sleep. PBD: power after
automated artefact rejection; PC: clean power; PC+M: power contaminated by muscle artefact; PC+O: power contaminated by ocular artefact; PR:
raw power.
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delta, beta and gamma frequency bands were particularly
susceptible to muscle and ocular artefacts, especially
during REM sleep, with increases of up to 126, 171 and
938%, respectively. In contrast, in terms of percentage
difference, typical group effects between subjects with and
without post-traumatic stress disorder ranged from 20 to
35% for features derived from EEG spectral analysis
(Cohen et al., 2013; Cowdin et al., 2014; Mellman et al.,
2007; Richards et al., 2013). This strongly suggests the
need to remove these artefacts before interpreting EEG
power spectral data.
The artefact-rejection algorithms of Brunner and Doman

effectively minimized the effects of muscle and ocular
artefacts, respectively. Notably, applying these algorithms
to our data set reduced the errors in EEG spectral power to
within ~10% for each EEG channel and frequency band,
without targeting other types of artefact specifically. This
could be considered as adequate when compared with the
natural variability in EEG spectral power across different
subjects and sleep cycles [on average, the coefficient of
variation was 48% (range: 27–94%) for REM sleep and 60%
(range: 37–95%) for NREM sleep]. Further examination of the
intrasubject variability in EEG spectral power between 2
nights revealed that the median absolute percentage differ-
ence in the spectral power was ~20%, which was well above
the percentage errors we achieved after applying the auto-
mated algorithms. Therefore, we strongly recommend
screening PSG data, prior to spectral analysis, for both
muscle and ocular artefacts with these or similarly effective
automated artefact-rejection routines. This is especially
important when investigating potential biomarkers of risk or
resilience for physical or psychiatric conditions, or reliable
predictors of treatment response or treatment resistance to
guide efforts in precision medicine. We acknowledge that the
prevalence of different artefacts may vary across studies. If
those other than muscle and ocular artefacts have consid-
erable impact on the spectral power because their preva-
lence is high, they should also be considered in performing
spectral analysis. The proposed methodology could be
adapted for this purpose, because it is equally applicable to
quantifying the effectiveness of other automated artefact-
rejection algorithms.
Although we focused upon evaluating the effectiveness of

artefact-rejection algorithms, artefact-correction techniques
such as principal component analysis (PCA) and indepen-
dent component analysis (ICA) (Jung et al., 2000; Vigario,
1997) attempt to correct contaminated signals instead of
completely discarding them, thus avoiding the unnecessary
rejection of brain EEG signals that may correlate with
artefacts (such as phasic EEG activities during REM sleep).
However, most PCA- or ICA-based techniques require
manual identification of the underlying independent sources
of the signal before their mixture can reproduce the original
EEG signal (Vigario, 1997), and their effectiveness may be
compromised when only a few EEG and EOG channels are
available (which is not uncommon in many sleep biomarker

studies). Moreover, an established method to evaluate the
effectiveness of these artefact-correction techniques does
not yet exist, given the difficulty of obtaining the underlying
uncontaminated signals (Croft and Barry, 2000). Finally, we
need to exercise caution when applying PCA or ICA to whole-
night EEG recordings, because sleep EEGs are heteroge-
neous across sleep states and it is unclear whether a single
PCA (ICA) mixture model would be adequate for all sleep
states.
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SUPPORTING INFORMATION

Additional Supporting Information may be found online in the
supporting information tab for this article:

Table S1. Effects of muscle and ocular artefacts on
electroencephalography (EEG) spectral power during rapid
eye movement (REM) and non-REM (NREM) sleep.
Table S2. Effectiveness of automated artefact-rejection

algorithms in matching electroencephalography (EEG) spec-
tral power during rapid eye movement (REM) and non-REM
(NREM) sleep.
Table S3. Prevalence of visually scored artefacts and

fraction of 4-s epochs rejected by automated algorithms
during rapid eye movement (REM) and non-REM (NREM)
sleep.
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