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ABSTRACT: To lower the possibility of late-stage failures in the drug development
process, an up-front assessment of absorption, distribution, metabolism, elimination, and
toxicity is commonly implemented through a battery of in silico and in vitro assays. As in vitro
data is accumulated, in silico quantitative structure−activity relationship (QSAR) models can
be trained and used to assess compounds even before they are synthesized. Even though it is
generally recognized that QSAR model performance deteriorates over time, rigorous
independent studies of model performance deterioration is typically hindered by the lack of
publicly available large data sets of structurally diverse compounds. Here, we investigated
predictive properties of QSAR models derived from an assembly of publicly available human
liver microsomal (HLM) stability data using variable nearest neighbor (v-NN) and random
forest (RF) methods. In particular, we evaluated the degree of time-dependent model
performance deterioration. Our results show that when evaluated by 10-fold cross-validation
with all available HLM data randomly distributed among 10 equal-sized validation groups,
we achieved high-quality model performance from both machine-learning methods.
However, when we developed HLM models based on when the data appeared and tried to predict data published later, we
found that neither method produced predictive models and that their applicability was dramatically reduced. On the other hand,
when a small percentage of randomly selected compounds from data published later were included in the training set,
performance of both machine-learning methods improved significantly. The implication is that 1) QSAR model quality should be
analyzed in a time-dependent manner to assess their true predictive power and 2) it is imperative to retrain models with any up-
to-date experimental data to ensure maximum applicability.

■ INTRODUCTION

Modern drug discovery is a costly and risky endeavor where
failures in late-stage clinical trials still remain common,
essentially negating all prior compound development invest-
ments.1,2 Thus, “fail early, fail cheap” is imperative, and multiple
in vitro assays have been developed to assess pharmacokinetics
properties early in the hit/lead generation stage.3 Among them,
the human liver microsomal (HLM) stability assay is perhaps
the one most commonly utilized for assessing clearance of
chemicals by the human liver−the most important organ for
drug metabolism. In a phase I HLM assay, a compound is
initially incubated in human liver microsomes containing major
drug metabolizing cytochrome P450 (CYP) enzymes. The
fraction of compound remaining is then quantified at different
time-points by liquid chromatography−mass spectroscopy, and
the half-life or clearance rate is calculated from the time-series
data.4 Compounds with short half-lives are quickly metabolized
in the liver, and a significantly higher dose may be needed to
achieve a desired therapeutic concentration in systemic
circulation. However, high dosages are associated with
increased drug-induced toxicity, the main factor for a drug to
either fail in the development stage or be withdrawn from the
market.5

To flag compounds that are rapidly metabolized in the
human liver, all major pharmaceutical companies have adopted
the HLM assay, with the result that tens of thousands of
compounds have been evaluated in this system. In addition,
computational HLM stability prediction models6−9 have been
developed for virtual screening and guiding compound design.
Because complex molecular mechanisms contribute to HLM
stability, development of predictive in silico models requires a
large number of structurally diverse compounds with HLM data
as the training set. Unfortunately, the existing large in vitro data
sets are not routinely shared in the community, restricting the
broad development and utilization of in silico models for
predicting HLM stability. Furthermore, because the data from
the training and test/validation sets of the developed models
are not routinely disclosed, the true predictive power of the
models cannot be independently verified.
However, over the past decade, a significant amount of HLM

stability data for drug-like compounds have been disclosed in
piecemeal fashion through research publications and collected
in publicly accessible databases, such as ChEMBL.10 With the
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availability of this data, which currently stands at thousands of
compounds, we evaluated different aspects of quantitative
structure−activity relationship (QSAR) model performance
from this collective data set. In particular, we critically evaluated
whether models developed from the currently available data can
be used to predict the HLM stability of compounds or
compound series that have not yet been synthesized; i.e., what
does it take to make prospective de novo predictions. We like to
point out that prospective model predictability is the subject of
recent papers of Sheridan et al.11,12 and Wood et al.13 using
Merck and AstraZeneca proprietary data sets, respectively.
Results of the present study using the publicly available HLM
data set support their proposition that time-split method of
dividing training and test sets is a more realistic way of
simulating prospective predictions.

■ MATERIALS AND METHODS

The HLM Data Set. We retrieved HLM data from
ChEMBL, a manually curated chemical database10 of bioactive
molecules maintained by the European Bioinformatics Institute,
on 6 February 2015. To retrieve the data, we used the assay
search functionality with the keywords “human liver micro-
some,” which returned 3,392 assays. We filtered compounds
tested in these assays by retaining only entries that had half-life
(T1/2) as the reported bioactivity. This resulted in a list of 4,274
compound entries. We removed 262 entries that either lacked
T1/2 values or were associated with nonhuman organisms:
Rattus norvegicus (brown rat) or Homona magnanima (moth).
In addition, we removed all entries associated with testing
glucuronidation (phase II metabolism) with the uridine
diphosphate glucuronic acid (UDPGA) cofactor or those that
include both reduced nicotinamide adenine dinucleotide
phosphate (NADPH) and UDPGA as cofactors. We further
removed data associated with human liver supersomes
(microsomes prepared from insect cells infected by baculovirus
and containing the complementary DNA of a single human
CYP isoenzyme). We also removed data derived from
experiments with the presence of inhibitors of some specific
CYP isoforms, and data taken in the absence of the NADPH
cofactor. The resulting data set contained compound stability
information, as measured by T1/2, against phase I metabolism in
human liver microsomes. However, not all entries in the data
set are from structurally unique compounds, as some of the
compounds were tested and/or reported multiple times and
appeared in data sets from different sources.
We next processed the T1/2 data to classify compounds as

stable or unstable by selecting a threshold value. In a couple of
publications on the same subject, an intrinsic clearance rate
(CLint) of 20 mL/min/kg was chosen to classify compounds as
stable (CLint < 20 mL/min/kg) or unstable (CLint ≥ 20 mL/
min/kg) based on the CLint distribution of a large number of
Pfizer compounds (∼15,000).7,8 Using the equation proposed
by Obach et al.14 relating CLint and in vitro T1/2 as

= × ×
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we calculated the corresponding T1/2 to be 32.7 min. We thus
chose a T1/2 of 30 min to categorize a compound as stable (T1/2
> 30 min) or unstable (T1/2 ≤ 30 min) in an HLM assay.

Based on the T1/2 threshold of 30 min, we removed from the
data set nine compounds that we could not unambiguously
classify as stable or unstable; e.g., a reported value of T1/2 > 15
min cannot be classified in our scheme. Furthermore, 145
compounds appeared 319 times in the data set. For a
compound with multiple entries, we retained a single entry if
all their entries had an unambiguous T1/2 value either higher or
lower than 30 min. Otherwise, we removed all the entries
associated with the compound.
The final assembled HLM data set comprised 3,654

compounds, 2,313 (63%) of which were classified as stable,
and 1,341 (37%) of which were classified as unstable. Most of
the collected data appeared in peer-reviewed journals published
from 1998 to 2014; however, 37 entries were not associated
with any date. The data set is provided as Supporting
Information. We like to point out that all biological assay
results are associated with certain degrees of uncertainty.
Because the HLM data collected in ChEMBL were derived
from different laboratories over a long time, data reproducibility
may be lower than expected. We tried to estimate uncertainty
of the half-life data from the 319 entries associated with 145
compounds but without success. This was because many of the
entries reported T1/2 larger or smaller than some threshold
values. The estimation was also confounded by that some
compounds were reported with exactly the same T1/2 in
different papers, not representing true multiple determinations,
but rather, rereporting of a single measurement. Even though
we were not able to give a reliable estimate of the uncertainty of
the T1/2 in the data set, we believe the data set is noisier than
HLM data derived from a single laboratory. Because of higher
than expected noise in the data set, we attempted to develop
and evaluate HLM stability classification models instead of
numerical half-life prediction models. Classification is less
susceptible to data variability, because a compound with a
numerically different half-life of 60 or 80 min classifies it into
the same category (if the classification threshold is 30 min).
However, for compounds with half-life close to the threshold,
assay reproducibility is still an issue, as different measurements
can easily designate a compound in different categories.
Considering that all biological assays have reproducibility issues
and therefore a perfect training set does not exist, we feel that
the goal of QSAR modeling should not be producing a model
that gives perfect prediction of the training set, because doing
so will inevitably lead to overfitting.

Molecular Descriptors. Because multiple CYP enzymes as
well as some other enzymes contribute to the metabolism of
chemicals in a phase I HLM assay, the molecular mechanisms
by which the compounds are metabolized are complex and
largely unknown. For such systems, the only basis for
computational predictions is the principle of similar molecular
structures having similar bioactivities. Thus, the appropriate
molecular descriptors should provide detailed descriptions of
molecular structures. Molecular fingerprints provide the most
detailed descriptions of molecular structures, and they are
widely used in chemical database searches for structurally
similar compounds. In this study, we used the extended
connectivity fingerprint (ECFP)15 from Biovia as the molecular
descriptor. The fingerprint was generated iteratively to encode
features that represent each atom in larger and larger structural
neighborhoods. At iteration 0 (ECFP_0), we encoded the
information on individual atoms by turning on a corresponding
bit in a binary bit string. The information includes the number
of connections (bonds) to the atom, element type, charge, and
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atom mass. At iteration 1, we encoded the information on all
atoms directly bonded to the atom (within a diameter of two
chemical bonds and, hence, termed ECFP_2). At iteration 2
(ECFP_4), we encoded the information on all atoms within a
diameter of four chemical bonds. When we reached the desired
neighborhood size, the process was complete, and the set of
bits representing all features of the atom was returned as part of
the molecular fingerprint. We repeated this process for all the
atoms in a molecule. The molecular ECFP_n fingerprint is,
thus, a collection of all the bits representing atoms in their
molecular neighborhoods, where each bit represents a specific
molecular structure moiety and is called a bit-feature.
With increasing n, ECFP_n gives an increasingly more

detailed description of the molecular structure. However, with
increasing n, the number of unique bit-features increases
exponentially, and so does the computational cost. A practical
strategy to balance the cost and performance is to fold an
original fingerprint into a fixed-length bit string by the logical
OR operation.16 The folding leads to loss of information due to
bit-feature clashing, with the degree of information loss
proportional to the degree of folding. To balance the
computational cost and accuracy of molecular structure
description, we chose to use an ECFP_4 fingerprint folded to
a fixed length of 2,048 bits as molecular descriptor in this study.
The pros and cons of using ECFP_4 versus a larger fingerprint
size such as ECFP_6 were discussed in previous studies.11

Generally speaking, ECFP_4 gives a reasonably good
description of molecular structure details. Larger fingerprint
size provides even more detailed descriptions but at the
expense of significantly longer bit strings. If the bit strings have
to be folded to a computationally manageable length,
information loss due to folding may cancel the benefits of a
larger fingerprint size.
Random Forest Method. Random forest (RF)17,18 is one

of the most popular machine-learning methods used in the
chemoinformatics/QSAR community. In previous publications
of in silico prediction of HLM stability, RF was found to
outperform several other machine-learning methods, including
support vector machines, logistic regression, recursive partition-
ing, and a naiv̈e Bayesian classier.7,8 We therefore selected RF
as our first method in this study. To develop an RF model, we
trained 500 decision trees. Each of them used a subset of
ECFP_4 bit-features to recursively partition the training set
samples so that the stable and unstable compounds were
enriched in different branches. To predict the HLM stability of
a test compound, we used all 500 decision trees. A compound
was categorized as unstable if it was predicted unstable by more
than 50% of the trees. We used the RF module of the R Project
for Statistical Computing19 as implemented in Pipeline Pilot.20

Variable Nearest Neighbor Method. Similarly, based on
the premise of similar structures having similar activities, the k-
nearest neighbor method should be well suited for QSAR, as it
always uses k-nearest neighbors to make a prediction. As such,
it is used in a number of studies of metabolic stability.9,21 A
shortcoming of this method is that it always bases a prediction
on a constant number of nearest neighbors, irrespective of
whether the nearest neighbors are structurally similar enough to
ensure similar activity. To correct for this shortcoming, we have
proposed a variable nearest-neighbor (v-NN) method.16

Instead of using a constant number of nearest neighbors, v-
NN uses all nearest neighbors meeting a structural similarity
criterion for making a prediction. When no nearest neighbor
meets the similarity criterion, we do not make a prediction in

order to maintain the overall prediction reliability. In essence,
the predicted property y is a weighted average across
structurally similar neighbors, as
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where di denotes the Tanimoto distance between a target
molecule for which a prediction is made and molecule i of the
training set. The Tanimoto distance was defined as 1 − TC,
where TC is the Tanimoto similarity coefficient between two
the molecules. yi denotes the experimentally measured value of
molecule i; v denotes the total number of training set molecules
satisfying the condition di ≤ d0. h is a smoothing factor which
dampens the distance penalty, and d0 is a Tanimoto-distance
threshold beyond which two molecules are not considered
sufficiently similar to include in the average. To predict HLM
stability, we assigned a yi value of 1 to all unstable compounds
and a value of 0 to all stable compounds in the HLM data set.
Using eq 2, the predicted HLM stability value falls between 0
and 1. A value below 0.5 classifies a compound as stable;
otherwise, a compound is classified as unstable.
We used both RF and v-NN methods in the present study

based on the following considerations. First, RF was one of the
top-performing methods for HLM stability prediction in
previous studies, and therefore it should be included in the
present study as a benchmark. Second, v-NN is a recently
developed method that needs to be critically evaluated and
compared to existing standard models. Third, RF and v-NN use
different aspects of molecular structure information. RF uses
presence/absence of specific molecular structural fragments to
partition the samples into different subsets and thus focuses on
individual molecular structural features. v-NN, on the other
hand, uses overall molecular structural similarity as measured by
Tanimoto distance. Thus, the two methods may complement
each other, and a consensus prediction may be more reliable
than either method alone. We used both methods in the study
to evaluate if they indeed complement each other.
The RF and v-NN methods have two major advantages

compared to regression-based modeling approaches. First, they
can handle the situation of multiple molecular mechanisms
contributing to an experimental end point. In the RF approach,
each decision tree or a subset of decision trees may represent
contribution of a distinct molecular mechanism. In the v-NN, a
prediction is made from information on structurally similar
compounds only. The presence of structurally dissimilar
compounds in the training set that may be associated with
distinct molecular mechanisms do not affect v-NN predictions,
as structurally dissimilar compounds are excluded from
distance-weight-average. To handle the same situation with
multiple linear regression or similar approaches, multiple
equations may need to be established, each of them may
represent a distinct molecular mechanism. Second, both v-NN
and RF are less susceptible to overfitting. Even though we used
2,048 ECFP_4 fingerprint bit features as molecular descriptors,
there are only two adjustable parameters in the v-NN method,
the Tanimoto distance threshold and the smoothing factor, that
need to be determined from the training set data. This is in
sharp contrast to many other methods that require at least as
many experimental data points in the training set as the number
of molecular descriptors. With the RF approach, we used a
subset (∼45) of the 2,048 bit-features to build each decision
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tree. At each branching point, a statistical test was performed. A
bit-feature that gave no enrichment of positive and negative
samples in different leaf nodes was skipped, and another bit-
feature was tested. Bit-features that are present in very small
number of training set samples did not survive the statistical
tests, as they could not provide statistically significant
enrichment of the positive and negative samples due to small
sample size. Thus, overfitting was minimized.
Model Performance Measures. We used the following

metrics to measure the quality of the classification models

=
+
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TP

TP FN (3)

=
+
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TN

FP TN (4)

= +
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where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. Kappa is a metric for assessing
the quality of binary classifiers,22 and Pr(e) is an estimate of the
probability of a correct prediction by chance. It is calculated as
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In essence, kappa compares the probability of correct
predictions to the probability of correct predictions by chance.
Its values range from +1 (perfect agreement between model
prediction and experiment) to −1 (complete disagreement),
with 0 indicating no agreement above that expected by chance.
As a good measure of the quality of a binary classifier, kappa’s
merit over accuracy is easy to appreciate with an imbalanced
data set, e.g., a data set in which 90% of the samples belong to
one class and the remaining 10% of samples belong to another
class. A meaningless classifier that simply assigns everything to
the majority class would have a decent accuracy of 90% for such
a data set, as no more than 10% of the samples would be
incorrectly assigned. For such a data set, kappa of the
meaningless classifier would be 0, as Pr(e) of the meaningless
classifier would be 90%.
In addition to the above metrics, we also considered

coverage−the percentage of samples within the applicability
domain for a given data set−as a performance measure. After
all, a model offers little practical value if it has a very small
applicability domain, even if it can give perfect predictions for a
very small number of samples.

■ RESULTS AND DISCUSSION
Performance of v-NN as Evaluated by 10-Fold Cross-

Validation. With the v-NN method, there are two adjustable
parameters that may influence performance: the molecular
structural similarity threshold d0 and the smoothing factor h in
eq 2. To determine the optimal values of these parameters, we
divided the HLM data set randomly into 10 equal-sized groups
for 10-fold cross-validation. We used nine groups as a training
set for model development and predicted the HLM stability of
the excluded group, repeating this process until each and every
group was left out once for the evaluation of model

performance. The Supporting Information provides the
membership information on each compound in the cross-
validation groups. We determined the optimal Tanimoto
distance threshold d0 and smoothing factor h via a series of
10-fold cross-validation calculations by increasing h stepwise
from 0.1 to 1.0 (step size 0.1) and increasing d0 stepwise from
0.05 to 0.75 (step size 0.05). For the data set, we found that a
d0 of 0.45 and an h of 0.20 achieved a good balance of
prediction reliability and model coverage. Figure 1(a) shows

the model performance measures versus d0 obtained at a
constant smoothing factor of h = 0.20. With low d0 values,
model performance as measured by accuracy and kappa could
be high, but the coverage was very low, meaning that a majority
of the compounds do not have neighbors meeting the stringent
molecular structural similarity requirement. Note that at
extremely low d0 values, model performance was highly
variable. This was because the model coverage was extremely
low (a very small number of molecules had prediction results)
and, therefore, the performance measures were statistically
unreliable. With increasing d0, model performance deteriorated
gradually, whereas model coverage increased significantly. With
a d0 of 0.45, the model had a coverage of 94%, accuracy of 82%,
sensitivity of 73%, specificity of 88%, and a kappa value of 0.61.
Figure 1(b) shows the influence of the smoothing factor h on

model performance obtained at a fixed d0 of 0.45. The coverage

Figure 1. (a) Performance measures of variable nearest neighbor (v-
NN) method with respect to Tanimoto distance threshold d0 at a
constant smoothing factor h of 0.20. (b) Performance measures of v-
NN with respect to smoothing factor h at a constant Tanimoto
distance threshold d0 of 0.45. The coverage (94%) is not shown, as it is
constant with a d0 of 0.45.
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is not shown, because at a constant d0 of 0.45, the coverage is
constant at 94%. The figure shows that the specificity remained
above 85% across different h values, and sensitivity stayed
around 70%. The disparity between sensitivity and specificity is
common for imbalanced data sets (data sets with one class
having significantly more samples than the other does). The
accuracy and kappa values indicated that an h of 0.20 provided
the best performance for v-NN with d0 = 0.45.
In summary, v-NN with d0 = 0.45 and h = 0.20 provided

good performance when evaluated by 10-fold cross-validation
with all compounds randomly distributed into 10 equal-sized
groups. It achieved an overall accuracy of 82% with a kappa
value of 0.61 for 94% of the compounds. For the other 6%
(237) compounds, the model failed to make a prediction,
because no training set compounds were within the trusted
Tanimoto distance of 0.45. For comparison, we made v-NN
predictions for these compounds by extending d0 to 0.75 while
maintaining h at 0.20. This allowed predictions for 216 of the
237 compounds with an overall accuracy of 74%, a sensitivity of
52%, a specificity of 84%, and a significantly lower kappa value
of 0.37. A sensitivity of 52% indicates that nearly half of the
unstable compounds were predicted as stable, which was a
major contributor to the low kappa value. The kappa plot in
Figure 1(a) does not reflect model performance deterioration
adequately, as it shows an almost plateaued behavior at high d0.
This was because more than 94% of the compounds have
qualified near neighbors, and their HLM stability was predicted
satisfactorily. The small number of compounds that were
predicted poorly had a negligible negative impact on the overall
performance when predictions for all the compounds were
considered together.
Performance of RF as Evaluated by 10-Fold Cross-

Validation. We first performed 10-fold cross-validation of the
RF method without considering the applicability domain, i.e.,
without consideration of whether the method could give a
reliable prediction. The performance of the RF model for the
HLM data set was excellent. The overall accuracy, sensitivity,
specificity, and kappa were 82%, 77%, 85%, and 0.61,
respectively. Because the RF recursively partitions samples
based on the presence/absence of specific structural moieties
(ECFP fingerprint features), any structural moieties of a test
compound that were absent from the training set compounds
may pose a challenge to the reliability of the RF predictions.
That is, the number of ECFP fingerprint features of a test
compound absent from the training set compounds may
inversely correlate with RF prediction accuracy. This was
shown to be the case in our previous RF study of AMES
mutagenicity.23 To test whether it also applied to the HLM
data set, we repeated the 10-fold cross-validation while tracking
the number of ECFP_2 fingerprint features missing in the
training set. We then calculated model performance measures
separately for compounds without any structural moieties
absent from the training set and for compounds with an
increasing number of structural moieties absent from the
training set. The results presented in Table 1 and schematically
in Figure 2 show clearly that the RF model performance
deteriorates with an increasing number of ECFP_2 bit features
absent from the training set. The best performance was
achieved for compounds with all their ECFP_2 bit features
present in the training set molecules. Consequently, we defined
the applicability domain of the RF method for the HLM data
set as zero ECFP_2 fingerprint features absent from the
training set compounds. Results of the 10-fold cross-validation

calculations indicated that the RF model had a relatively high
coverage of 92%.
Based on performance measures derived from the 10-fold

cross-validation calculations, the RF outperformed the v-NN
slightly when all the samples were randomly distributed into
the 10 equal-sized validation groups. This was in agreement
with published studies that found that RF generally outper-
forms most other machine-learning methods.7,8

Since ECFP_4 bit-features were used as descriptors in the
RF approach, the number of missing ECFP_4 bit-features
absent from the training set also correlated with model
performance and could thus be used to define the applicability
domain. In comparison to ECFP_2 bit-features, ECFP_4 bit-
features contain all ECFP_2 bit-features (by definition) as well
as considerably larger bit-features spanning up to four chemical
bonds. Thus, an applicability domain defined by zero missing
ECFP_2 bit-features would potentially correspond to having
zero to a few missing ECFP_4 bit-features, i.e., the latter
description would be more specific. We prefer defining the
applicability domain by the number of missing ECFP_2 bit-
features for two reasons. First, ECFP_2 bit-features represent
smaller and relatively “simpler” structural fragments. This is
important when extending the applicability domain with
experimental data, as testing fewer compounds would be
required to generate data to retrain the model compared to an
ECFP_4-defined applicability domain. Second, metabolic

Table 1. Performance Measures of the RF Model with
Respect to the Number of ECFP_2 Bit-Features Not Present
in the Training Set Compounds

ECFP_2 featuresa accuracy sensitivity specificity kappa fractionb

0 0.82 0.78 0.85 0.62 0.921
1 0.77 0.68 0.83 0.51 0.061
2 0.69 0.58 0.83 0.40 0.013
3 0.73 0.25 1.00 0.30 0.003
4 0.00 NDc 0.00 0.00 0.000
5 0.67 0.00 1.00 0.00 0.001
6 1.00 NDc 1.00 NDc 0.000

aCount of ECFP_2 fingerprint features in test compounds not present
in the training set. bFraction of test set compounds with specific
number of ECFP_2 bit features missing in the training set. cNot
defined due to division by zero.

Figure 2. Performance of random forest with respect to the number of
missing ECFP_2 fingerprint features in the training set. Fraction
denotes the fraction of compounds in a category.
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stability of many compounds are determined by the presence of
soft spots, usually weak chemical bonds that are adequately
described by ECFP_2. This is especially true of compound
stability with respect to metabolic reactions catalyzed by
CYP3A4−the most important drug-metabolizing enzyme in
human liver.24 Thus, the smaller ECFP_2 bit-features represent
an adequate and robust choice for defining the applicability
domain compared to the more specific ECFP_4 bit-features.
Performance of v-NN and RF Consensus Predictions.

The v-NN and the RF methods base their predictions on
different structural aspects of the molecules: v-NN uses overall
molecular structural similarity, while RF focuses on the
presence/absence of individual structural features. We
hypothesized that when predictions given by the two methods
agree, the chance for these predictions to be correct is higher.
To test this hypothesis, we examined the results of 10-fold
cross-validation with both methods. We found that 3,206 out of
3,654 compounds (88%) were in the applicability domains of
both methods, and predictions by the two methods were in
agreement for 2,974 (81%) of the compounds. Data in Table 2

show that consensus predictions by the two methods were
indeed more reliable, as the overall accuracy reached 85% and
the maximum kappa value was 0.68, significantly higher than
the kappa values of either method alone. For the 232
compounds for which the two methods gave different
predictions, neither method performed well, as both of them
had an overall accuracy close to 50% and kappa values close to
0 (Table 2).
In summary, both the RF and the v-NN methods performed

well when evaluated by 10-fold cross-validation with all the
samples randomly distributed into 10 equal-sized groups. The
consensus prediction given by the two methods was even more

reliable. Furthermore, compounds with contradictory predic-
tions by the two methods appear to be the ones for which
neither method performed well.
For a QSAR model with this level of performance, one would

expect the model to be predictive and practically useful.
However, n-fold cross-validation with randomized samples is
only one of the ways of evaluating model performance. Another
and perhaps a more appropriate test of model quality is its
performance for compounds that have not yet been
synthesized/tested. As discovery research routinely explores
new chemical space, prediction models developed from existing
data and knowledge may not be appropriate for these novel
chemical entities.

Performance of De Novo Predictions. To evaluate
prediction performance of the v-NN and RF approaches
based on time-dependent samples in the data, we grouped the
HLM data by the year the data was published. In the data set,
T1/2 data of 1,738 compounds were reported from 1998 to
2010. In 2011, 2012, and 2013, T1/2 data of 676, 461, and 516
additional compounds were reported, respectively. By the time
we retrieved the HLM data from the ChEMBL database in
February 2015, T1/2 data of 226 compounds were associated
with 2014 as the year of publication. In addition, 37
compounds in the data set were not associated with a
publication date. Compared to the other years, the number
of compounds published in 2014 appeared small. However, it is
likely that data curation for 2014 was not complete yet and that
only part of the data published in 2014 were available in the
ChEMBL database.
To evaluate prospective prediction performance, we first

used the data published prior to 2011 and data for the 37
compounds without a publication date as the training set for
model development. We then used the resulting model to
predict the rest of the data year by year as they were published
from 2011 to 2014. We repeated this process using a stepwise
transfer of the test-set data into the training set, i.e., increasing
the size of the training set by adding data published in 2011,
2012, and 2013, successively, and predicting the rest of the data
with the resulting models. For v-NN predictions, we used the
parameters h = 0.20 and d0 = 0.45, because they were the
optimal parameters determined from the 10-fold cross-
validation calculations. Model performance measures derived
from these calculations are presented in Table 3 and graphically
in Figure 3. They show, surprisingly, that neither of the
methods withstood the test of time well. For v-NN, a major
issue was the loss of coverage, with less than 10% of the
compounds predictable. The RF method did not suffer a similar
loss of coverage. However, its accuracy, sensitivity, and kappa

Table 2. Performance of 10-Fold Cross-Validation of RF, v-
NN, and RF/v-NN Consensus Predictions, as Well as RF and
v-NN Nonconsensus Predictions

model accuracy sensitivity specificity kappa coverage

RF 0.82 0.78 0.85 0.62 0.92
v-NN 0.82 0.73 0.88 0.61 0.94
Consensusa 0.85 0.79 0.89 0.68 0.81
RFb 0.52 0.86 0.25 0.10 N/Ac

v-NNd 0.48 0.14 0.75 −0.12 N/Ac

aPerformance of RF and v-NN consensus predictions. bPerformance
of RF predictions for compounds with contradictory v-NN predictions.
cA total of 232 compounds had contradictory RF and v-NN
predictions. dPerformance of v-NN predictions for compounds with
contradictory RF predictions. N/A: not applicable.

Table 3. Time-Dependent Performance of the v-NN and RF Modelsa

training set method accuracy sensitivity specificity kappa coverage

pre-2011 data v-NN 0.68 0.24 0.82 0.06 0.08
RF 0.55 0.15 0.81 −0.04 0.44

pre-2012 data v-NN 0.71 0.25 0.95 0.30 0.08
RF 0.61 0.28 0.80 0.09 0.51

pre-2013 data v-NN 0.65 0.21 0.93 0.21 0.10
RF 0.64 0.27 0.91 0.19 0.68

pre-2014 data v-NN 0.81 1.00 0.50 0.62 0.07
RF 0.66 0.25 0.93 0.21 0.64

aRF and v-NN models were built with data reported in the time periods in the training set column. We used the models to predict HLM stability of
the rest of the compounds in the HLM data set, and the performance measures for these compounds are presented in this table.
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values were all significantly lower than the values estimated
from the 10-fold cross-validation with time-randomized
samples. Other than coverage, the performance measures of
RF were slightly worse than those of v-NN. Both methods had
very low sensitivity, rendering them practically unable to
predict HLM-unstable compounds.
Model Evaluation with Independent Test Sets and y-

Randomized Tests. Since the RF and v-NN models appeared
highly predictive when evaluated by 10-fold cross-validation
with time-randomized samples, but highly disappointing for
prospective predictions, it raises the concern that the
satisfactory performance exhibited in 10-fold cross-validation
might be a result of overfitting. To assess this possibility, we
performed calculations using the conventional 80:20 split of the
pre-2011 data, building prediction models using 80% of the
data and evaluate model performance with 20% of the data. As
the performance measures may be variable depending on
specific selection of the samples into the 20% test set, we
repeated the test 50 times with the samples randomly
segregated into the 80:20 split each time. In addition, we
performed y-randomization tests. That is, with each 80:20 split,
HLM stability classes of the training set compounds were
randomly reassigned. The resulting data were then used to

develop the RF and v-NN models. Model performance was
evaluated using the test set. The y-randomized test was also
repeated 50 times. The results are presented in Table 4 and
compared with results of 10-fold cross-validation in Figure 4.
They showed that when evaluated by the 80:20 split of the
samples, the model performance is similar to that of 10-fold
cross-validation. However, when the HLM stability classes of
the training data were randomly reassigned, the resulting
models have an overall rate of correct predictions of around
50%, similar to the chance from flipping a coin, and a kappa
value close to zero−confirming that the chance of a correct
prediction by the models was no better than a random guess.
Thus, the y-randomization test confirmed that the RF and v-
NN approaches captured molecular attributes that are
important for molecular HLM stability, and the 80:20 split
test confirmed that the satisfactory model performance as
shown in 10-fold cross-validation was not due to overfitting.

Strategy To Mitigate Time-Dependent Performance
Issues. Because both of the methods performed well for
compounds whose chemistry space was adequately represented
by the training set but showed significant underperformance for
compounds not represented in the training set, a well-defined
applicability domain is crucial for knowing when a prediction is

Figure 3. (a) Prediction performance for 2011−2014 data using a model built with pre-2011 data; (b) Prediction performance for 2012−2014 data
using a model built with pre-2012 data; (c) Prediction performance for 2013−2014 data using a model built with pre-2013 data; (d) Prediction
performance for 2014 data using a model built with pre-2014 data.

Table 4. Results of the 80:20 Split and y-Randomization Tests of the RF and v-NN Models Using HLM Data of 1998−2010a

evaluation method model accuracy sensitivity specificity kappa coverage

80:20 split tests RF 0.84 (0.02) 0.79 (0.04) 0.87 (0.02) 0.66 (0.05) 0.87 (0.02)
v-NN 0.83 (0.02) 0.75 (0.03) 0.88 (0.02) 0.64 (0.04) 0.92 (0.02)

y-randomization RF 0.51 (0.03) 0.42 (0.06) 0.57 (0.04) −0.02 (0.06) 0.87 (0.02)
tests v-NN 0.54 (0.03) 0.31 (0.05) 0.69 (0.04) 0.00 (0.06) 0.92 (0.01)

aNumbers in parentheses are standard deviations of the performance measures calculated from 50 runs of the tests with samples randomly selected
into the 80:20 training/test sets.
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reliable. More importantly, a well-defined applicability domain
provides a path to expanding the applicability domain, as it
identifies compounds outside the domain and draws attention
to the need for experimental measurements of these
compounds. Once experimental data from these compounds
are included in the training set, the methods provide

predictions for compounds in the previously underrepresented
chemical space. To test this hypothesis, we retrained the
models using the pre-2011 HLM data and a small percentage of
randomly selected post-2010 data (1% to 20%) as the training
set. We then made predictions for the rest of the post-2010 data
and calculated the associated performance measures. Because
the results varied with the randomly selected small percentage
of post-2010 data included in the training set, we repeated the
calculations 50 times and calculated the mean and the standard
deviations of the performance measures. Table 5 and Figure 5
show that increasing the number of post-2010 compounds in
the training set significantly improved the performance of both
v-NN and RF for the post-2010 compounds. The improve-
ments of both methods were mainly derived from the improved
sensitivity and coverage, as the specificity remained essentially
the same. The improvement in sensitivity led to significant
improvement in the kappa values of both methods. For v-NN,
including just 1% of post-2010 data (18 compounds) in the
training set increased the sensitivity of v-NN for the other post-
2010 compounds from 24% to 56%, kappa from a low 0.06 to
0.36, and coverage from 8% to 27%. The corresponding
improvement in RF performance was not as significant, with an
increase of sensitivity from 15% to 35%, kappa from −0.04 to
0.19, and coverage from 44% to 55%. When 20% of post-2010
compounds were included in the training set, both methods
achieved adequate performance for the rest of the post-2010
compounds, with coverages of 74% (v-NN) and 81% (RF),
kappa values of 0.46 (v-NN) and 0.44 (RF), specificities of 82%
(v-NN) and 84% (RF), and sensitivities of 64% (v-NN) and
59% (RF).
The results in Table 5 and Figure 5 show that a practical

strategy to expand the applicability domain of QSAR models is
to retrain the models in a timely fashion with up-to-date
experimental data in the training set. In this respect, v-NN is
preferable to RF and many other machine-learning methods, as
v-NN does not really build a physical model. Instead, it makes
predictions on the fly simply by taking a weighted average of all
available experimental data that meet a molecular structural
similarity criterion. On the other hand, RF requires creation of
a static mathematical model; therefore, when new experimental
data become available, an existing model may become outdated,
and a new static model may be needed to ensure maximum
applicability.

Figure 4. Results of the 80:20 split training/test evaluation and y-
randomization tests compared to 10-fold cross-validation: (a)
performance measures of RF models for the test set compounds,
(b) performance measures of v-NN models for the test set
compounds. The results are average of 50 runs with the training/
test samples randomly selected. The error bars are ± one standard
deviation.

Table 5. Time-Dependent Performance of the RF and v-NN Models with a Small Percentage of Test Data Included in the
Training Seta

accuracy sensitivity specificity kappa coverage

% test
datab RF v-NN RF v-NN RF v-NN RF v-NN RF v-NN

0 0.55 0.68 0.15 0.24 0.81 0.82 −0.04 0.06 0.44 0.08
1 0.64 (0.02)c 0.72 (0.04) 0.35 (0.06) 0.56 (0.11) 0.82 (0.04) 0.79 (0.07) 0.19 (0.06) 0.36 (0.09) 0.55 (0.03) 0.27 (0.04)
5 0.69 (0.03) 0.73 (0.03) 0.44 (0.07) 0.58 (0.08) 0.83 (0.04) 0.80 (0.04) 0.29 (0.07) 0.39 (0.07) 0.67 (0.03) 0.47 (0.03)
10 0.72 (0.02) 0.74 (0.02) 0.51 (0.05) 0.63 (0.05) 0.84 (0.03) 0.81 (0.04) 0.36 (0.04) 0.43 (0.04) 0.74 (0.03) 0.61 (0.02)
15 0.73 (0.01) 0.75 (0.02) 0.55 (0.04) 0.65 (0.04) 0.84 (0.03) 0.81 (0.03) 0.40 (0.03) 0.46 (0.03) 0.78 (0.03) 0.69 (0.02)
20 0.75 (0.01) 0.76 (0.02) 0.59 (0.04) 0.64 (0.04) 0.84 (0.02) 0.82 (0.02) 0.44 (0.03) 0.46 (0.04) 0.81 (0.03) 0.74 (0.02)

aThe models were developed with pre-2011 data plus a small percentage of the post-2010 data as the training set; model performance for predicting
the rest of the post-2010 data (test data) is presented in the table. bPercentage of randomly selected post-2010 data included in the training set for
model development. cWe performed 50 runs with randomly selected post-2010 data included in the training set. The average performance measures
are presented; the standard deviations of the performance measures are given in parentheses.
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■ CONCLUSIONS

Niels Bohr was famously quoted as saying, “Prediction is very
difficult, especially if it’s about the future.”20 Indeed, the results
of this study demonstrate that whereas both the v-NN and RF
models can predict existing HLM data adequately, the models
are of little value for prospectively predicting HLM stability for
truly novel and unexplored chemical entities. This underscores
the importance of assessing QSAR models in a time-dependent
manner in order to be aware of the potential performance
degradation associated with evaluating truly new chemistries.
Our results fully support Sheridan’s method of evaluating
goodness of prospective predictions by time-split cross-
validation.12

In addition, we also demonstrated that even though QSAR
models developed with existing experimental data are unlikely
to be capable of predicting compounds for future innovative
discovery research, the value of QSAR modeling is not lost.
Because retraining the models with the experimental data of a
small number of new compounds can greatly enhance the
applicability of the models. As an example, we demonstrated
that with the v-NN and RF methods, including just 20% of new
HLM data in the training set enabled the resulting models to
predict 74% to 81% of the remaining new HLM data with
∼75% accuracy, a level of performance adequate for virtual
screening. The key to success is to have a well-defined
applicability domain in order to be able to readily identify
compounds outside the domain, to perform experimental
measurements on a few representatives of these compounds,
and to immediately include the resulting data in the training set.
In this respect, the v-NN method is superior, as it has a

stringently defined applicability domain and makes predictions
on the fly. As long as the v-NN method can access data from a
repository of up-to-date experimental results, the v-NN
predictions are always up to date.
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