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Background: Previously, we identified sleep-electroencephalography (EEG) spectral

power and synchrony features that differed significantly at a population-average level

between subjects with andwithout posttraumatic stress disorder (PTSD). Here, we aimed

to examine the extent to which a combination of such features could objectively identify

individual subjects with PTSD.

Methods: We analyzed EEG data recorded from 78 combat-exposed Veteran men

with (n = 31) and without (n = 47) PTSD during two consecutive nights of sleep. To

obviate the need for manual assessment of sleep staging and facilitate extraction of

features from the EEG data, for each subject, we computed 780 stage-independent,

whole-night features from the 10 most commonly used EEG channels. We performed

feature selection and trained a logistic regression model using a training set consisting

of the first 47 consecutive subjects (18 with PTSD) of the study. Then, we evaluated the

model on a testing set consisting of the remaining 31 subjects (13 with PTSD).

Results: Feature selection yielded three uncorrelated features that were consistent

across the two consecutive nights and discriminative of PTSD. One feature was from

the spectral power in the delta band (2–4Hz) and the other two were from phase

synchronies in the alpha (10–12Hz) and gamma (32–40Hz) bands. When we combined

these features into a logistic regression model to predict the subjects in the testing set,

the trained model yielded areas under the receiver operating characteristic curve of at

least 0.80. Importantly, the model yielded a testing-set sensitivity of 0.85 and a positive

predictive value (PPV) of 0.31.

Conclusions: We identified robust stage-independent, whole-night features from EEG

signals and combined them into a logistic regression model to discriminate subjects with

and without PTSD. On the testing set, the model yielded a high sensitivity and a PPV

that was twice the prevalence rate of PTSD in the U.S. Veteran population. We conclude

that, using EEG signals collected during sleep, such a model can potentially serve as a

means to objectively identify U.S. Veteran men with PTSD.

Keywords: electroencephalography, sleep-stage independent, classification, sleep, PTSD, spectral

power, synchrony
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INTRODUCTION

Sleep disturbances are a hallmark of posttraumatic stress
disorder (PTSD) (1). For this reason, previous studies have
analyzed electroencephalography (EEG) data from overnight
sleep-polysomnography (PSG) recordings to identify differences
in sleep patterns between groups of subjects with and without
PTSD (2–5). Motivated similarly, but with the intent to find
differences that are reproducible, we recently identified EEG
spectral powers that discriminate combat-exposed Veterans with
and without PTSD at the group-average level (6). Specifically, we
split the sleep-study data into a set for initial discovery and a
set for testing reproducibility of our findings. In that study, we
found that the features that showed group-level differences were
consistent across two consecutive nights in the initial discovery
set and, importantly, that these findings were largely reproducible
on the held-out test set. More recently, analyzing the data from
the same study using a similar procedure, we found that the
synchrony of EEG signals between channel pairs [the average
phase difference between two time-series signals over a given
time interval (7)] could also significantly discriminate the two
groups (8). Another recent study byModarres et al. (9)—the only
publication to date that investigated synchrony between EEG
channels in PTSD subjects during sleep—also reported group-
level differences, although they did not assess the reproducibility
of their results across multiple nights or in an independent
dataset. Together, these findings suggest that EEG spectral power
and synchrony features can distinguish differences between
groups of subjects with and without PTSD (2–5).

The natural next step is to investigate whether these and
similar features can be used to diagnose PTSD at the individual
level. Current methods of PTSD diagnosis are subjective,
relying on a clinician’s judgement and a patient’s self-report
in questionnaires, such as the clinician-administered PTSD
scale (CAPS) (10) and the insomnia severity index (ISI) (11).
In contrast, an objective means to identify subjects with
PTSD would aid clinicians in adjudicating true cases with

increased specificity and enable them to track the responses
of patients to treatment, while providing the opportunity
to shed light on the neurophysiological mechanisms of

PTSD (12).
Here, encouraged by the promising findings in the above-

mentioned group-difference studies (6, 8), we aimed to assess
whether a multivariate classifier, developed using EEG spectral

power and synchrony features, could objectively identify
individual subjects with PTSD. To this end, we analyzed
EEG data recorded from 78 combat-exposed Veteran men
with (n = 31) and without (n = 47) PTSD during two
consecutive nights of sleep. Following our recent work, we
developed a multivariate classifier using a training set, which
consisted of the first 47 consecutive subjects (18 with PTSD)
of the study, and evaluated the classifier on the test set, which
consisted of the remaining 31 subjects (13 with PTSD), in
order to assess the reproducibility of our findings. In this
procedure, we used stage-independent, whole-night features
computed on data from the 10 most commonly used EEG
channels to facilitate comparison of results across laboratories,

because most PSG studies record EEG data from 10 or
fewer channels.

METHODS

We recruited combat-exposed Veterans who provided written
informed consent in accordance with the protocol approved
by the University of Pittsburgh Institutional Review Board
(Pittsburgh, PA) and the U.S. Army Medical Research and
Development Command Human Research Protection Office (Ft.
Detrick, MD). We excluded subjects with any of the following
conditions from the study: a current diagnosis of untreated severe
depression, psychotic or bipolar disorder, substance or alcohol
abuse in the previous 3 months, or sleep disorders other than
insomnia or nightmares. It should be noted that we did not
exclude subjects with a prior history of alcohol consumption,
because doing so would have greatly reduced the sample size
and, importantly, the generalizability of our results to Service
member populations, in which alcohol consumption is common.
All subjects were free of any sleep-related medication for at least
2 weeks prior to enrollment in the study. Before their arrival at
the laboratory, we assessed subjects’ habitual sleep patterns for 10
consecutive days using a sleep diary (Table 1). During this time,
we also instructed them to take no more than two cups of coffee
per day (or the equivalent caffeine dose) and limit their alcohol
intake to two drinks per day over a 2-week period before the
study. We also assessed the presence and severity of PTSD via
the CAPS (10), the presence of alcohol use disorder in the past
month, sleep quality via the Pittsburgh sleep quality index (13)
and the ISI (11), and self-reported measures of depression via a
patient health questionnaire (14).

Subjects spent two consecutive nights and days in the
University of Pittsburgh Medical Center’s sleep laboratory.
On Night 1, they arrived at 20:00 and were fitted with a
PSG system, which consisted of a 64-channel high density-
electroencephalography (hd-EEG) montage [HydroCel Geodesic
Sensor Net (without sponge inserts); Electrical Geodesics
Inc., Eugene, OR] and bipolar channels for submentalis
electromyogram signals. Subjects were allowed to sleep
undisturbed from 23:00 until 07:00, while we recorded their
EEG data. On the morning of the next day, we removed the
PSG system and asked the subjects to perform multiple tests
to assess daytime alertness and cognitive functions. At 21:00,
we refitted the subjects with the PSG system and repeated the
same procedures on Night 2 and the following day until their
discharge at 20:00.

Among the 85 subjects who completed the study, 37 (six
women) met the diagnostic criteria for PTSD and 48 did not
(one woman). We excluded all seven women from our analysis
to avoid confounding effects due to sex differences (15). The
remaining 78 men (31 with PTSD), who ranged from 24 to 51
years of age, comprised our study population (Table 1). We split
this sample into a training set comprising the first 47 consecutive
subjects of the study (18 with PTSD) for model development and
a test set comprising the remaining 31 subjects (13 with PTSD)
for assessing model performance.
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TABLE 1 | Clinical characteristics and sleep-diary variables for the 78

combat-exposed Veteran men in our study.

Variable PTSD

(n = 31)

Non-PTSD

(n = 47)

Group

comparison

Mean (SD) Mean (SD) p-valuea

Age (y) 31.3 (4.7) 32.8 (6.2) 0.358

Sleep diaryb

Time in bed (min) 453.0 (100.6) 465.0 (55.3) 0.580

Total sleep time (min) 414.3 (77.0) 444.1 (52.5) 0.035

Sleep efficiency (%) 92.8 (9.5) 95.6 (3.4) 0.004

Sleep latency (min) 27.8 (17.1) 10.0 (5.9) <0.001

CAPS 51.4 (16.8) 8.6 (7.9) <0.001

Hyperarousal 19.0 (7.1) 3.3 (4.0) <0.001

Intrusion 10.7 (5.8) 0.6 (1.8) <0.001

Avoidance 16.9 (8.8) 1.7 (3.5) <0.001

Currentc AUD (n) 2 0 –

Pastd AUD (n) 17 10 –

PSQI 8.9 (2.8) 4.1 (2.4) <0.001

ISI 14.2 (4.8) 3.8 (4.2) <0.001

PHQ-9 5.8 (2.6) 1.4 (2.5) <0.001

aWilcoxon rank-sum test, bold values indicate p < 0.05; bPTSD, n = 30; cPresent

in the past month; dAbsent in the past month. AUD, alcohol use disorder; CAPS,

Clinician-Administered PTSD Scale; ISI, Insomnia Severity Index; PHQ-9, Patient Health

Questionnaire-9; PSQI, Pittsburgh Sleep Quality Index; SD, standard deviation.

TABLE 2 | Sleep architecture measures for subjects with and without PTSD during

two consecutive nights of sleep at the University of Pittsburgh sleep laboratory.

Measure Night 1 Night 2

PTSD

(n = 31)

Non-PTSD

(n = 47)

PTSD

(n = 31)

Non-PTSD

(n = 47)

Total sleep time (min) 406.4 (36.1) 411.4 (34.3) 416.5 (27.1) 428.6 (35.3)

Sleep efficiency (%) 84.6 (27.8) 85.7 (7.9) 86.7 (5.6) 89.5 (7.4)

Stage N1 (%) 11.4 (4.8) 10.9 (5.6) 9.7 (3.8) 8.6 (4.6)

Stage N2 (%) 57.6 (7.4) 55.7 (7.2) 55.3 (7.2) 53.3 (6.5)

Stage N3 (%) 8.8 (6.8) 12.6 (7.4) 10.9 (5.9) 13.8 (7.2)

REM (%) 22.3 (5.7) 20.8 (5.3) 24.2 (5.6) 24.3 (5.9)

Values within parentheses denote standard deviations.

REM, rapid eye movement sleep; N1, N2, and N3, non-REM stages of sleep.

None of the Wilcoxon rank-sum tests were significant at the p < 0.05 level, when we

compared each of the measures between PTSD and non-PTSD, for each night.

EEG Preprocessing and Feature
Computation
We recorded hd-EEG data referenced to the linked mastoids at
a sampling rate of 250Hz. We visually scored sleep stages in
30-s epochs according to the criteria of the American Academy
of Sleep Medicine (16). Table 2 shows the sleep architecture
parameters for the study population.

We applied a band-pass filter to preserve the EEG signals
within the bandwidth of interest (0.5–50.0Hz), while suppressing
noise in frequency bands outside this range. Next, to minimize

the impact of muscle movement in the EEG data, we segmented
the data in each EEG channel into 5-s epochs and rejected
transient, high-frequency activity whenever the power in the
26.0–50.0Hz band of each epoch exceeded its moving median
value over a 3-min window by a factor of four, as previously
described (17, 18). Further, to eliminate artifacts due to body and
head movement as well as poor electrode contact in each EEG
channel, we removed the 5-s epochs for which the power in the
4.0–50.0Hz band exceeded the whole-night median by a factor of
six (6).

We computed three types of frequency domain EEG
features—two to capture themean and the coefficient of variation
(the ratio between the standard deviation and the mean) of the
log EEG power spectrum for each channel, and a third to capture
the phase synchrony between pairs of EEG channels (with
1 denoting perfect synchrony and 0 denoting no synchrony)
(7). We computed each of these features over the following
12 frequency bands spanning 0.5 to 40 Hz: 0.5–1Hz (slow
oscillations); 1–2Hz [low delta (Lδ)]; 2–4Hz [high delta (Hδ)];
4–6Hz [low theta (Lθ)]; 6–8Hz [high theta (Hθ)]; 8–10Hz [low
alpha (Lα)]; 10–12Hz [high alpha (Hα)]; 12–14Hz [low sigma
(Lσ)]; 14–16Hz [high sigma (Hσ)]; 16–24Hz [low beta (Lβ)];
24–32Hz [high beta (Hβ)]; and 32–40Hz [low gamma (Lγ)].

Feature Computation
Our objective was to develop a multivariate classifier that
discriminates subjects with andwithout PTSD. As such, we aimed
to reduce false associations due to temporal variations in the
aforementioned features over the 8-h sleep period by studying
their values averaged across the entire night disregarding sleep-
stage specific information. Consequently, the averaged feature
values contained the most information from the longest sleep
stage, namely, the non-rapid eye movement (NREM) stage,
which constituted more than 53% of the 8-h sleep period in both
nights (Table 2). Furthermore, to increase the generalizability of
our results to other sleep studies, we restricted our analyses to
the 10 most commonly used EEG channels that cover the whole
brain (Figure 1). Thus, for each subject, we computed a total
of 780 whole-night features independent of sleep stage: 120 log
powers (LP; 10 channels × 12 frequency bands), 120 coefficients
of variation (LCV), and 540 phase synchronies [the weighted
phase lag index (W); 10 × 9/2 channel pairs × 12 frequency
bands]. Henceforth, we used the following naming convention
for the features: <feature-type>-<channel or channel pair>-
<frequency band>. For example, we denoted the log power in
the C3 channel in the low-delta band as LP-C3-Lδ and the phase
synchrony between the C3 and F3 channels in the high-beta band
as W-C3-F3-Hβ.

Feature Processing
We performed the following operations to process the features
for use in a multivariate classifier. First, to avoid problems
due to heteroscedasticity during classifier development, we log-
transformed the synchrony features to scale them similarly to
the log features LP and LCV. Second, we used the concordance
correlation coefficient (19) to assess the consistency of feature
values across the two consecutive nights in the training set, and
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FIGURE 1 | Topographical map showing the electroencephalography

channels (gray dots) covering the brain. Large filled circles along with

abbreviated names mark the locations of the 10 channels used in our analysis.

F3 and F4: frontal channels; C3 and C4: central channels; T3 and T4: temporal

channels, P3 and P4: parietal channels; O1 and O2: occipital channels.

retained features with a correlation that exceeded 0.7 (Figure 2,
step 2). Third, to preclude confounding effects due to age (20),
we first computed Pearson’s correlation between each feature
and age for subjects without PTSD in the training set. [It
should be noted that we used only subjects without PTSD
because determining correlation coefficients based on subjects
with PTSD could potentially remove disorder-related changes
(21)]. Then, for each feature that was significantly correlated with
age (p < 0.05), we estimated the parameters of a linear regression
model relating age to that feature and used them to statistically
remove the effect of age in the entire population (22) (i.e., all
subjects in the training and test sets; Figure 2, step 3).

Univariate Feature Selection and
Clustering
Following the processing steps, we performed a univariate
analysis to select features discriminative of PTSD in the training
set using the area under the receiver operating characteristic
(ROC) curve (AUC) as the metric. For each feature, we computed
the AUC and the corresponding lower and upper bounds of the
95% confidence interval (CI) and selected features for which
the lower bound of the CI exceeded 0.5 on each of the two
nights to guard against chance associations (Figure 2, step 4).
For all subsequent steps of the analysis workflow (Figure 2, steps
5–8), we concatenated the feature values from each of the two
nights of the training data into a single vector for each feature.
To identify and remove correlated features, we clustered the
feature vectors using a dendrogram with the distance correlation

(23) as a metric. Whereas, a Pearson’s correlation of 0 between
two features only indicates uncorrelatedness in a linear sense, a
distance correlation of 0 between two features indicates that they
are independent. Also, unlike Pearson’s correlation, which can
take values between −1 and +1, the distance correlation ranges
between 0 (independent) and 1 (perfect linear correlation). We
performed the clustering step because training a classifier using
correlated features can result in overfitting, due to the increased
number of redundant parameters in the model, and reduced
performance on the test set. To avoid these problems, we grouped
features with a distance correlation exceeding 0.7 into a cluster
(Figure 2, step 5).

Multivariate Feature Selection and
Classifier Development
For each cluster consisting of two or more features, we chose
the feature with the highest AUC of the concatenated feature
vector, as the representative feature for that cluster. To these
(cluster-derived) features, we added the remaining (independent)
features, which did not group into any of the clusters, for
classifier development (Figure 2, step 6). Subsequently, to further
reduce the chance of overfitting, we performed recursive feature
elimination (24) via six-fold cross validation with a logistic
regression model to obtain the smallest set of features for which
the regression coefficients were non-zero (Figure 2, step 7).

Model Development and Evaluation
We developed the logistic regression model using the smallest
feature set on the combined training data from both nights,
and assessed model performance on data from each of the
two nights of the test set. We evaluated model performance by
using the AUC score and by computing sensitivity, specificity,
and positive predictive value (PPV) of the model predictions
for different threshold values. Unlike sensitivity and specificity,
the PPV depends on the prevalence of PTSD in a given
population. In the present study population, the prevalence of
PTSD [39% (31 of 78 subjects)] was higher than the estimated
value (∼15%) in the overall population of combat-exposed
Veteran men (25–27). Therefore, to avoid overestimating the
PPV, we re-wrote the standard formula so that the PPV (28),
henceforth termed as “adjusted PPV” is an explicit function of
the prevalence of PTSD in the overall population (see Note A in
the Supplementary materials).

We performed all of the aforementioned analyses via custom
scripts written in MATLAB (The MathWorks Inc., Natick, MA),
as well as in Python version 3.5.2 using the numpy, scipy, sklearn,
and pandas libraries.

RESULTS

Feature Selection
Of the 780 features computed for each subject, 454 were
concordant (i.e., the concordance correlation coefficient
exceeded 0.7) across the two consecutive nights of recordings
on the training set (Figure 2). Among these, 86 features were
significantly correlated with age in subjects without PTSD in
the training set (n = 29), which were then corrected to remove
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FIGURE 2 | Analysis workflow for feature selection and classifier development. We analyzed three types of sleep-stage independent features, (1) log powers, (2) their

coefficients of variation, and (3) the phase synchrony between pairs of electroencephalography channels, averaged across the entire night, in twelve frequency bands

of interest. We started with 780 features (120 type 1, 120 type 2, and 540 type 3) and ended up with three features, one of type 1 and two of type 3.

age effects from our study population. We then computed the
univariate AUCs and the corresponding 95% CIs for each of
the 454 features, and selected the 34 for which the lower bound
of the CI exceeded 0.5 in each of the two nights of the training
set. As noted above in the Methods Section, for all subsequent
processing steps (Figure 2, steps 5–8), we concatenated the
feature values from the two nights of the training data to form
a single vector for each feature. Distance correlation-based
clustering revealed seven clusters with two or more features each
(with distance correlation > 0.7) plus 12 independent features
that did not cluster with any other feature (Figure 3). For each of
the seven clusters, we then selected the feature with the highest
AUC as the representative of that cluster, forming a total of 19
(7+ 12) independent features for further analysis.

Model Development and Evaluation
Using the concatenated vectors for the 19 features, we performed
recursive feature elimination using the logistic regression model,
which resulted in a final model consisting of three features with
non-zeromodel coefficients (Figure 2, step 8). One of the features
was LP-C3-Hδ, whereas the other two were phase synchronies in
the high-alpha and low-gamma bands. We provide their values
and group differences in Supplementary Tables S2–S4. The final
model, combining these three features, yielded a training-set
AUC of 0.83 on the combined data from the two nights and

test-set AUCs of 0.84 for Night 1 and 0.80 for Night 2 (Table 3).
These values were considerably larger than the univariate test-set
AUCs of any of the three features, which ranged from 0.55 to 0.74
across the two nights (Table 4), indicating superior performance
for the multivariate classifier.

We used the ROC curve of the regression model outcome
on the training set to search for two thresholds that correspond
to sensitivity values above 0.80 and 0.90. This search yielded
thresholds of 0.37 and 0.26, which corresponded to training-set
sensitivities of 0.81 and 0.92, respectively. At the threshold of
0.37, the model yielded test-set sensitivities that were much lower
than the training-set sensitivity (0.62 on Night 1 and 0.54 on
Night 2 for the test set vs. 0.81 for the training set; Table 3). In
contrast, at the 0.26 threshold, the test-set sensitivity was 0.85
on each of the two nights (Table 3), while the specificities were
18% higher than those of the training set (0.67 on each of the
two nights for the test set vs. 0.57 for the training set; Table 3).
Importantly, the adjusted PPV was 0.31 for the test set, which
was twice the PTSD prevalence value of 0.15 in combat-exposed
Veteran men (Table 3).

At thresholds corresponding to a training-set sensitivity of
0.92 for each of the three individual features used in the model,
the univariate test-set sensitivities ranged from 0.77 to 1.00 over
the two consecutive nights (Table 4), which were comparable to
the sensitivity of the regression model (0.85; Table 3). However,
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FIGURE 3 | Distance correlation between the 34 stage-independent, whole-night features extracted from 10 electroencephalography channels across both nights of

the training set (those obtained after step 4 in Figure 2). Dendrogram clustering revealed seven clusters with correlation values exceeding 0.7 (dark squares in the

image, where the curly brackets identify the features within a cluster). Features marked with asterisk and highlighted in bold-face text (one each in clusters 1, 4, and 6)

indicate the three features selected via recursive feature elimination. The 12 independent features obtained after step 5 in Figure 2 are located between the

seven clusters.

the test-set specificities (range: 0.06–0.33; Table 4) and adjusted
PPVs (range: 0.14–0.26; Table 4) were much smaller than the
corresponding values for the regression model (specificity =

0.67, adjusted PPV = 0.31; Table 3). These results further
underscore the advantage of combining the three features to
identify individuals with PTSD.

DISCUSSION

We found that a logistic regression model, using three stage-
independent, whole-night features, could discriminate subjects
with and without PTSD at an individual level. First, we divided

the study data into a training set, consisting of the first 47
consecutive subjects in the study (18 with PTSD), and a testing
set, consisting of the next 31 subjects (13 with PTSD). Then,
using only the training set, we identified three uncorrelated EEG
features that discriminated subjects with and without PTSD in
each of the two nights of the study (high-delta power in the C3

channel, phase synchrony between the C4 and P3 channels in
the high-alpha band, and phase synchrony between the C4 and
F3 channels in the low-gamma band). Using these features, we
developed a logistic regression model based on the subjects from
the training set. Then, to independently assess the performance of
this model, we computed the value of the three features for each
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TABLE 3 | Area under the receiver operating characteristic curve (AUC) for a

logistic regression model consisting of the three features shown in Table 4 and

developed by combining data from both nights of the training set.

Training Testing

Night 1 Night 2

AUC 0.83 (0.73, 0.92) 0.84 (0.70, 0.98) 0.80 (0.64, 0.96)

Threshold = 0.37 (Training Sen. = 0.81)

Sen. 0.81 0.62 0.54

Spe. 0.74 0.89 0.67

Adj. PPV 0.35 0.50 0.22

Threshold = 0.26 (Training Sen. = 0.92)

Sen. 0.92 0.85 0.85

Spe. 0.57 0.67 0.67

Adj. PPV 0.27 0.31 0.31

Values within parentheses indicate 95% confidence intervals.

Adj. PPV = [sensitivity × prevalence] / [(sensitivity × prevalence) + {(1 - specificity) ×

(1 - prevalence)}].

The sensitivity (Sen.), specificity (Spe.), and adjusted positive predictive value (Adj. PPV) for

a PTSD prevalence of 15% at two different thresholds of the model output (corresponding

to training-set sensitivities of 0.81 and 0.92) are shown above.

TABLE 4 | Area under the receiver operating characteristic curve (AUC) for each

of the three features used in the logistic regression model.

Feature Training set

[n = 47

(18 PTSD)]

Test set [n = 31 (13 PTSD)]

Night 1 Night 2

LP-C3-Hδ

AUC 0.71 (0.60, 0.82) 0.63 (0.42, 0.84) 0.60 (0.38, 0.82)

Threshold = +1.28 (Training Sen. = 0.92)

Sen. 0.92 0.77 0.77

Spe. 0.26 0.28 0.33

Adj. PPV 0.18 0.16 0.17

W-C4-P3-Hα

AUC 0.74 (0.63, 0.84) 0.55 (0.34, 0.77) 0.64 (0.42, 0.86)

Threshold = −1.62 (Training Sen. = 0.92)

Sen. 0.92 1.00 0.92

Spe. 0.26 0.50 0.33

Adj. PPV 0.18 0.26 0.20

W-C4-F3-Lγ

AUC 0.73 (0.61, 0.84) 0.67 (0.47, 0.88) 0.74 (0.57, 0.92)

Threshold = −2.23 (Training Sen. = 0.92)

Sen. 0.92 0.85 1.00

Spe. 0.19 0.11 0.06

Adj. PPV 0.17 0.14 0.16

Values within parentheses indicate 95% confidence intervals (CIs). Bold values indicate

statistical significance (lower bound of the CI > 0.50).

Adj. PPV = [sensitivity × prevalence] / [(sensitivity × prevalence) + {(1–specificity) ×

(1–prevalence)}].

For each feature, the sensitivity (Sen.), specificity (Spe.), and adjusted positive predictive

value (Adj. PPV) for a PTSD prevalence of 15% at a training-set sensitivity of 0.92 are

shown above the AUC values.

of the subjects in the testing set, and used the model to classify
the 31 subjects in this set into PTSD or non-PTSD. Assessment
of the logistic regression model on the testing-set data resulted in

AUCs above 0.80 for each of the two consecutive nights, a high
sensitivity (0.85), a moderate specificity (0.67), and an adjusted
PPV of 0.31, which is twice the prevalence of PTSD in combat-
exposed Veteran men (Table 3). This means that if the model
classifies a combat-exposed Veteran man as having PTSD, the
probability that the subject actually has this disorder is twice as
large as a random-choice selection.

Interpretation of the Three Selected
Features
The three features used in the logistic regression model were
from the delta-, alpha-, and gamma-band clusters (Figure 3;
clusters 1, 6, and 4, respectively). Of these, the log powers in
the C3 channel in both low- and high-delta bands (Figure 3;
clusters 1) were smaller in subjects with PTSD compared to
those without PTSD (Supplementary Table 1 shows the effect
sizes for each feature, with negative effect sizes indicating lower
feature values in PTSD.) These results are similar to those of
our prior study, which showed that delta power during NREM
is smaller in subjects with PTSD compared to those without
PTSD (6). This is not surprising because, as noted in Methods
section Feature Computation, sleep predominantly consists of
the NREM stage 2 (Table 2) and, hence, any feature based on
whole-night, stage-independent averages will contain the most
information for this sleep stage. Given that delta power indicates
sleep depth (29), it is likely that lower delta power in subjects with
PTSD indicates disturbed sleep.

The first of the two synchrony features, W-C4-P3-Hα,
was the representative of the alpha-band cluster (Figure 3,
cluster 6), which mainly consisted of synchronies between
EEG channels located on the left hemisphere, save for two
synchrony pairs that involved the C4 channel. The synchronies
in this cluster were larger in subjects with PTSD compared
to those without PTSD (Supplementary Table 1). This is also
in line with our prior findings, in which subjects with
PTSD showed larger alpha synchrony than subjects without
PTSD in the left fronto-parietal regions during NREM sleep
(8). The second feature, W-C4-F3-Lγ, was the representative
of the gamma-band cluster (Figure 3, cluster 4), which
mainly consisted of cross-hemisphere synchronies between
the frontal and central channels that were larger in subjects
with PTSD (Supplementary Table 1). Although the increased
synchrony in these bands may reflect impaired sleep processes
in PTSD, focused research on this topic will be needed
before we can make any conclusive statements regarding
the specific underlying neurophysiological mechanisms of
these features.

Model Evaluation Procedure
In general, there are two main approaches to evaluate the
performance of classification models. One approach is cross-
validation, which entails multiple rounds of model development
and evaluation on different partitions of the study data. The other
involves splitting the data into a training set and a test set at
the outset. The former approach allows for the use of the entire
dataset for model development, but because each subject is used
in model development in at least one of the cross-validation
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rounds, its ability to truly assess model performance on unseen
subjects may be reduced. Although the latter approach decreases
the sample size available for model development, it allows for
independent evaluation of model performance. In this work, we
used this approach because it more closelymimics how the results
in one study are subsequently validated in future studies using a
completely different set of subjects.

Limitations of the Study
A limitation of this work is that our study population excluded
subjects with PTSD who had comorbid sleep disorders, such
as depression (30) or insomnia (31), which share symptoms
with PTSD. To test whether the features included in the
logistic regression model are specific to PTSD, we would
need to test the model in two different populations: one
that included sleep disorders other than PTSD and another
that included subjects with PTSD and comorbidities. If the
features were specific to PTSD, then the model performance
would be degraded in the first population and improved in
the second. However, the model performance in the second
population should not be as good as those of the present
study population, which consisted of comorbidity-free subjects
with PTSD.

Another potential limitation relates to the use of whole-
night averages of the EEG features rather than an approach
that considers the time-series nature of the EEG signal. By
averaging the features across the entire 8 h of time in bed, it
is possible that our analysis excluded alterations in the power
or synchrony features in short-length sleep stages, e.g., during
REM or NREM stage 3 sleep. However, analyzing time-series
features in a naïve manner, i.e., by assuming that the feature
value at one time point is independent of that at another time
point, could increase the chance of false associations when sample
sizes are small, as was the case in this study. A robust analysis
of time-series features would require identification of temporal
patterns in each feature (32) and, hence, a more elaborate
methodology whose results would likely be difficult to compare
with other studies.

CONCLUSION

In this work, we assessed the ability of a multivariate classifier
to diagnose PTSD at an individual level, using whole-night,
stage-independent features to obviate the need for laborious
manual scoring of sleep. After identifying univariate features
associated with PTSD, we combined them into a logistic
regression model to test whether the model could discriminate
subjects with and without PTSD. We developed the model
on an initial training set from consecutive subjects enrolled

in the study, and then evaluated its performance on a
separate, independent test set from subsequent subjects.
Performance on the test set yielded AUCs above 0.80 for
each of the two consecutive nights, high sensitivity (0.85),
and an adjusted PPV that is twice the prevalence of PTSD
in combat-exposed Veteran men. These findings imply
that, if the model predicts that a subject has PTSD, the
likelihood of that subject actually having PTSD is twice the
underlying prevalence rate. Thus, the model provides an
objective means to more accurately identify individuals with
this disorder.
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