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ABSTRACT:Reliable predictions of relative binding free energies are essential in drug discovery, where chemists modify promising
compounds with the aim of increasing binding affinity. Conventional thermodynamic integration (TI) approaches can estimate
corresponding changes in binding free energies but suffer from inadequate sampling due to the ruggedness of the molecular energy
surfaces. Here, we present an improved TI strategy for computing relative binding free energies of congeneric ligands. This strategy
employs a specific, unphysical single-reference (SR) state and Hamiltonian replica exchange (HREX) to locally enhance sampling.
We then apply this strategy to compute relative binding free energies of 12 ligands in the L99A mutant of T4 lysozyme. Besides the
ligands, our approach enhances hindered rotations of the important V111 as well as V87 and L118 side chains. Concurrently, we
devise practical strategies to monitor and improve HREX-SRTI efficiency. Overall, the HREX-SRTI results agree well (R2 = 0.76,
RMSE = 0.3 kcal/mol) with available experimental data. When optimized for efficiency, the HREX-SRTI precision matches that of
experimental measurements.

1. INTRODUCTION

High-quality predictions of binding free energies of small
molecules to their biomolecular targets are important in drug
design. The continued growth of computational power has
enabled applications of statistical mechanics-based free energy
perturbation (FEP) and thermodynamic integration (TI)
methods to real life problems.1�5 These advanced computa-
tional techniques are considered gold standards for binding
free energy predictions, akin to isothermal titration calorimetry
(ITC)—a technique that measures the binding free energies
experimentally.6,7

Since their inception, great progress has beenmade in improv-
ing FEP and TI methods. Introduction of the soft-core potentials
has made the calculations more reliable.8�10 Subsequently,
multiconfiguration simulation protocols11 have laid the founda-
tion for the application of generalized ensemble strategies such
as Hamiltonian replica exchange (HREX)12�17 which further
improve the quality of the FEP and TI simulations.18�22 Mean-
while, better postprocessing protocols have been developed
that resulted in more reliable predictions of free energies and
assessments of corresponding standard deviations.4,23�27

Despite this progress, binding free energy calculations remain
challenging because of sampling limitations that are inherent in
the molecular dynamics (MD) methods used in the simulations.
Conventional FEP and TI free energy calculations are known to
be sensitive to starting conformations of the bound complexes.
For example, in a well-studied L99A mutant of T4 lysozyme, the
conformation of the binding site residue V111 affects binding
free energies of indene and p-xylene ligands by as much as 6 kcal/
mol.1,28�30 Other hindered residues can have a similar effect.1

The predictions also depend on the initial orientation of the
ligands in the binding pocket. These challenges are likely to be
general and, therefore, need to be properly addressed.

Many enhanced sampling approaches have been devised to
combat conformational challenges. It is impossible to list all of
them here, but we will name a few that benefit alchemical free
energy calculations. One of the earliest approaches scaled parts of
the potential energy before and after an alchemical transforma-
tion to enhance sampling.31 Recently, an approach called accel-
erated molecular dynamics (AMD) was combined with
alchemical free energy calculations.32�34 This approach adds a
boosting potential to reduce barriers and is also independent of
alchemical transformations.35 Other methods exploited the
alchemical transformations to enhance sampling. Examples in-
clude λ dynamics36�38 or its Monte Carlo (MC) counterparts,
such as chemical MC/MD39,40 and more general simulated
scaling.41,42 In fact, these methods share important features with
currently developing FEP and TI methods augmented with
Hamiltonian replica exchange (HREX).15�22,43

Enhanced sampling will overcome dependence of FEP and
TI predictions on the starting conformations and ultimately
improve their accuracy and precision. Judiciously combining
multiconfigurational FEP andTImethods withHREX can achieve
enhanced sampling.22,43 Previously, we presented a TI variant,
called single-reference TI augmented with HREX (HREX-SRTI),
which achieved convergence of solvation free energies for a
challenging case of an amide system where conventional FEP
and TI methods failed.22 The amide in question had an internal
barrier to cis/trans interconversion that was insurmountable in
conventional MD simulations. HREX-SRTI was able to generate
converged results using simulation times of only 4 ns.

In the present study, we applyHREX-SRTI to the well-studied
T4 lysozyme mutant. Although this system has a simple binding
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site—a hydrophobic cavity buried beneath the protein surface—
it is sufficiently complex to render conventional FEP and
TI approaches ineffective. Importantly, our binding free
energy predictions for this system can be compared to the pre-
viously published independent computational and experimental
values.1,28�30

First, we assess the variability in the free energy predictions
using regular SRTI. Then, we employ SRTI with the HREX
option and demonstrate that HREX efficiency is crucial to
obtaining converged results. Thus, we provide practical recipes
to improve the efficiency of HREX-SRTI simulations. Finally,
we use one of these recipes to optimize HREX efficiency and
obtain highly converged results for the most challenging of the
ligands—indole.

2. METHODS

2.1. Parameters for Small Molecule Ligands. We stud-
ied 12 small molecules as follows: benzene, toluene, o-xylene,
p-xylene, ethyl-benzene, n-propyl-benzene, n-butyl-benzene, i-butyl-
benzene, phenol, indene, benzofuran, and indole. The initial coordi-
nates of all of the small molecules in the present study were derived
using the program CORINA.44 Where applicable, we performed
conformational expansion using the program ROTATE.45 Two
charge models described in sections 2.1.1 and 2.1.2 were used in
combination with the GAFF force field for small molecules.46 Each
conformational ensemble was structurally refined through geometry
optimization using the AM1 semiempirical quantum mechanical
potential47 as implemented in MOPAC7, version1.11.48

2.1.1. AM1BCC Charge Model. Partial charges from each
unique conformation were accumulated using Boltzmann weight-
ing with appropriate degeneracies by their AM1 energies at 300 K.
The final AM1 charges were symmetrized where applicable and
then augmented through the BCC procedure49,50 implemented in
the ANTECHAMBER program51,52 from AMBER TOOLS, ver-
sion 1.2. The resulting conformation-independent, properly sym-
metrized set of AM1BCC charges is expected to reproduce HF/
6-31G(d) RESP charges to a good approximation.53�56

2.1.2. RESP Charge Model. For a select subset of molecules,
we derived HF/6-31G(d) restricted electrostatic potential fit
(RESP) partial charges using B3LYP/6-31G(d) optimized geom-
etries. The geometry optimization and the electrostatic potential
calculations were achieved using Gaussian 09.57 The RESP fit58

was performed using the ANTECHAMBER program.
2.2. Setup of Protein�Ligand Complexes.Coordinates of all

of the ligands in complexes with the L99A mutant of T4 lysozyme
were derived from a crystal structure (PDB: 181L) of the protein
bound to benzene.59 Initial placements of ligands other than benzene
were derived using graph theory. Specifically, molecules were repre-
sented as graphs on the basis of their atom and bond types.
Subsequently, association graphs were constructed, and maximal
cliques were found to match atoms in the benzene rings of each
molecule to those of the bound benzene.60 There are 12 different
cliques that give rise to 12unique placements of each ligandwithin the
binding site of the protein. Some of the cliques are degenerate
dependingon the symmetry of themolecule. Thus, for benzene, all 12
cliques are degenerate, yielding identical complex structures that differ
only in thenumbering of the carbon atomsof the ligand.However, for
ligands such as benzofuran, indene, and indole, each clique yields a
unique conformation of the complex.
By construction, initial protein coordinates and those of the

benzene ring are identical for all of the complexes, while the

atoms protruding from the benzene ring change their position. In
cases with branched ligands, such as n-propyl-, n-butyl-, and
i-propyl-benzene, the protrusions have been examined for steric
clashes with protein side chains.
The protein is described by an all-atom Amber 99SB molecular

mechanics force field compatible with GAFF.61 The solvation
effects were modeled using a cubic periodic box of explicit TIP3P
water molecules that extended at least 10 Å beyond the solute. The
protein system was neutralized by adding nine Cl� ions.
2.3. Single Reference State.The choice of the reference states

in SRTI determines which degrees of freedomof the systemwould
be accelerated.22 To allow for enhanced sampling of the ligands in
the confines of the binding pocket, we chose the benzene core
without hydrogen atoms as the reference state (Figure 1). Con-
veniently, our ligand reference state is independent of the charge
model because the benzene core atoms have no charges by
construction. Previously, we successfully employed this ligand
reference state in computing free energies of hydration.22

Similarly, choosing an appropriate protein reference state
could enhance sampling of the hindered protein side chains such
as Val, Leu, Ile, and Thr. Each hindered residue could be mutated
to a modified Ala residue referred to as pseudo-Ala (p-Ala).

Figure 1. Thermodynamic cycle for computing binding free energies
relative to an unhindered, unphysical reference state using SRTI. Hor-
izontal arrows represent alchemical transformations of indole into the
benzene core in water and the protein binding site. The protein residue
V111 is alchemically converted to p-A at the same time. In the reference
state, the molecular volumes of the ligand and the V111 residue (shown
with green and brown shaded contours, respectively) are reduced due to
disappearing atoms. The disappearing atoms interact with the rest of the
system through soft-core Coulomb and vdWpotentials and are connected
to the reference core by dashed bonds. The torsional potentials associated
with the virtual atoms are removed. These changes greatly enhance
translational, rotational, and torsional degrees of freedom involved in
the alchemical transformation with the help of HREX, thus activating
rotation of the V111 and of the ligand in the binding site.
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In p-Ala, hydrogen atoms of the methyl side chain are united with
the Cβ carbon. A mutation of a hindered residue to p-Ala in the
reference state would render its side chain atoms starting with Cβ
virtual. Thus, HREX would enhance hindered rotations about
bonds such as CR�Cβ, Cβ�Cγ, and outward. In addition, the
alchemical mutation of binding site residues to p-Ala can render
the binding site in the reference state bigger, further aiding in the
sampling of ligand transitions.
In this study, we simultaneously enhance sampling of the

ligand and the protein side chains by combining the correspond-
ing unphysical reference states.
2.4. TI Simulation Setup. In order to run the simulations,

we employed GROMACS version 4.0.5 in single precision.
Because the simulated system is described by Amber 99SB61

and GAFF46 molecular mechanical force fields that are not native
to GROMACS, we used the PERL conversion script, which was
described previously.62 The script also automates setup of the
alchemical transformation from the real to the reference state.
2.4.1. Soft-Core Potentials. In order to avoid the end-point

catastrophe at the reference state, we employed soft-core elec-
trostatic and LJ potentials9,10 as implemented in GROMACS.63�67

Earlier calculations employed a GROMOS style soft-core po-
tential (eqs 1�3). Here, λ is the Hamiltonian coupling para-
meter, p is the coupling power, r is the distance between a given

pair of atoms, R is the soft-core parameter, and σ is the radius of
interaction computed from LJ parameters. For certain polar
hydrogen atoms, σ is undefined, and in those cases a fixed value
is used. Originally, we used p = 2, R = 1.5, and σ = 0.3 as
recommended in the user manual. Subsequently, to improve the
acceptance ratio and level its distribution over TI window pairs,
we used an alternative soft-core potential with p = 1.10 For the
latter potential, we reoptimized the value ofR to arrive atR = 0.4.
The optimization of the R parameter was performed to achieve
the best convergence behavior by monitoring standard devia-
tions across independent TI runs. Other more complicated
measures could be used to search for better alchemical paths,
but these were not pursued in this study.68

V sc
ABðrÞ ¼ ð1� λÞ VAðRAðr, λÞÞ þ λVBðRBðr, λÞÞ ð1Þ

RAðr, λÞ ¼ ðRσ6
Aλ

p þ r6Þ1=6 ð2Þ

RBðr, λÞ ¼ ðRσ6
Bð1� λÞp þ r6Þ1=6 ð3Þ

2.4.2. MD Simulation Parameters. The production runs were
performed in the NPT ensemble at T = 300 K and P = 1 atm,
following the equilibration protocol described previously.22

Table 1. The L99A T4 Lysozyme Mutant Relative Binding Free Energies (Standard Deviations) to a Series of Benzene
Derivativesa

compound exptl FEP SRTI Diff1 HREX-SRTI Diff2 Wat% Prt%

AM1BCC Charge Model

benzene 0.0(0.2) 0.0 0.0(0.3) 0.0 0.0(0.2) 0.0 34 29

phenol 2.5(N/A) 3.3 2.2(0.6) �0.3 2.3(0.4) �0.2 25 26

toluene �0.3(0.2) 0.0 �0.1(0.3) 0.2 �0.2(0.2) 0.1 30 27

ethylbenzene �0.6(0.2) �1.8 �0.2(0.5) 0.3 �0.9(0.6) �0.3 27 25

n-propylbenzene �1.4(0.2) �1.3 �0.4(0.5) 0.9 �1.5(0.4) �0.2 26 23

n-butylbenzene �1.5(0.2) �0.3 �1.0(1.2) 0.5 �1.4(1.1) 0.1 23 21

i-butylbenzene �1.3(0.2) �0.5 �1.4(1.2) �0.1 �1.3(0.7) 0.1 24 21

o-xylene 0.6(0.2) 3.3 1.0(0.4) 0.4 0.8(0.3) 0.2 28 25

p-xylene 0.5(0.2) 1.0 0.5(0.6) 0.0 0.4(0.3) �0.1 29 26

indene 0.1(0.2) 2.8 1.3(0.4) 1.3 1.4(0.3) 1.3 21 20

indole 0.3(0.2) 4.1 2.9(1.7) 2.6 2.8(0.5) 2.5 14 21

benzofuran �0.3(0.2) 1.0 0.4(0.5) 0.6 0.2(0.4) 0.5 24 22

RMS (cyclic) (1.0) 1.7 (0.4) 1.7

RMS (acyclic) (0.7) 0.5 (0.5) 0.2

RMS (all) (0.8) 1.0 (0.5) 0.9

RESP Charge Model

indene �0.1(0.4) �0.2 0.0(0.3) �0.1 b 20

indole 0.6(1.9) 0.3 1.1(1.8) 0.8 b 19

benzofuran �0.4(0.6) �0.1 �0.8(0.4) �0.5 b 22

RMS (cyclic) (0.8) 0.2 (0.7) 0.5

RMS (all)c (1.1) 0.4 (1.1) 0.3
a Energies are in kcal/mol relative to benzene. Averages and standard deviations are over eight (cyclic) or four (acyclic) independent simulations with
distinct starting positions of the ligand in the binding site of the protein and two (all) independent simulations in water. Experimental and previously
reported absolute binding free energies for benzene are�5.2 and�4.6 kcal/mol, respectively. bBecause the effect of HREXon the simulations in water is
small, regular simulations were performed. Diff1 is the free energy difference between regular SRTI and experimental results; Diff2 is the difference
between HREX-SRTI and experimental results. The Wat and Prt columns contain acceptance ratios for the corresponding legs of the thermodynamic
cycle (Figure 1). For these calculations, p = 2, and default values of R = 1.5 parameters were used. Each simulation was run using 12 TI windows equally
spaced in λ and 4-ns-longMD runs in the NPT ensemble at 1 atm and 300 K. The terms exptl and FEP represent previously published experimental and
computational free energy perturbation benchmarks.30 cCombined values with RESP@HF/6-31G(d) for cyclic and AM1BCC for acyclic compounds.
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The production run employed a Langevin thermostat and a
Berendsenbarostat,64�67with identical collision frequencies of 2 ps�1.
Throughout the simulations, all of the bonds containing

hydrogen atoms were constrained using LINCS,69 and the
integration time step was set to 2 fs. We employed the particle
mesh Ewald (PME) approach for electrostatics64�67 with a 1 nm
real space cutoff and switched off van der Waals interactions over
the range of 0.8�0.9 nm. Typically, production runs were 2-ns-
long for each TI window, but in some cases they were extended
to 4 ns. The coordinates of the system were recorded every 1000
steps for subsequent analyses.
2.4.3. Regular SRTI Simulations. To obtain the alchemical free

energies or reversible works, the real and reference states of each
system corresponded to values 0 and 1 of the Hamiltonian
coupling parameter λ, respectively. Each alchemical SRTI trans-
formation employed M equally separated λ windows. The
majority of the simulations used M = 12, but in some cases
simulations were performed with M = 23. All λ windows of an
SRTI simulation had the same initial configuration. For each λ
window, we recorded ∂V/∂λ values at every time step. The mean
values Æ∂V/∂λæ for all of the λ windows were assembled into the
final work using the Fourier beads integration procedure, which
was described previously.22

Averages of the final work values and their standard deviations
were computed using several independent simulations. Specifi-
cally, for proteins in complex with cyclic molecules (benzofuran,
indene, and indole), we performed eight simulations each with
distinct starting positions of the ligand. For acyclic (not cyclic)
molecules, we only performed four such simulations. Finally, for
all of the ligands in water, we performed two independent
simulations. The differences between the alchemical work values
in water and protein environments yielded the relative binding
free energies with respect to the unphysical reference state. The
final relative binding free energies and their standard deviations
were reported with respect to benzene.
2.4.4. HREX-SRTI Simulations. In order to run HREX-SRTI

simulations, we employed an in-house PERL script interfaced
with GROMACS. Replica exchanges were attempted every 1000
MD steps or 2 ps. For the majority of the simulations, we
attempted exchanges a total of 2000 times resulting in 4-ns-long
simulations of each window. In special cases, the number of
exchange attempts was reduced to 1000, decreasing the simula-
tion time to 2 ns per window. Following the exchanges, each λ
window received a new random seed to restart its MD run. All of
the other simulation details were the same as those associated
with regular SRTI simulations.
2.4.5. Analysis of SRTI and HREX-SRTI Results. The analysis of

real state trajectories was performed with standard GROMACS
tools. Specifically, the g_angle program was used to obtain time
series of dihedral angles of the hindered side chains. For the Val
side chain, we gathered data on the HR�CR�Cβ�Hβ (k1)
dihedral, and for the Leu side chain, data on HR�CR�Cβ�Cγ
(k1) and CR�Cβ�Cγ�Hγ (k2) dihedrals were collected. For
HREX-SRTI simulations, the real state trajectory had to be
assembled from short trajectories using an in-house PERL script
that followed the state through all of the exchanges.

3. RESULTS AND DISCUSSION

In order to demonstrate the utility of the SRTI approach in
computing relative binding free energies, we studied ligand bind-
ing to a well-defined binding site in the L99A mutant of T4

lysozyme. Specifically, we chose a congeneric series of 12 ligands
derived from benzene that has been studied previously.28�30

We distinguished two classes of compounds within the series
according to their structure outside the common benzene motif,
namely cyclic and acyclic. Thus, benzofuran, indene, and indole
were considered cyclic, whereas all of the remaining compounds
were considered acyclic. Because all of the ligands in the series
(Table 1), with the exception of benzene, can have multiple
orientations in the binding pocket, this system presents a con-
siderable challenge for binding free energy calculations.

The cyclic and acyclic ligands behave differently when in
complex with the protein. For acyclic ligands, the benzene ring
can flip without an overall structural change to the complex. For
cyclic ligands, the benzene flip alters the overall structure of the
complex. Hence, for cyclic ligands, i.e., benzofuran, indene, and
indole, we selected eight orientations (four for each of the two
states resulting from the benzene flip). The degeneracy with
respect to the benzene flip allowed us to reduce the number of
representative orientations to four for the remaining acyclic
ligands. Thus, for each ligand, we performed simulations with
different initial orientations in the binding pocket.

The conformations of the active site residues are equally
important and should be considered when determining binding
free energies.28�30 For the L99A mutant of T4 lysozyme, the
conformational state of the V111 side chain profoundly affects
the computed binding free energies. Because this residue lines the
surface of the binding site, inadequate sampling of its conforma-
tions has been shown to cause discrepancies of as much as 6 kcal/
mol.28�30 Other residues in the active site may have similar effects
on binding free energies.1 Hence, we need to improve sampling of
the ligand and relevant protein conformations at the same time.
This combination makes the problem particularly challenging.
3.1. Regular SRTI Simulations. 3.1.1. AM1BCC ChargeModel.

The average variability in the relative binding free energies from
regular SRTI is 0.7 kcal/mol (Table 1). Most of the ligands have
standard deviations in the range of 0.3�0.6 kcal/mol. However,
the largest acyclic ligands, n-butyl-benzene and i-butyl-benzene,
show increased standard deviations of 1.2 kcal/mol. Surprisingly,
one of the cyclic ligands, indole, exhibits a record high standard
deviation of 1.7 kcal/mol. Indole, like other cyclic ligands, is
expected to have hindered flip transitions in the binding site.
In comparison to experimental values, the regular SRTI

approach has an RMSE of 1.0 kcal/mol relative to and excluding
benzene. Smaller ligands are in good agreement—within 0.3
kcal/mol—with the available experimental data (Table 1). It
should be noted that only an upper estimate of binding free
energy is available for phenol, which does not bind the T4
lysozyme mutant well. For more extended acyclic molecules,
such as n-propyl- and n-butyl-benzenes, the agreement is not as
favorable, with n-propyl-benzene demonstrating the highest
deviation of 0.9 kcal/mol. The predicted binding free energy
for i-butyl-benzene is serendipitously within 0.1 kcal/mol of the
experimental value. Interestingly, the cyclic ligands exhibit the
largest deviations of all compounds, diverging by as much as 2.6
kcal/mol in the case of indole.
The disagreement between computed and experimental bind-

ing free energies for the heterocyclic compounds is instructive. In
particular, the results for indene and benzofuran ligands were
well-converged judging by the low standard deviations (Table 1).
In contrast, the binding free energy of indole exhibited a large
standard deviation of 1.7 kcal/mol. These observations suggest
that issues other than sampling could be responsible for the
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overall disagreement with experimental results. Because we
employed the AM1BCC charge model, which approximates
the RESP HF/6-31G(d) partial charges, we decided to assess
the effect of the model.
3.1.2. RESP ChargeModel for Cyclic Compounds.Using RESP

HF/6-31G(d) charges for the cyclic compounds considerably
improved the agreement of regular SRTI predictions with experi-
mental values. Indeed, while simulations with the AM1BCC
charge model systematically overestimated the binding free
energies, with the RESP charges the disagreement was no longer
systematic and remained within 0.3 kcal/mol. Thus, for indole,
the RESP charges lowered the disagreement with experimental
values by more than 2 kcal/mol. Despite the improved accuracy
of the predictions, the RESP charges did not affect convergence
of the cyclic ligands. Indole still had the largest standard deviation
of 1.9 kcal/mol. These results suggest that a charge model can
strongly affect the accuracy, but not necessarily the precision, of
the computed binding free energies.
Large standard deviations in computed binding free energies

identify ligands most sensitive to the initial complex config-
uration. The reasons for this sensitivity likely reside in hin-
dered ligand motions. Indeed, inspecting trajectories of the
ground state simulations for benzofuran using all 12 starting
configurations, we found that they converge to only four

metastable configurations. These metastable configurations de-
monstrate that the cyclic ligands do not flip freely in the binding
pocket on a nanosecond time scale. Furthermore, alignment of
the ligands suggests that the binding pocket has the geometry of a
flattened prolate ellipsoid. Each unique configuration contributes
distinctly to the binding free energy, thus, increasing the standard
deviation. Therefore, enhanced sampling of the ligands in their
complexes would allow the metastable configurations to rapidly
interconvert, ultimately improving the quality of predictions. Because
the regular SRTI approach does not have the ability to enhance these
transitions alone, we need to invoke the HREX option.
3.2. Improving the SRTI Results with HREX. The use of

SRTI with HREX22 could simultaneously enhance sampling of
the ligand and select protein side chains. First, we attempted
to enhance motions of the ligand and the V111 side chain.
Specifically, by choosing the benzene core as a ligand refer-
ence state, we intended to activate rotations of the bulkier
ligands within the active site. Furthermore, by choosing a
V111p-A mutant as a protein reference state (see the Methods
section for definition), we expected to activate the V111
rotations that have activation barriers in the 5�8 kcal/mol
range.29,70 This strategy is expected to reduce the size of each
ligand to the size of the benzene core while simultaneously
enlarging the binding site around p-A111 (Figure 1) to

Figure 2. Side chain conformational transitions for the indole complex
with the L99A mutant of T4 lysozyme using the V87p-A:V111p-A:
L118p-A reference. Time series and respective histograms are presented
for the k1 (HR�CR�Cβ�Hβ) torsion of V111 and V87 and for the k1
(HR�CR�Cβ�Cγ) and k2 (CR�Cβ�Cγ�Hγ) torsions of L118.
The bins of the histograms were 5� wide. The time series reports the
corresponding values of the torsions. The top panel summarizes the
regular SRTI simulation results with relatively few conformational
transitions, whereas the bottom panel shows the HREX-SRTI results
with numerous such transitions. The reported HREX-SRTI simulations
employed 12 windows and the optimized p = 1 soft cores.

Figure 3. Side chain conformational transitions for indole complex with
the L99A mutant of T4 lysozyme using the V111p-A reference. Time
series and respective histograms are presented for the k1
(HR�CR�Cβ�Hβ) torsion of V111. The bins of the histograms were
5� wide. The time series report the corresponding values of the torsions.
The top panel summarizes the regular SRTI simulation results with
relatively few conformational transitions, whereas the bottom panel
displays the HREX-SRTI results with numerous such transitions. The
reported HREX-SRTI simulations employed 12 windows and the
optimized p = 1 soft cores.
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activate ligand flip transitions which are important in the
evaluation of cyclic compounds.
Interestingly, regular SRTI simulations suggest that the V111

rotation does not significantly affect relative free energies of
many ligands in the series. The free energy barrier for the valine
rotation is such that it could spontaneously rotate on a time scale
of several nanoseconds.29,70 Indeed, we observed that during
4-ns-long unenhanced SRTI simulations of the ground state,
V111 does spontaneously flip a few times without having a
significant effect on the binding free energies of many molecules
in the series (Figures 2 and 3, top panels).
The absence of the previously reported effect of V11128�30 in

cases of p-xylene and indene, among other ligands, is not
surprising. It could be explained by the fact that SRTI computes
relative binding free energies as opposed to the absolute free
energies reported previously. Indeed, in the present SRTI setup,
we do not need to sample an empty binding site of the protein,
where V111 has a preferred conformation.29 Nevertheless, for
the largest acyclic ligands, the effect could still be significant.
Therefore, we expect that enhancing the rotation of the V111
side chain through HREX would improve the overall agreement
with experimental data. This approach can also be applied to
enhance V111 rotation in the absolute binding free energy calcula-
tions with TI.
3.2.1. AM1BCC Charge Model and HREX-SRTI. Simply turning

on the HREX option in SRTI with the V111p-A reference state
produced seemingly modest improvements over the correspond-
ing regular SRTI results (Table 1). The average standard
deviation for all of the ligands decreased from 0.7 to 0.5 kcal/
mol with the AM1BCC charge model. However, some of the

ligands enjoyed significantly lower standard deviations versus
regular SRTI. For example, i-butyl-benzene and indole, which
had among the highest standard deviations, experienced signifi-
cant drops from 1.2 to 0.7 kcal/mol and from 1.7 to 0.5 kcal/mol,
respectively.
For the AM1BCC model, the overall agreement with experi-

mental values improved only slightly, with RMSE decreasing to
0.9 kcal/mol. Most of the improvement was achieved for the
acyclic ligands, which, when separated from the rest of the
ligands, showed a change in RMSE from 0.5 to 0.2 kcal/mol.
The cyclic compounds with AM1BCC charges are unaffected by
HREX and persistently show an RMSE of 1.7 kcal/mol. Despite
the improved agreement with experimental data, larger acyclic
ligands still exhibit elevated standard deviations, particularly in
the case of n-butyl-benzene.
The lack of significant improvements could indicate that other

residues in the binding site might be important. Most notably, all
of these simulations used 12 windows and consequently had
modest acceptance ratios (Table 1). Indole in water had the
lowest acceptance ratio of 14%, which increased to 21% in the
protein environment with the V111p-A reference. Indole and
phenol are the only two ligands in the series that have polar
hydrogen atoms and an increased acceptance ratio in the protein
environment.
3.2.2. RESP Charge Model and HREX-SRTI. Different charge

models behave distinctly when running SRTI with the HREX
option. Thus, HREX-SRTI with RESP charges for the cyclic
compounds diminished the agreement with experimental results
compared with that in regular SRTI. Specifically, RMSE for the
three cyclic compounds increased from 0.2 to 0.5 kcal/mol.
However, the average standard deviations decreased from 0.9 to
0.8 kcal/mol (Table 1). Unexpectedly, indole exhibited a sharply
increased standard deviation of 1.8 kcal/mol using the RESP
model compared to 0.5 kcal/mol with the AM1BCC model.
3.3. Improving HREX-SRTI Predictions. To understand the

reason for poor convergence of the free energy values with
HREX-SRTI and to possibly improve the results, we examined
the indole system in greater detail. Specifically, we focused on the
indole simulations with RESP charges that exhibited the largest
disagreement with experimental values and the largest standard
deviation.
3.3.1. Triple Mutant Reference State V87p-A:V111p-A:L118p-

A.We hypothesized that even with the HREX option turned on,
flipping of the indole might still be impeded in the V111p-A
reference state. In order to test this hypothesis, we created a triple
mutant reference state by mutating two additional residues, V87
and L118 to p-A. These two residues pin the benzene moiety of
the ligands to the floor of the binding site. It should be noted that
L118 has been experimentally shown to exhibit conformational
variability similarly to V111.1

The triple mutant system V87p-A:V111p-A:L118p-A should
completely remove the ligand flipping restriction. Moreover, this
unphysical reference state could potentially open water access to
the hydrophobic binding site of the L99A T4 lysozyme. In the
proposed experiment, three residues would undergo alchemical
transformations, making 30 atoms of the protein (nine for each
valine and 12 for leucine) disappear in the reference state. While
this should theoretically enhance sampling of the three residues
along with the ligand, it might be difficult in practice to achieve a
sufficient overall exchange rate in HREX-SRTI.22 Hence, this test
would also identify the limits of our approach in extending it to
concurrent activation of multiple residues.

Table 2. Improving HREX-SRTI Efficiency for the L99A T4
Lysozyme Mutant in Complex with Indolea

system NSRTI p R ΔGPrt(SD), kcal/mol NHREX accept, %

V87p-A:V111p-A:L118p-A

SRTI 12 2 1.5 34.2(3.8)

SRTI 23 2 1.5 36.9(3.3)

HREX-SRTI 23 2 1.5 39.5(1.4) 1000b 30

HREX-SRTI 12 1 0.3 29.4(0.9) 2000 17

HREX-SRTI 12 1 0.4 30.6(0.8) 2000 13

HREX-SRTI 12 1 0.5 33.6(1.2) 2000 9

V111p-A

SRTI 12 2 1.5 �0.6(1.8)

HREX-SRTI 12 2 1.5 �1.0(1.8) 2000 19

HREX-SRTI 23 2 1.5 �1.6(0.5) 2000 48

HREX-SRTI 12 1 0.4 �1.7(0.2) 2000 29
aThese results are representative of the protein leg of the thermody-
namic cycle (Figure 1) using RESP@HF/6-31G(d) point charges on the
ligand. NSRTI and NHREX refer to the number of TI windows and
exchange cycles, respectively. Soft-core parameters involved in optimi-
zation are p and R (see text for description). Averages and standard
deviations (SD) are over eight independent simulations with distinct
starting positions of the ligand in the binding site. Two unphysical
references, namely, V87p-A:V111p-A:L118p-A and V111p-A, are con-
sidered. By design, the use of the former reference with HREX should
enhance side chain torsions of the V87, V111, and L118 along with
rotation and flipping of the ligand. The latter reference should enhance
torsions of the V111 side chain and rotations of the ligand. Unless
otherwise stated, all TI windows were run in the NPT ensemble at 1 atm
and 300 K for 4 ns. b Each window was run for 2 ns.
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The triple mutant V87p-A:V111p-A:L118p-A presents a chal-
lenge for HREX-SRTI. As seen in Table 2, regular SRTI
simulations with 12 and 23 windows had standard deviations
of 3.8 and 3.3 kcal/mol, respectively, for just the protein leg of the
thermodynamic cycle (Figure 1). The fact that the standard
deviation with the triple mutant reference is more than twice as
large as that with the single mutant one (1.8 kcal/mol) suggests
that conformations of residues V87 and L118 may indeed affect
ligand binding. The standard deviation was reduced to 1.4 kcal/
mol when employing 23 windows in the HREX-SRTI simula-
tions. The corresponding 12-window simulations did not achieve
a sufficient overall exchange rate to yield results that were distinct
from the regular SRTI simulations.
3.3.2. Assessing HREX Efficiency. 3.3.2.1. Round-Trip Count.

Achieving efficient exchanges is critical for obtaining converged
free energies in HREX simulations.43 The overall acceptance
ratio might be inadequate to assess the efficiency of HREX
simulations. While the overall acceptance ratio is a satisfactory
criterion to assess the efficiency of the more widely applied
temperature replica exchange (TREX) simulations in the absence
of first order transitions,71,72 the situation withHREX is different.
It is difficult to devise a universal exchange protocol for HREX

simulations, because the Hamiltonian generally depends on λ
nonlinearly.15,16 One way to monitor the efficiency of HREX
simulations is to examine the number of round-trips made over
the simulation time.42,71 A replica that has returned to its initial λ
after visiting both λ = 0 and λ = 1 states in either order is said to
have accomplished a round-trip. Although this is an excellent
measure of efficiency in theory, simulations might not, in
practice, be long enough to complete even a single round-trip.
In addition, when increasing a number of windows, a round-trip
may take longer time. Therefore, long simulation times may be
required to use this measure of exchange efficiency.
Finally, we note that besides the λ = 1window in SRTI, scaling of

the dihedral and soft-core potentials can activate hindered transi-
tions in several neighboring windows. This means that multiple
windows can experience enhanced sampling. While a standard
round-trip count would reflect the overall efficiency of the simula-
tions, it may not capture diffusion of the conformations from all of
the enhanced windows down to the λ = 0 window. Ultimately, we
gauge the sampling gains by the reduction in the standard deviations
ofHREX-SRTI compared to regular SRTI, which is an independent
measure of both convergence and sampling efficiency.
3.3.2.2. Acceptance Ratio Profile. Alternatively, one can

generate an acceptance ratio profile for each pair of TI windows
that is adjacent in λ space from the actual simulation data.15 A flat
profile would indicate equally probable exchanges between adja-
cent windows and, consequently, produce the largest number of
round-trips possible for any given time. Therefore, we consider the
acceptance ratio profile a practical alternative to the round-trip
count. A simple inspection of the acceptance ratio profile could
identify problems in the HREX simulations. The pair with the
lowest ratio across all of thewindowpairs limits the round-trip rate.
3.3.2.3. Energy Difference Histograms. The acceptance ratio

profile is related to the corresponding double and single energy
difference histograms. Single energy difference histograms over all
adjacent pairs of λi and λi+1 involve the corresponding forward and
backward energy differences. These histograms contain valuable
information not only with respect to the efficiency of the simula-
tions but also with respect to their validity.73 Furthermore, the
information from the forward and backward histograms can be
used to estimate the free energy difference between the adjacent

states, though such an estimator may be suboptimal.43,73 In cases
with linear dependence of the Hamiltonian on λ, the single energy
difference histogram is closely related to the corresponding
histogram of the energy derivative with respect to λ.43 The double
energy difference histogram comprises the energy change of the
generalized ensemble that enters the Metropolis function to
decide on the exchange of a particular pair.15 These double energy
difference histograms are perhaps the most informative for the
purpose of the HREX. They could be computed using configura-
tions generated by regular SRTI for a given set of λ values at an
additional expense that would increase the cost of the calculation
to that of HREX-SRTI.
3.3.3. Parameters That Influence HREX Efficiency. Predicting

the dependence of the double energy difference or the accep-
tance ratio profile on the coupling parameter λ without actually
running HREX simulations could help design more efficient
simulations. Indeed, determining an optimal set of λ values that
would yield a uniform acceptance ratio profile will maximize the
efficiency. It is easy to show that the mean of the double energy
difference histograms and the Æ∂V/∂λæ are related according to
eq 4 (see the Appendix for derivation):

ÆΔΔijæ≈ βðΔλijÞ2 ∂
2V

∂λ2

� �
ðλi þ λjÞ=2

� d
dλ

∂V
∂λ

� �
ðλi þ λjÞ=2

 !

≈ β2ðΔλijÞ2var ∂V
∂λ

� �
ðλi þ λjÞ=2

ð4Þ

Figure 4. Monitoring efficiency of HREX-SRTI. The top panel illus-
trates the acceptance ratio profile for indole bound to the L99A mutant
of T4 lysozyme with the V87p-A:V111p-A:L118p-A reference state. The
bottom panel shows the ΔΔij histograms in color. On the top of the
histograms is the actual profile of the mean ΔΔij value (solid black line
with circles), its estimate from the variance (dashed black line with
diamonds), and the contribution of the derivative of the <∂V/∂λ>
(dashed black line with triangles), which are derived from eq 4. The
HREX-SRTI simulations employed 23 windows, each run for 2 ns with
p = 2 soft-core potentials in the NPT ensemble at 1 atm and 300 K.



3008 dx.doi.org/10.1021/ct2003786 |J. Chem. Theory Comput. 2011, 7, 3001–3011

Journal of Chemical Theory and Computation ARTICLE

Figure 4 shows an overlay of the ΔΔij distributions, their actual
mean value, and its approximation using eq 4. As can be seen
from Figure 4, eq 4 closely approximates the mean of the double
energy difference. Furthermore, the contribution of the mean
second derivative is significant and should not be neglected.
Thus, eq 4 is a useful starting point for improving HREX
simulation protocols.
It might be worthwhile to note that the derivative in the latter

equation is related to the variance of the ∂V/∂λ:43,74

var
∂V
∂λ

� �
¼ ∂V

∂λ

� �2� �
� ∂V

∂λ

� �2

¼ β�1 ∂
2V

∂λ2

� �
� d
dλ

∂V
∂λ

� � !

ð5Þ
According to eq 5, in cases when the potential V depends on λ
linearly, the variance reduces to the first derivative of the <∂V/∂λ>.
Because the variance is a positive quantity, the left-hand side
of eq 4 would always be positive. Assuming that the value of the
mean double energy difference would correspond to the most
probable value of its distribution, one might expect better
acceptance ratios if the mean is closer to zero. For nonlinear
dependence, convexity of the potential with respect to λ would
play an important role.
3.3.3.1. Increasing the Number of TI Windows. Equation 4

suggests that reducing the spacing between adjacent λ’s
(increasing the number of windows) would result in an increase
in the acceptance probability. Indeed, similarly to our previous
study,22 increasing the number of windows from 12 to 23 in
the system with the V87-pA:V111-pA:L118-pA reference
state considerably improves the overall acceptance ratio from
less than 10% to 30%. The reduction in standard deviation
from 3.3 to 1.4 kcal/mol attests to the improved efficiency.
It should be noted that the cost of the 23-windowHREX-SRTI
simulations was maintained similar to that of the 12-window
simulation by reducing the number of exchange cycles to
1000.
The acceptance ratio profile of the HREX-SRTI simulations

with V87-pA:V111-pA:L118-pA reference and 23 windows
(shown in Figure 4) revealed an exchange bottleneck. Indeed,
as seen in Figure 4, the acceptance ratio for the pair of windows
with λi = 0.4091 and λi+1 = 0.4545 is close to zero. In other words,
our generalized ensemble was divided, with replicas sampling
two independent regions of the λ space. This prevented the
system from reaching a true equilibrium. Clearly, the 23-window
HREX simulations, while greatly improving the overall accep-
tance ratio, still had the limitation of inefficient exchanges in a
specific region of the λ space.
3.3.3.2. Position of Windows. Although generally applicable,

simply increasing the number of windows to improve the
efficiency of HREX simulations is not a viable strategy.
Certainly, if successive TI windows were kept at constant
λ intervals, this strategy would not remove the existing
exchange bottlenecks. In addition, maintaining the number
of windows at the same level as in regular SRTI simulations
would be desirable from a computational cost perspective.
Therefore, a better strategy would be to adjust the positions
of the existing TI windows. Importantly, regular TI is
sufficient for obtaining the ∂V/∂λ variance profile that
according to eq 4 could be used to determine an optimal
set of λ’s for efficient HREX simulations. Alternatively,
round-trip-based methods could be used to optimize place-
ment of λ’s as has been done in the context of simulated

scaling.42 However, determining the optimal set of λ’s is
highly system-dependent. Therefore, we did not pursue this
strategy here. Fortunately, eq 4 suggests yet another strategy
for improving HREX-SRTI simulations.
3.3.3.3. Altering Mean Force Profile. Besides manipulating

the number and position of TI windows, eq 4 indicates that
the acceptance probability is greatly affected by the shape of the
∂V/∂λ variance profile. Therefore, we could improve the ex-
change rates by changing the shape of the profile using param-
eters we have at our disposal. Specifically, we can vary parameters
of the soft-core potentials.
Recall the general form of the soft-core potentials available in

GROMACS9,10,63,75 (eqs 1�3). The present implementation of
GROMACS supports soft-cores with p = 1 and p = 2.9,10 The R
and σ parameters have been optimized for each p using an approach
that decouplesCoulomb and vdWchanges.76 For the SRTI approach
that simultaneously transformsCoulomb and vdW interactions, these
values of parameters may be suboptimal.
Soft-core potentials with p = 1 are well-suited for HREX-SRTI

simulations. Indeed, our earlier SRTI simulations with p = 2
potentials had the limitation of sharp peaks in the Æ∂V/∂λæ profile
near λ = 0 as previously described in the literature.9,67 These
peaks are due to the hydrogen atoms with undefined σ param-
eters and present an obstacle to accurate integration within the
Fourier beads approach.22 In order to integrate these sharp peaks

Figure 5. Optimization of HREX-SRTI efficiency by altering soft-core
potential parameters. The top panel illustrates the acceptance ratio
profiles for indole bound to the L99A mutant of T4 lysozyme with the
V111p-A reference state. Unlike in Figure 4, these simulations em-
ployed p = 1 soft-core potentials with three different values for the
parameterR, namely 0.3, 0.4, and 0.5. The bottom panel shows theΔΔij

histograms in color along with their actual mean (solid black line with
circles), the estimate of the mean from the ∂V/∂λ variance (dashed
black line with diamonds), and the contribution of the derivative of the
<∂V/∂λ> (dashed black line with triangles), which are derived from
eq 4. The bottom panel only shows results for the simulations with R =
0.4 that achieve the best precision. The HREX-SRTI simulations
employed only 12 windows, each run for 4 ns in the NPT ensemble
at 1 atm and 300 K.
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properly, additional TI windows have been introduced. In
contrast, the profile derived using p = 1 soft-core potentials is
devoid of such peaks.10

Switching to the soft-core potentials with p = 1 improves the
acceptance ratio of the HREX-SRTI simulations. Indeed, using
default parameters with only 12 windows, we obtained modest
acceptance ratios of 17% in the system that had the V87-pA:
V111-pA:L118-pA reference. Recall that 12-window simulations
with p = 2 failed to achieve acceptance ratios above 10%.
However, as discussed above, an improved acceptance ratio does
not guarantee improved efficiency. The analysis of the accep-
tance ratio profile for p = 1 shows that windows near λ = 1
exchange poorly.
3.3.3.4. Optimization of Soft-Core Parameters for HREX.

The optimization of the R parameter helps to flatten the
acceptance ratio profile, rendering the HREX-SRTI more effi-
cient. Using 12-window simulations of indole with the V87-pA:
V111-pA:L118-pA reference, we varied the value of R from its
default value of 0.3 to 0.4 and 0.5 at p = 1. Figure 5 summarizes
the acceptance ratio profiles and compares predicted and actual
meanΔΔij for the best of them. While at R = 0.5 we obtained the
most uniform acceptance ratio profile, the overall acceptance
ratio declined to 9% (Table 2). At the intermediate value of 0.4,
the overall acceptance ratio was 13%, with the acceptance ratio
profile demonstrating sufficient exchange probabilities near λ = 1.
Clearly, one has to find a compromise between the flatness of the
acceptance ratio profile and the overall acceptance ratio.
To choose the best value of parameter R, we compared the

standard deviations from each set of simulations. As seen in
Table 2, the intermediate value R = 0.4 yielded the lowest
standard deviations of 0.8 kcal/mol. This is a considerable
improvement for the system with the triple mutant reference, in
comparison to the regular 12-window SRTI simulation with
p = 2, which had a standard deviation of 3.8 kcal/mol. Inter-
estingly, simulations with R = 0.5 that were associated with an
almost flat acceptance ratio profile yielded a standard deviation
of 1.2 kcal/mol.

3.3.3.5. Transferability of Optimized Parameters. The value
of R optimized for the challenging system with the V87-pA:
V111-pA:L118-pA reference state could be transferred to
improve the results for an easier system with the V111-pA
reference. With the latter reference state, only the V111 side
chain is enhanced along with the ligand in HREX-SRTI. Indeed,
as seen in Table 2, for p = 2, the HREX-SRTI simulations with 12
windows and the V111-pA reference achieved a standard devia-
tion of 1.8 kcal/mol. In fact, HREX-SRTI and regular SRTI had
identical standard deviations, despite the fact that the overall
acceptance ratio of the former was 19%. With 23 windows, both
the acceptance ratio and the standard deviation improved to 48%
and 0.5 kcal/mol, respectively. To our great satisfaction, the
optimized HREX-SRTI with p = 1 demonstrated significantly
improved convergence. Remarkably, we were able to achieve an
improved standard deviation of 0.2 kcal/mol using only 12
windows with an overall acceptance ratio of 29%.
Even with the optimized protocol, our predictions for indole

deviate significantly from the experimental data. Figure 6 shows
the comparison of our predicted binding free energies with the
experimental values for all of the ligands, including the optimized
results for indole. Indeed, the binding free energy of indole using
the most efficient HREX-SRTI protocol is still overestimated by
1.5 kcal/mol.
3.3.3.6. Decoupling of Coulomb and vdW Transforma-

tions. As a final note on efficiency, we would like to mention
that the Æ∂V/∂λæ profile would change radically by decoupling of
the vdW and Coulomb transformations. Such a decoupling is
expected to render the overall profile smoother and hence
improve the acceptance ratio.21 Indeed, HREX simulations with
decoupled vdW and Coulomb transformations were recently
reported.20,21 Unfortunately, the overall acceptance ratios or
acceptance ratio profiles were not provided. Since the HREX-
SRTI approach was originally designed22 to electrostatically
guide ligands to better binding poses,77,78 decoupling of the
electrostatics and vdW would defeat the purpose.
3.4. HREX-SRTI As a Conformational Analysis Tool. It is

instructive to analyze structural transitions in the L99A T4
lysozyme mutant in complex with indole in an attempt to explain
the observed disagreement with experimental values.
3.4.1. Transitions of Hindered Residues Are Indeed Enhanced

by HREX-SRTI. In order to demonstrate that HREX-SRTI
enhances conformational transitions of the hindered protein
side chains, we performed additional analyses of the real state
trajectories (λ = 0). Figures 2 and 3 compare the dihedral angles,
described in the Methods section, that characterize side chain
conformations of V87, V111, and L118 where applicable.
Although the histograms of the referred to dihedral angles may
look similar, the time series clearly demonstrate the increased
number of transitions in HREX-SRTI. In most cases, each side
chain samples multiple conformational basins, supporting our
earlier conclusion regarding their contributions to the binding
free energies. Interestingly, the V87 side chain appears to con-
sistently prefer a particular conformation.
3.4.2. Indole Transitions in the Binding Pocket. We also

verified that indole could flip its benzene plane in HREX-SRTI
simulations with triple mutant reference states. The analysis of
the real state trajectories revealed multiple indole orientations in
the binding pocket. In one of the orientations, the NH group of
indole persistently hydrogen-bonded with the S atom of M102.
In another orientation, the same NH group was involved in
hydrogen bonding with the backbone carbonyl group of V87.

Figure 6. Comparison of the HREX-SRTI relative binding free energy
predictions to experimental results. The binding free energies are relative
to benzene. The best-fitted line passing through the origin is y = 1.10x,
and the corresponding correlation coefficient is R2 = 0.76. The RESP
HF/6-31G(d) charge model was used for the cyclic compounds, and the
AM1BCC model was used for the acyclic compounds. With the
exception of indole, all of the simulations employed p = 2 soft-cores
with default parameters. The indole prediction incorporates the results
obtained with the optimized p = 1 soft-cores.
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In the HREX-SRTI simulations with the single mutant V111p-A
reference state, the ligand in-plane rotation was enhanced, but
the plane flipping transitions remained hindered.
3.4.3. Water Does Not Bind T4 LysozymeMutant with Indole.

The indole disagreementwith experimental values is not attributable
to a lack ofwater access to the binding site. Althoughour simulations
with the V111p-A reference state are not designed to open the
normally sealed active site, we have tested this hypothesis using the
V87p-A:V111p-A:L118p-A reference state. By inspecting the MD
trajectories, we observed that water molecules did penetrate the
pocket of the triple mutant reference state (λ = 1). However, none
of the configurations with water molecules inside the binding site
reached the real state (λ = 0) during the HREX-SRTI simulations.
This strongly suggests that water is not responsible for the observed
discrepancy.

4. CONCLUSIONS

This study presented a practical application of the SRTI
approach to compute relative binding free energies of small
molecules to a challenging binding site in the L99A mutant
of T4 lysozyme. With the HREX option, SRTI successfully
enhanced sampling of the hindered transitions of protein side
chains and bound ligands. Achieving efficient HREX simulations
improves the quality of predictions. However, the commonly
used overall acceptance ratio is not a good indicator of the
efficiency of the HREX. Instead, acceptance ratio profiles should
be examined and whenever possible made uniform by adjusting
simulation parameters. To aid the future design of efficient
simulation protocols, we have provided a useful relationship
between the mean exchange energy and the corresponding ∂V/
∂λ variance profiles. Guided by the relationship, we demon-
strated that judicial changes in the soft-core potentials consider-
ably improved HREX-SRTI simulation efficiency. Overall, the
HREX-SRTI predicted relative binding free energies for a series
of 12 ligands with an RMSE of 0.3 kcal/mol comparable to
experimental data. Ultimately, improving efficiency of the HREX
simulations may further reduce computational cost and increase
the precision of the predictions.

Note, while this paper was under revision, we discovered a
paper by Steiner and coauthors that used an approach identical to
HREX-SRTI to compute relative free energies of a number of
ligands to Plasmepsin II, albeit without accelerating any residues
of the protein.79

’APPENDIX

For a configuration R, the vertical excitation energy
Δij(R) from a Hamiltonian at λi to that at λj is calculated as
follows:

ΔVijðRÞ ¼ VðR, λjÞ � VðR, λiÞ ðA1Þ

The overall potential energy change ΔΔij(R,R0) for the
generalized ensemble upon Hamiltonian exchange between
two configurations R and R0 from the adjacent windows λi
and λj is

ΔΔijðR,R0Þ ¼ β½ΔVijðRÞ�λi þ β½ΔVjiðR0Þ�λj ðA2Þ

The subscripts after the square brackets indicate the Hamiltonian
of the simulations used to obtain the respective configurations.
Only two configurations representing each λ are involved.

The generalized ensemble average value of the double differ-
ence for a given pair of adjacent replicas is then

ÆΔΔijæ ¼ βÆΔVijæλi þ βÆΔVjiæλj ðA3Þ
Using second order Taylor expansion:
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where

Δλij ¼ λj � λi ðA5Þ
we obtain the following expression, which is equivalent to eq 4 in
the main text:
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Recalling eq 5 from the main text we obtain the final relation.

ÆΔΔijæ≈ β2ðΔλijÞ2 var ∂V
∂λ

� �
λðiþjÞ=2

ðA7Þ
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