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Abstract

Mathematical models of human cardiovascular and respiratory systems pro-

vide a viable alternative to generate synthetic data to train artificial intelli-

gence (AI) clinical decision-support systems and assess closed-loop control

technologies, for military medical applications. However, existing models are

either complex, standalone systems that lack the interface to other applications

or fail to capture the essential features of the physiological responses to the

major causes of battlefield trauma (i.e., hemorrhage and airway compromise).

To address these limitations, we developed the cardio-respiratory (CR) model

by expanding and integrating two previously published models of the cardio-

vascular and respiratory systems. We compared the vital signs predicted by the

CR model with those from three models, using experimental data from 27 sub-

jects in five studies, involving hemorrhage, fluid resuscitation, and respiratory

perturbations. Overall, the CR model yielded relatively small root mean square

errors (RMSEs) for mean arterial pressure (MAP; 20.88 mm Hg), end-tidal CO2

(ETCO2; 3.50 mm Hg), O2 saturation (SpO2; 3.40%), and arterial O2 pressure

(PaO2; 10.06 mm Hg), but a relatively large RMSE for heart rate (HR; 70.23

beats/min). In addition, the RMSEs for the CR model were 3% to 10% smaller

than the three other models for HR, 11% to 15% for ETCO2, 0% to 33% for

SpO2, and 10% to 64% for PaO2, while they were similar for MAP. In conclu-

sion, the CR model balances simplicity and accuracy, while qualitatively and

quantitatively capturing human physiological responses to battlefield trauma,

supporting its use to train and assess emerging AI and control systems.
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1 | INTRODUCTION

The unprecedented survivability of U.S. combat casualties in the recent conflicts in Iraq and Afghanistan is attributed
in part to the ability to evacuate casualties from the time of injury to a medical treatment facility in less than 60 min.1–3

In future conflicts, where airspace is expected to be contested and casualty evacuation delayed, medics will need to pro-
vide field care with limited resources for hours, if not days.4 More importantly, recent multi-domain military war games
against a near-peer suggest that the U.S. military should be prepared to suffer a considerably larger number of daily
casualties in future conflicts, which, together with prolonged field care, will overwhelm medics.5,6 Despite the drastic
increase in casualty-to-medic ratio in this new paradigm, we expect that hemorrhage and airway compromise will con-
tinue to be the leading causes of potentially survivable death (�99%) on the battlefield.7

One way to augment the capacity and capability of medics in such a scenario, and aid them in continuous casualty
monitoring, triage, and treatment, is to rely on emerging autonomous or semiautonomous systems, such as clinical
decision-support systems based on artificial intelligence and closed-loop control systems.8–20 However, to develop such
artificial intelligence systems, we must have large amounts of clinical or experimental data, on the order of thousands
of subjects,9 which is impractical. An alternative viable solution is to use well-validated, human physiology-based com-
putational models to generate a comprehensive synthetic database of battlefield injuries and treatment solutions that
reflect those of resource-limited, prolonged field-care environments. These models need to reproduce key aspects of
human physiology associated with hemorrhage and airway compromise, the top two battlefield injuries, and generate
vital-sign data that show both qualitative and quantitative agreement with clinical observations.

To develop mathematical models that effectively reproduce human responses to hemorrhage and airway compromise
and the associated treatments, we must consider an integrated approach that represents both the cardiovascular and respi-
ratory systems and accounts for their coupling.21–25 Hemorrhage directly affects hemodynamics through the cardiovascu-
lar system, which in turn impairs blood flow to the lungs, interfering with gas exchange and reducing the function of the
respiratory system.21,22 Similarly, airway compromise directly affects ventilation, leading to hypoxia and hypercapnia,
which in turn negatively impact the function of the cardiovascular system.23–25 While many mathematical models have
been developed to represent the cardiovascular and respiratory systems,26–41 the vast majority represent either the cardio-
vascular system26–30 or the respiratory system,31–35 with only a few accounting for both.36–44 Even among the ones that
account for both systems, the majority36–42 cannot consider fluid perturbations characteristic of hemorrhage and fluid
resuscitation because they do not have an interstitial fluid compartment to compensate for changes in blood volume,45

while others, such as the Pulse Physiology Engine43 and the HumMod software,44 are standalone applications that lack
the needed interface to other applications for the generation of a large database of synthetic casualties. In addition, these
models are too complex, involving thousands of model parameters and variables.43,44 Importantly, except for the Pulse
Physiology Engine,43 none of these models were specifically designed to capture the physiological responses caused by bat-
tlefield injuries (i.e., hemorrhage and airway compromise) and their associated treatments.

Here, we aimed to develop a human physiological model that balances simplicity and accuracy, while specifically
capturing the essential features of the cardiovascular and respiratory responses to hemorrhage, fluid resuscitation, and
respiratory perturbations, which are key for modeling the top two types of trauma-induced injuries on the battlefield.
Accordingly, we developed the cardio-respiratory (CR) model by expanding and integrating two previously published
works: Guyton's model30 and Cheng et al.'s model.36 To evaluate the performance of the CR model, we compared its
predictions with three other models, referred to as Guyton, Cheng, and HumMod, using experimental data from five
studies, involving hemorrhage, fluid resuscitation, and respiratory perturbations.

2 | MATERIALS AND METHODS

2.1 | Description of the cardio-respiratory model

To develop the CR model, we integrated Guyton's cardiovascular model and the fluid-shift mechanism described
therein30 with Cheng's respiratory model.36 We coupled the two systems using an updated version of the coupling
described in Cheng's model, to accommodate the simpler cardiovascular representation in Guyton's work (Figure 1).
We incorporated the cardiovascular and respiratory dynamics, along with their regulatory mechanisms and couplings,
consisting of a system of 74 ordinary differential and algebraic equations and 74 parameters. We used a lumped-
parameter formulation based on first principles (i.e., principles of mass conservation) to model the fluid balances within
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the vascular compartments and the gas balances within the lungs and tissues and a compartmental phenomenological
formulation to represent the regulatory mechanisms and couplings. The CR model can simulate hemorrhage, fluid
resuscitation, and respiratory perturbations, and predicts cardiovascular and respiratory vital signs under different con-
ditions. We refer the reader to the Supplementary Material for a complete set of equations for the CR model (Text S1 in
the Supplementary Material) and its associated parameters (Table S1 in the Supplementary Material) and coefficients
(Table S2 in the Supplementary Material).

2.1.1 | Cardiovascular model

The cardiovascular model, based on Guyton's work,30 includes mathematical descriptions for circulatory dynamics, the
fluid shift between the circulatory and interstitial fluid compartments, the renal system, the sympathetic stimulation,
and the angiotensin control mechanism (Figure 1A). The model's inputs are the rates of hemorrhage or fluid resuscita-
tion, and its outputs consist of time courses of four vital signs, mean arterial pressure (MAP), systolic blood pressure
(SBP), diastolic blood pressure (DBP), and heart rate (HR). We obtained the circulatory dynamics by enforcing macro-
scopic mass balances for each vascular compartment, including the heart, arteries, and veins. We estimated SBP and
DBP from empirical equations derived from HumMod44 based on MAP and estimated HR based on the blood pressure
of the right atrium and the regulatory effects of sympathetic stimulation on HR (Equations S1–S32 in the Supplemen-
tary Material).

2.1.2 | Respiratory model

The respiratory model, based on Cheng's work,36 consists of three compartments, representing gas storage and
exchange in the lungs, brain tissue, and body tissue (Figure 1C). The model's inputs are the minute ventilation
(MV) and the fraction of inspired oxygen (FiO2), and its outputs are the partial pressure of end-tidal carbon dioxide
(ETCO2) and oxygen saturation (SpO2). We obtained the respiratory dynamics by imposing macroscopic mass balances
in the lungs, brain tissue, and body tissue (Equations S33–S49 in the Supplementary Material).
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FIGURE 1 Schematic block diagram of the cardio-respiratory (CR) model. The CR model consists of a cardiovascular model (A),

coupling model (B), and respiratory model (C). (A) The cardiovascular model includes circulatory dynamics, the fluid shift between the

circulatory and interstitial fluid compartments, sympathetic stimulation, and the angiotensin control mechanism. The model's inputs are the

rates of hemorrhage or fluid resuscitation, and the outputs consist of four cardiovascular vital signs, systolic blood pressure (SBP), diastolic

blood pressure (DBP), mean arterial pressure (MAP), and heart rate (HR). (B) The coupling model describes how the cardiovascular and

respiratory models interact via the central nervous system and local blood flow control. (C) The respiratory model consists of three

compartments, representing gas storage and exchange in the lungs, brain tissue, and body tissue. The model's inputs are the minute

ventilation (MV) and the fraction of inspired oxygen (FiO2), and its outputs consist of the partial pressure of end-tidal carbon dioxide

(ETCO2) and oxygen saturation (SpO2).
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2.1.3 | Coupling model

The coupling of the two models (Figure 1B), adapted from Cheng's work and originally developed by Ursino and
Magosso,23–25 describes how the cardiovascular and respiratory models interact via the central nervous system and local
blood flow control (Equations S50–S74 in the Supplementary Material). The central nervous system includes the barore-
ceptor, chemoreceptor, lung stretch receptor, and central nervous system ischemic responses. Its inputs include the
arterial O2 (PaO2) and CO2 pressures (PaCO2) from the respiratory model, while its outputs to the cardiovascular model
include the central nervous system effects on the venous resistance and blood volume in the veins, heart contractility,
and HR. The local blood flow control changes the venous resistance to regulate blood flow in the circulatory system of
the cardiovascular model. Its inputs are the PaO2 and PaCO2, and its outputs are the local blood flow control effects on
the venous resistance. We used the blood flow rates in the circulatory system to determine the blood flow rates through
the brain and body tissues of the respiratory model.

2.2 | Comparison of the cardio-respiratory model with other models

2.2.1 | Models used for comparison

To assess the performance of the CR model, we compared and contrasted its predictions with three other models:
Guyton's model,30 Cheng's model,36 and HumMod.44 Guyton's model, which is a purely cardiovascular model, contains
22 parameters and can only simulate hemorrhage and fluid resuscitation. In contrast, Cheng's model contains �200
parameters that characterize the respiratory, cardiovascular, and sleep–wake systems, and can simulate hemorrhage,
fluid resuscitation, and respiratory perturbations. The more complex HumMod software consists of �5,000 parameters
and variables that describe and can be used to simulate dozens of conditions, such as food ingestion, anesthesia, and
exercise.

2.2.2 | Experimental studies

To assess the models, we used existing experimental data from five studies (Table 1). Briefly, Studies 1–2 involved nine
Yorkshire and eight domestic pigs (weight: 35–45 kg), respectively, challenged with 78–150 min of hemorrhage (65% of
blood volume), fluid resuscitation (25%–35%), and respiratory perturbations (MV: 3.5–12.8 L/min, FiO2: 26%–100%).21,46

In contrast, Studies 3–5 involved a total of 46 human participants subjected to 25–34 min of respiratory perturbations
(MV: 3.5–15.0 L/min, FiO2: 9%–21%).47–49 Although not consistent across the studies, the measurements included vital
signs and the rates of hemorrhage and fluid resuscitation. We refer the reader to the original articles for additional
information.

2.2.3 | Comparison procedure and metrics

To assess the performance of the CR model against the experimental data and the three other models, we simulated the
experimental scenarios in each of the five experimental studies described in Section 2.2.2 using all four of the models to
obtain the time courses of the vital signs. Because the experiments in Studies 1–2 were performed in animals and the
four models were developed to represent humans, we normalized the experimental inputs (e.g., hemorrhage and resus-
citation rates) before applying them to the models. To do this, we multiplied the inputs by the ratio of the average
weight of the animals in each study to the weight of an average human (i.e., 70 kg50). In addition, once the simulations
from all four of the models were complete, we also normalized the simulated outputs of the vital signs (i.e., MAP, HR,
ETCO2, and SpO2). We did this because the experimental outputs as well as the simulated outputs from the models
have different ranges, and normalizing the output values allowed for a head-to-head comparison. To do this, for all
models, we multiplied each simulated output by the ratio of the initial mean value of the corresponding experimental
measurement to the initial value of that specific model output. To quantitatively compare the performance of the differ-
ent models, we calculated two metrics. First, we computed the root mean square error (RMSEk) between the normal-
ized output ~yk and the mean of experimentally measured value Zk, for each vital sign k, as follows:
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RMSEk ¼norm Zk�~yk½ �=Nð Þ, ð1Þ

where norm(�) denotes the Euclidean norm of a vector of length N, representing the number of experimental data
points. Second, we computed the percentage of the normalized predicted output ~yk that fell within 95% of the confi-
dence interval of the measured data CIk tð Þ at time t around Zk, with

CIk tð Þ¼Zk tð Þ�1:96σk tð Þ, ð2Þ

where σk tð Þ represents the standard error of the mean of vital sign k at time t and 1.96 represents the standard score for
a 95% confidence level.51 We considered a model to be accurate if at least �70% of its predictions fell within CI.52 We
compared these two metrics across the four models to assess their prediction performance.

2.3 | Calibration of the cardio-respiratory model

To assess whether the predictions of the CR model could be improved, we calibrated the most sensitive model parame-
ters to the means of the experimentally measured outputs from the nine subjects in Study 1. To identify these parame-
ters, we first used the Latin hypercube sampling method53 to generate 100 unique parameter sets, each representing a
different “subject,” by randomly selecting parameter values around �50% of their nominal values. Using these 100 sub-
jects, we performed a global sensitivity analysis and selected the top two or three most sensitive parameters for each
model output, for a total of 10 parameters to calibrate (Text S2 and Table S3 in the Supplementary Material). To cali-
brate the parameters, we again used the Latin hypercube sampling method to generate 5,000 parameter sets for the 10
parameters, while using the nominal values for the other 64 model parameters. Then, using these parameter sets, we
performed 5,000 simulations, where for each simulation we computed the sum of the normalized RMSEs (Se) over the
four model outputs and selected the parameter set with the lowest Se as the final calibrated parameter values:

Se ¼
X4

k¼1

RMSEk

Z0
k

: ð3Þ

In addition, to investigate whether the CR model could predict the outputs of individual subjects, we followed the
same procedure and calibrated the CR model to reproduce the four model outputs for each of the nine subjects in Study
1. We only performed individualized calibration for Study 1 because subject data for the other studies were not
available.

3 | RESULTS

3.1 | Comparison of the four models

To assess the performance of the CR model, we compared and contrasted its predictions with the three other models
using the two metrics described in Section 2.2.3 (i.e., RMSE and prediction accuracy) for experimental data from the
five studies (Table 2, Figures 2–4, and Figures S1 and S2 in the Supplementary Material). However, not all of the models
used in our comparisons were able to simulate every experimental scenario. For example, Cheng's model was unable to
simulate severe hemorrhage while HumMod could simulate severe hemorrhage only when interspersed with fluid
resuscitation. Moreover, Guyton's model was unable to simulate respiratory perturbations. In addition, each experimen-
tal study only reported the values of a subset of the vital signs predicted by the CR model. Therefore, not all predicted
vital signs could be assessed in each study. Finally, because the human studies only considered respiratory perturba-
tions, we divided the analyzes into two groups: Studies 1–2, which considered hemorrhage, fluid resuscitation, and
respiratory perturbations in pigs, and Studies 3–5, which only considered respiratory perturbations in humans.

Study 1 considered severe hemorrhage (65% of the total blood volume), fluid resuscitation (25%), and respiratory
perturbations, and reported the values of four vital signs (Figure 2; MAP, HR, ETCO2, and SpO2). Thus, we compared
the CR model predictions with the reported values for these vital signs. The CR model yielded relatively small RMSEs
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for MAP (18.44 mm Hg), ETCO2 (4.95 mm Hg), and SpO2 (0.99%), but a relatively large RMSE for HR (58.05 beats/
min) compared to the corresponding experimental values (Table 2). In general, it is challenging to accurately predict
HR dynamics because it is affected by a number of factors, such as pain and level of distress,54–56 which we do not rep-
resent in the model. Table 2 also shows the RMSEs of Guyton's model and HumMod. While all three models yielded
similar RMSEs for MAP, the RMSEs for the CR model were 3% to 10% smaller for HR, 60% for ETCO2, and 98% for
SpO2. During the simulations, the Guyton model's MAP predictions fell outside of the physiological range and its HR
predictions changed unrealistically �9 min into the simulation (Figure 2A,B, respectively), likely caused by its inability
to consider respiratory perturbations. In addition, it cannot predict ETCO2 or SpO2. As discussed above, Cheng's model
could not simulate the severe hemorrhage condition of Study 1 because it does not account for the fluid-shift mecha-
nism, which compensates for body fluid loss. In terms of prediction accuracy, 71% of the nominal CR model predictions
of ETCO2 in Study 1 fell within their respective CIs (Table 2). None of the other three models achieved this accuracy
(Table 2).
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FIGURE 2 Comparison between Study 1 experimental data, simulated outputs for the cardio-respiratory (CR) model using nominal

(solid line) and calibrated (dash-dot line) model parameters, and simulated outputs for Guyton's model (dotted line) and HumMod (dashed

line). (A) Mean arterial pressure (MAP), (B) Heart rate (HR), (C) end-tidal carbon dioxide (ETCO2), (D) oxygen saturation (SpO2). H and R

represent the volumetric fraction of hemorrhage and fluid resuscitation, respectively, of total blood volume. S represents the period where

hemorrhage was stopped but no fluid resuscitation was provided. Gray dots represent mean experimental data (error bars denote two

standard errors of the mean; N = 9). Throughout the study, the minute ventilation and fraction of oxygen were adjusted to maintain an

ETCO2 of �40 mm Hg.
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In addition, Study 2 also considered severe hemorrhage (65%), fluid resuscitation (35%), and respiratory perturba-
tions, and reported the values of three vital signs (Figure 3; MAP, HR, and ETCO2). Similar to the results in Study
1, the CR model yielded relatively small RMSEs for MAP and ETCO2, but a relatively large RMSE for HR (Table 2).
Yet, the CR model still achieved a considerably better prediction than Guyton's model for HR (a 33% reduction) and a
similar prediction for MAP. As in Study 1, Guyton's model predictions of MAP and HR towards the end of the hemor-
rhage simulation yielded unphysiological results (Figure 3A,B, respectively). With regard to HumMod, because the
entire blood loss occurred within 30 min, the computations stopped within the initial hemorrhage simulation period,
suggesting that a sudden 65% reduction in total blood volume is outside its nominal simulation limits. In terms of pre-
diction accuracy, none of the four models achieved more than 70% accuracy for any of the predicted vital signs reported
in this experimental study (Table 2).

Studies 3–5 considered respiratory perturbations in humans and reported the values of ETCO2, SpO2, and PaO2.
When averaged over the three studies, the CR model yielded small RMSEs for ETCO2 (2.94 mm Hg), SpO2 (5.81%), and
PaO2 (10.06 mm Hg) (Table 2, Figure 4, and Figures S1 and S2 in the Supplementary Material). Moreover, for these
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FIGURE 3 Comparison between Study 2 experimental data, simulated outputs for the cardio-respiratory (CR) model using nominal

(solid line) and calibrated (dash-dot line) model parameters, and simulated outputs for Guyton's model (dotted line). (A) Mean arterial

pressure (MAP), (B) heart rate (HR), (C) end-tidal carbon dioxide (ETCO2), (D) oxygen saturation (SpO2). H and R represent the volumetric

fraction of hemorrhage and fluid resuscitation, respectively, of total blood volume. S represents the period where hemorrhage was stopped

but no fluid resuscitation was provided. Gray dots represent mean experimental data (error bars denote two standard errors of the mean;

N = 8). Throughout the study, the fraction of oxygen was set to be 100% and the minute ventilation was adjusted to maintain an ETCO2 of

35–45 mm Hg.
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studies, we could only compare the CR model to Cheng's model and HumMod because Guyton's model is a purely car-
diovascular model without the ability to predict respiratory vital signs. Both the CR model and Cheng's model yielded
very similar errors for all three vital signs. This is not surprising given that the respiratory component in the CR model
was adapted from Cheng's model. In contrast, compared to the CR model, HumMod's prediction error was slightly
lower for ETCO2 (10%) but considerably larger for SpO2 (22%) and PaO2 (64%). Figure 4 shows the measured data and
predictions for Study 3, where all three models correctly captured the trend of the two measured vital signs (ETCO2

and PaO2). However, while all three models yielded equivalent RMSEs for ETCO2, HumMod's error for PaO2 was >33%
larger than the other models (Table 2). Similar to Study 2, none of the four models achieved a 70% prediction accuracy
for the experimental data reported in Studies 3–5 (Table 2).

3.2 | Calibration of the CR model

We conducted a global sensitivity analysis of the CR model and identified its 10 most sensitive parameters for the four
outputs using data from Study 1 (Table S3 in the Supplementary Material). Most of these 10 parameters are associated
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with the regulation or direct estimation of at least one or more of the four vital signs. Moreover, these 10 parameters
were consistently more sensitive than others at greater than 95% of the simulated time points. To reduce prediction
errors of the CR model, we first calibrated the values of these 10 most sensitive parameters to match the CR model pre-
dictions with the means of the experimental data from Study 1. After calibrating the CR model to Study 1 data, we
observed modest reductions in its prediction errors (when compared to the nominal, un-calibrated model) for the Study
1 data: 21% for MAP, 26% for HR, 2% for ETCO2, and 43% for SpO2. In addition, when we used the calibrated CR model
to predict the remaining studies (Studies 2–5), we again observed only modest reductions in the prediction errors. For
example, Figure 3 shows the results for Study 2, illustrating the measured experimental data along with the CR model
predictions before (solid line) and after (dash-dot line) calibration. In this case, the differences between the two predic-
tions were consistently small across the four predicted vital signs, with between-model RMSEs of 6.13 mm Hg for MAP,
17.36 beats/min for HR, 0.62 mm Hg for ETCO2, and 0.32% for SpO2. On average, across Studies 2–5, the calibration of
the CR model reduced its prediction errors by 14% for MAP, 18% for HR, 22% for ETCO2, and 16% for SpO2 (Table 2,
Figures 2–4, and Figures S1 and S2 in the Supplementary Material). In addition, the calibrated CR also increased the
prediction accuracy in four specific cases compared to the nominal CR model, that is, the ETCO2 prediction in Studies
2–3, SpO2 prediction in Study 1, and PaO2 prediction in Study 3, while it remained unchanged for most other outputs
in the studies (Table 2).

Furthermore, because Study 1 reported individual data for each of the nine subjects, we also assessed whether an
individualized CR model calibrated for each subject could better capture the inherent variability in the data. To this
end, we calibrated the CR model to the data representing the four model outputs for each of the nine subjects, and
found that the trends in all model outputs for each of the subjects were not drastically different from those observed
with the nominal CR model. Quantitatively, the RMSEs obtained when we used the individually calibrated CR model
versus the nominal CR model to predict the data for each of the nine subjects in Study 1 were, on average, 33% smaller
for MAP (19.59 vs. 13.12 mm Hg), 25% smaller for HR (64.17 vs. 48.00 beats/min), and indistinguishable for ETCO2

(7.70 vs. 7.30 mm Hg) and SpO2 (1.53 vs. 1.51%). However, except for SpO2, the average RMSEs for the other three vital
signs (MAP, HR, and ETCO2) obtained with the individualized models were not considerably different from those
obtained with the model calibrated to predict the mean response over the nine subjects.

4 | DISCUSSION

Given that future military conflicts are expected to be encumbered by evacuation delays and high casualty rates, medics
will need to increasingly rely on emerging autonomous and semiautonomous artificial intelligence technologies to
administer prolonged field care. Development and assessment of such technologies necessitate the availability of accu-
rate mathematical models that can replicate the physiological responses of key battlefield injuries, such as hemorrhage
and airway compromise, and the associated clinical interventions. Here, we have developed a new mathematical model
specifically designed to represent these battlefield injuries by expanding and integrating Guyton's model30 and Cheng's
model,36 both of which have certain limitations that preclude them from fully capturing the response to such injuries.
The resulting CR model is better able to simulate severe hemorrhage, fluid resuscitation, and respiratory perturbations,
and can predict seven key cardiovascular and respiratory vital signs (MAP, SBP, DBP, HR, ETCO2, SpO2, and PaO2)
(Figure 1). The model incorporates both cardiovascular and respiratory dynamics, along with their regulatory mecha-
nisms and couplings.

4.1 | CR model prediction performance

To assess the CR model's performance, we compared it with three other models (Guyton, Cheng, and HumMod44) using
experimental data from five studies, involving pigs and humans. When compared to the other three models, the CR
model was the only one capable of generating the time courses of all five reported cardiovascular and respiratory out-
puts in the five studies (MAP, HR, ETCO2, SpO2, and PaO2). Overall, when weighted equally across all five studies, the
nominal CR model yielded small average RMSEs for MAP (20.88 mm Hg), ETCO2 (3.50 mm Hg), SpO2 (3.40%), and
PaO2 (10.06 mm Hg), but a relatively large RMSE for HR (70.23 beats/min). We also assessed whether we could
improve its performance by calibrating the CR model's 10 most sensitive parameters using data from experimental
Study 1. Overall, the calibrated model reduced the prediction errors in Studies 2–5 by a modest 14% for MAP, 18% for
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HR, 22% for ETCO2, and 16% for SpO2, suggesting that the CR model was stable and robust to its nominal parameter
values. While the four models yielded similar prediction errors for MAP, the RMSEs for the CR model were 3% to 10%
smaller than the other models for HR, 11% to 15% for ETCO2, 0% to 33% for SpO2, and 10% to 64% for PaO2. In addition,
while none of the models achieved the desired prediction accuracy of 70% of the predictions falling within the CIs, in
general, the CR model had a higher prediction accuracy than the other models, and achieved the desired accuracy in
three specific cases, that is, the ETCO2 prediction in Study 3 and the SpO2 prediction in Study 1 when using the cali-
brated CR model, and the ETCO2 prediction in Study 1 when using the nominal CR model (Table 2). In general, none
of the four models could predict HR accurately (Table 2). One possible reason for this could be that even though we
know that many factors, such as pain and level of distress, can affect HR dynamics,54–56 the mechanistic relations
linking these factors to HR are not established, precluding their incorporation into a mathematical model.

Based on the experimental conditions of the studies, we divided the analyzes into two groups: Studies 1–2, which
considered severe hemorrhage, fluid resuscitation, and respiratory perturbations in pigs; and Studies 3–5, which only
considered respiratory perturbations in humans. For Studies 1–2, the CR model yielded small RMSEs for MAP
(20.88 mm Hg), ETCO2 (4.36 mm Hg), and SpO2 (0.99%) (Table 2). Similarly, for Studies 3–5, the CR model yielded
small RMSEs for ETCO2 (2.94 mm Hg), SpO2 (5.81%), and PaO2 (10.06 mm Hg) (Table 2). Overall, these results indicate
that the CR model performed adequately when compared with experimental data. However, comparing its performance
with the other models was challenging. In one instance, for the purely cardiovascular Guyton's model, which does not
predict respiratory vital signs, we could only compare a subset of the seven vital signs predicted by the CR model. In
addition, due to its inability to account for respiratory perturbations, Guyton's model produced qualitative and quantita-
tive non-physiological predictions during periods of severe blood loss in Studies 1–2 (Figures 2A and 3A). Thus, we
could only compare its MAP predictions for mild or moderate blood loss and fluid resuscitation, which, on average,
yielded a similar accuracy as those of the CR model predictions (RMSE: 20.88 vs. 19.01 mm Hg). At other times, even
HumMod and Cheng's model, which can predict all vital signs, were unable to simulate certain experimental condi-
tions. For example, Cheng's model could not simulate the severe hemorrhage condition in Studies 1–2 because it does
not account for the fluid-shift mechanism between the blood and the interstitial fluid, which compensates for changes
in blood volume due to hemorrhage or fluid resuscitation. Similarly, the HumMod software could not simulate the
acute severe hemorrhage in Study 2 and yielded larger prediction errors than the CR model for MAP (5%), ETCO2

(60%), and SpO2 (98%) in Study 1. It is possible, however, that HumMod's nominal parameter values are not suitable for
modeling severe hemorrhage and that changing certain parameter values, such as heart contractility and gain of the
sympathetic effects on the HR, could resolve these issues.

For Studies 3–5, compared to the CR model, HumMod's prediction error was slightly smaller for ETCO2 (10%) but
considerably larger for SpO2 (22%), and PaO2 (64%). These CR model predictions of respiratory perturbations are
encouraging, given its simplicity vis-à-vis the more complex HumMod software. In addition, compared to the CR
model, Cheng's model produced similar predictions for SpO2 and PaO2 (Figure 4D and Figures S1D and S2D in the Sup-
plementary Material), while its ETCO2 predictions were different (Figure 4C and Figures S1C and S2C in the Supple-
mentary Material). While we adapted the respiratory component and coupling mechanisms between the respiratory
and cardiovascular components from Cheng's model, we had to simplify some of the coupling equations to match the
reduced number of cardiovascular compartments in the CR model. It is possible that this simplification process affected
the ETCO2 predictions of the CR model (ETCO2 was highly sensitive to two vein-related parameters of the cardiovascu-
lar component) and potentially led to the differences in its predictions compared to Cheng's model. In contrast, PaO2

was not sensitive to any model parameter of the cardiovascular component and, accordingly, we did not see a large var-
iation in its predictions between the two models. Unfortunately, Studies 3–5 only reported measurements of respiratory
vital signs, which prevented us from quantitatively assessing the models' performance for MAP and HR against the
experimental data in these studies, but we compared these predictions across the models. Interestingly, while MAP and
HR predictions were quantitatively different across the three models (Figure 4A,B and Figures S1A,B and S2A,B in the
Supplementary Material), we observed similar qualitative trends for both MAP and HR in the CR model and Cheng's
model. However, in HumMod they appeared to be insensitive to respiratory perturbation. We believe that the different
implementation of the cardiovascular component in the three models could have led to the differences in their MAP
and HR predictions.

We also investigated whether calibrating the CR model to a specific experimental dataset would increase its predic-
tion accuracy. To avoid overfitting, we only calibrated a subset of 10 parameters that the four outputs were most sensi-
tive to, as determined by a global sensitivity analysis (Table S3 in the Supplementary Material). While the calibration
procedure only modestly improved CR model performance, the sensitivity analysis provided insight into which
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subsystems might be critical for the regulation and maintenance of different outputs. For example, in the CR model,
the cardiovascular vital signs MAP and HR were primarily governed by four mechanisms, including the fluid shift from
the interstitial fluid, the renal system, the sympathetic stimulation, and the angiotensin mechanism. Yet, interestingly,
MAP outputs consistently showed higher sensitivities to parameters representing gains associated with the interstitial
fluid (kfs), the renal system (kSk), and the sympathetic stimulation (kSR), but not the angiotensin system, indicating that
the influence of this system on MAP may not be as strong as the others. Moreover, the HR output, which is strongly
coupled with MAP,57 was also sensitive to parameters representing gains associated with the kfs and the sympathetic
stimulation (HR2) (Equation S32 in the Supplementary Material), but not to the two other mechanisms. On the other
hand, the respiratory vital signs were primarily governed by the mechanisms of gas storage and exchange between the
blood and the three other compartments, that is, the lungs, the brain tissue, and the body tissue (Figure 1C). Interest-
ingly, the respiratory output ETCO2 was sensitive to only one of the parameters representing a respiratory mechanism
[the metabolic rate of CO2 (MdCO2)] and, in fact, was more sensitive to two specific vein-related cardiovascular parame-
ters [the initial venous volume (Vv0) and the compliance of veins (Cv)]. Performing this sensitivity analysis allowed us
to understand and quantify the dependencies of the respiratory outputs on the cardiovascular parameters and further
highlight the importance of incorporating the coupling mechanism between the cardiovascular and respiratory systems
to accurately capture the responses of battlefield trauma.

Given that hemorrhage and airway compromise are the leading causes of potentially survivable death on the
battlefield,7 we specifically developed the CR model to account for these two injury modalities. To this end, in modeling
the cardiovascular and respiratory systems, we specifically attempted to capture the responses of hemorrhage, fluid
resuscitation, and respiratory perturbations, which resulted in more accurate predictions than three other existing
models with similar and much higher complexities. However, it is important to note that the existing cardiovascular
and respiratory models were developed for predicting different endpoints than the CR model. For example, Guyton's
model focused exclusively on circulatory hemodynamics, while Cheng's model was developed to study the effects of
hypoxia-induced breathing, chronic heart failure, and obstructive sleep apnea on the cardiovascular and respiratory sys-
tems. In addition, even though the CR model performed relatively better than the existing models, its predictive accu-
racy would be potentially improved. For example, as a starting point, the following four modifications, listed in order of
highest to lowest impact on accuracy, could potentially improve the CR model's performance in the future. (1) Incorpo-
ration of the regulatory effects of other subsystems currently not present in the model, such as the endocrine and
immune systems,58,59 would certainly improve the CR model's fidelity. Currently, we only account for the interdepen-
dencies between the cardiovascular and respiratory outputs and two critical systems, that is, the autonomic nervous sys-
tem and the renal system. (2) We could explicitly model the effect of emotional stressors, such as pain, anxiety, and
fear, on different subsystems in the body. There is ample evidence in the literature that pain activates the sympathetic
nervous system54–56,60 and the endocrine system,61 leading to an acceleration in HR, an increase in contractility and
tone of the heart walls, an elevation in MAP, and the release of hormones, such as cortisol, renin, angiotensin, and
aldosterone. Therefore, incorporating such effects could potentially reduce the discrepancies between the CR model
predictions and the experimental data, improving model accuracy. (3) In the current CR model, we used only four out-
puts (MAP, HR, ETCO2, and SpO2) provided in the experimental studies to calibrate the model parameters. However,
there are experimental studies that also report measurements of intermediate cardiovascular and respiratory outputs,
such as PaO2, PaCO2, urine rate, O2 consumption, and CO2 production during trauma.62 As more data become avail-
able, we could potentially use the values of these intermediate variables along with the four outputs to calibrate the CR
model parameters and improve its prediction accuracy. (4) If we could obtain real-time measurements of the different
vital signs during hemorrhage and resuscitation, we could potentially use a Kalman filter algorithm63 to reduce the pre-
diction errors of the CR model. Specifically, we could use the CR model to predict the vital signs, compute the estima-
tion errors against the measured values, and use the Kalman filter to update specific CR model parameter values in real
time to reduce the estimation errors, thus increasing the model's prediction accuracy.

It is noteworthy, however, that not all of the modifications we mentioned above are currently achievable right away.
In terms of feasibility, we believe it would be possible to perform modifications (3) and (1) first. Modification (3) is the
most feasible as more data become available. We believe that it can help us better calibrate the model parameters and
thus improve model prediction accuracy. Furthermore, with regards to modification (1), while increasing the model
complexity by adding more physiological subsystems currently not represented in the model will improve model fidel-
ity, we need to be careful about only adding components that are absolutely necessary to capture trauma. As is
evidenced in our analysis, increased complexity does not always translate into increased accuracy. For example,
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HumMod has over 5,000 parameters and variables, and represents numerous subsystems that are absent in the CR
model, yet its accuracy is either similar to or worse than the CR model. We believe that carefully selecting which
parameters to add and calibrating the model to hemorrhage and resuscitation experimental data after each addition
might improve model accuracy. In contrast, we do not believe that modification (2) is currently achievable because we
lack sufficient quantitative information other than heuristics,64 regarding the mechanisms by which pain and other
related stressors modify the autonomic and other subsystems in the body, especially during trauma. However, as a first
step, we could investigate whether the use of such heuristics to drive the sympathetic nervous system could help us
identify the mechanisms in the cardiovascular and respiratory components of the model most affected by pain and to
determine what kind of quantitative data we would need to fully implement this modification. Lastly, with regards to
modification (4), using a Kalman filter to update model parameters in real time is only implementable when we have
real-time measurements for a subject whose vital-sign changes we are trying to predict under traumatic conditions.
However, for off-line predictive purposes, such as the CR model, this approach is not feasible.

We believe that the CR model presented here represents a promising first step to support the development of auton-
omous or semiautonomous decision-support and control systems to aid medic care for trauma casualties on the battle-
field. With the improvements proposed above, we believe that the CR model could be used to simulate human
responses to trauma-induced injuries typical of battlefield scenarios.7 In particular, the CR model could be used to gen-
erate a large synthetic database of virtual trauma casualties by simulating individuals with varying weight, heart con-
tractility, resting vital signs, and rates of hemorrhage and fluid resuscitation to train deep neural network algorithms to
aid in field triage and identification of life-saving interventions.8–13 Likewise, the model could be used to compare and
contrast the efficacy of emerging closed-loop control technologies.14–20

4.2 | Assumptions and limitations

The CR model has several limitations arising from simplifying assumptions. First, for fluid resuscitation, the model
accounts for volumetric fluid injection without considering fluid type. In the future, we could accommodate this limita-
tion by calibrating the model for different fluid types. Second, in our validation analyzes, we assumed that hemorrhage,
fluid resuscitation, and respiratory perturbations have similar effects on humans and pigs. While we developed the CR
model for humans, the lack of clinical data forced us to use animal data in certain assessments. However, by normaliz-
ing the experimental inputs as well as the simulated outputs, to some extent we accounted for this limitation. Third, as
discussed above, we did not model the effect of emotional stressors, such as pain, anxiety, and fear, on the different sub-
systems represented in our model. While these are important factors that are reflected in the vital signs, we currently
lack the needed mechanistic information to model them. Lastly, the CR model did not represent all the different physio-
logical subsystems, including the endocrine system and the immune system,58,59 because we do not have the data on
how these systems affect the vital signs.

5 | CONCLUSION

In summary, we specifically developed and assessed a moderately complex mathematical model to predict the responses
of the cardiovascular and respiratory systems to battlefield trauma. The CR model demonstrated benefits compared to
both similar (Guyton and Cheng) and more complex (HumMod) models, showing great potential for simulating hemor-
rhage and airway compromise, the leading causes of battlefield injury.
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