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Abstract

Skeletal muscle fatigue is accompanied by the accumulation of metabolites, such as

adenosinediphosphate (ADP), inorganic phosphate (Pi), andprotons (H
+). However,we

lack a comprehensive understanding of the contribution of these metabolic changes

to the development of muscle fatigue during intense exercise and the underlying

mechanisms. To address this gap, we collected data from young adults performing

a dynamic (0.75 Hz) plantar flexion exercise to task failure (642 ± 104 s), including

in vivo concentrations of metabolites and H+ measured by 31P magnetic resonance

spectroscopy as well as muscle activation signals obtained via electromyography.

Using these data, we developed and validated a human skeletal muscle model. Our

model-based simulations suggested that to continue the plantar flexion exercise at

the required power output, muscle activation should progressively increase. In the

absence of this increased activation, we observed a reduction in force-generating

capacity due to metabolite-mediated inhibition of actin–myosin cross-bridge cycling.

Our simulations also showed that Pi reduced force production by 30% when we

increased it 50% above the concentrations measured experimentally. A parameter

sensitivity analysis suggested that force generation is strongly dependent on the rate

of Pi release from the actin–myosin complex, and Pi inhibits force by increasing the

rate of actin–myosin detachment. In addition, we proposed an alternative mechanism

through which H+ might reduce muscle force generation during exercise. In contrast,

elevated ADP levels did not significantly affect force generation. This study provides

insight into the impact of metabolite accumulation on force generation and muscle

fatigue development.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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1 INTRODUCTION

Muscle fatigue, in the context of intense contractile activity, is defined

as the inability to sustain the force or power output required to

complete a task following a prolongedmuscular activity (Alba-Jimenez

et al., 2022; Constantin-Teodosiu & Constantin, 2021; Edwards, 1981;

Fitts, 1994). Physiologically, muscle fatigue can be the combined

outcome of a complex interplay of several cellular events, including

changes in neuromuscular metabolism, structural modifications,

lowered oxygen/nutrient supply, and a compromised efficiency of the

neuromuscular system to recruit additional motor units (Kay et al.,

2001; Pethick et al., 2021). In particular, changes in skeletal muscle

metabolism can directly impact the actin–myosin cross-bridge cycle

that lies at the heart of muscle contraction, thereby resulting in the

inability of muscles to generate the required force to continue an

activity (Allen et al., 2008; Debold, 2012; Sundberg & Fitts, 2019). In

skeletal muscle cells, such metabolic changes may be the direct and

immediate outcome of muscle contraction due to the energy demands

associated with the process (Barclay, 2017). Actin–myosin sliding is

powered by adenosine triphosphate (ATP) hydrolysis, resulting in the

accumulation of adenosine diphosphate (ADP), inorganic phosphate

(Pi), and protons (H+) during intense contractile activity. This process

is simultaneously accompanied by the accumulation and depletion of

creatine (Cr) and phosphocreatine (PCr), respectively, due to the ATP

buffering activity of the creatine kinase enzyme. Depending on the

intensity of the contractile activity and the available oxygen supply,

glycolysis and oxidative phosphorylation may also be activated to

replenish ATP, resulting in further changes in intramuscularmetabolite

levels. Although the individual effects of these metabolite alterations

during exercise are well documented, there still exists considerable

ambiguity as to how they impact the force-generation capacity.

Non-invasive techniques, such as 31P magnetic resonance

spectroscopy (31P-MRS), have allowed us to quantify intramuscular

metabolic changes during an intense physical activity performed by

humans (Kemp et al., 2007; Meyerspeer et al., 2020; Shenton et al.,

1986). In general, during an intense exercise, Pi levels increase from 3

to 5mM in the resting state to>30mM (Broxterman et al., 2017; Kemp

et al., 2007). Similarly, ADP levels increase from ∼5 to 10 µM in the

resting state to 0.2 mM under fatigue (Cooke, 2007). Similarly, due to

an increase in H+ concentration, pH has been reported to drop as low

as 6.2 (Broxterman et al., 2017; Cady et al., 1989; Wilson et al., 1988).

Interestingly, ATP levels remain reasonably stable, dropping only by

∼20% in severely depleted muscles (Greenhaff et al., 1994), owing to

the ATP buffering activity of creatine kinase and the activation of ATP-

generating pathways, such as glycolysis and oxidative phosphorylation

(Hargreaves & Spriet, 2020; Sundberg & Fitts, 2019). Understanding

the contribution of these metabolite alterations to muscle fatigue

development and its underlying mechanisms has garnered significant

scientific interest as evidenced by numerous studies over the last

century. A recent detailed review of these works can be found in

Sundberg and Fitts (2019). Several studies with rat, rabbit and human

muscles have shown that accumulation of Pi andH
+ negatively impacts

force generation in skeletal muscle fibres both individually (Coupland

et al., 2001; Debold et al., 2004; Knuth et al., 2006; Pate et al., 1995;

Sundberg et al., 2018) and synergistically (Karatzaferi et al., 2008;

Nelson et al., 2014). However, these studies were conducted with iso-

latedmuscle fibres under in vitro conditions andmay not represent the

human in vivo microenvironment under intense exercise. Therefore,

we need a systematic study of the effects of these factors using data

that capture, in real time, the alterations in intramuscular metabolite

levels in exercising humans. The practicality of obtaining such data

has been demonstrated in earlier studies (Broxterman et al., 2017;

Sundberg et al., 2019).

Use of computational models can shed light on the mechanisms

through which these metabolites impact force production and can

quantify their potential contribution to force inhibition and muscle

fatigue development (Debold et al., 2011, 2013). Currently, there

are several computational models in the literature that describe

muscle force generation, but they do not completely account for the

interplay between several components involved in the process. For

example, there are computational models that describe the actin–

myosin cross-bridge cycle (Herzog & Schappacher-Tilp, 2023; Walcott

et al., 2012), skeletal muscle metabolism (Lai et al., 2008; Lambeth

& Kushmerick, 2002; Lopez et al., 2020), and metabolite-mediated

modulation of cross-bridge kinetics (Pate & Cooke, 1989; Tewari et al.,

2016). However, combining these models would provide a unique

opportunity to develop a comprehensive model that accounts for

all aspects of skeletal muscle force generation. Furthermore, these

models would be most effective if calibrated using experimental data

on alterations in intramuscular metabolite levels, power and muscle

activation collected from humans. Indeed, advances in non-invasive

techniques, such as 31P-MRS (Kemp et al., 2007; Meyerspeer et al.,

2020), surface electromyography (EMG) (Li et al., 2024; Sun et al.,

2022) and ergometers, have enabled the generation of such datasets

for different exercise protocols (Broxterman et al., 2017; Hureau

et al., 2022; Layec et al., 2009), yet to the best of our knowledge,

currently there are no such concerted studies reported in the literature

that combine all these methods together. Such an interdisciplinary

(computational/experimental) approach would not only provide a

system-level understanding of muscle fatigue development but also

act as a test bed to evaluate existing hypotheses on muscle fatigue

development.

In this study, we first performed experimental studies where human

participants performed an iso-time constant-power plantar flexion
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type of exercise to task failure and collected muscle activation, intra-

muscular metabolite level and muscle fascicle length data before and

after the exercise. Then, we developed a human skeletal muscle model

that accounts for both the cross-bridge cycle and the associated

metabolic processes, such as ATPase (myosin-associated), creatine

kinase, adenylate kinase, glycolysis and pH buffering. We tailored

the model to the dynamic planter flexion exercise, used the muscle

activation (from EMG) and fascicle length data as inputs, and

parameterized the model to simulate sustained force generation and

alterations in intramuscular metabolite levels as outputs, representing

an average of five subjects. Subsequently, we used experimental data

for the same parameters collected from two additional subjects to

validate the model results. Our model was able to successfully pre-

dict the muscle force generation and metabolite alterations within the

observed root mean square error between the experiments. Following

this, we deployed the model to characterize the effect of different

factors on force generation. We first investigated the relationship

between the observed muscle activation pattern and force generation

and related it to the accumulation of metabolites. We then evaluated

the individual effect of metabolites, that is, ADP, Pi and H+, on force

generation capacity to quantify their contribution to force inhibition

andmuscle fatigue.

2 METHODS

2.1 Subjects

We enrolled 11 recreationally active subjects (six males, five females;

age, 23± 2 years; height, 172± 9 cm; weight, 68± 14 kg) and obtained

their written informed consent to participate in this study. Two

participants (one male, one female) withdrew from the protocol, and

the data for two participants (two males) could not be included in the
31P-MRS analysis due to poor signal-to-noise ratio or inconsistencies

in the estimation of critical power. All participants were non-smokers;

were freeof diabetes andhadnoknowncardiovascular, neuromuscular

or pulmonary disease; and were not taking any medications that affect

muscle function. Using a questionnaire and accelerometry (GT3X,

Actigraph, Pensacola, FL, USA), instrumented on the non-dominant

wrist for 7–10 days, we confirmed that the participants did not engage

in any structured physical activity more than three times a week.

Prior to the start of the protocol, we familiarized the participants

with all the testing procedures. Participants fasted overnight, and all

experimental trials were conducted in a thermoneutral environment

at the University of Massachusetts Amherst. The study conformed

to the Declaration of Helsinki and the Institutional Review Board at

the University of Massachusetts and the Office of Human Research

Oversight at Fort Detrick, MD, approved the study protocol.

Highlights

∙ What is the central question of this study?

Force generation in skeletal muscles is driven

by ATP hydrolysis and thereby results in the

accumulation of its metabolite byproducts, such as

ADP, Pi and H+, which can lead to muscle fatigue

during intense exercise: what are the individual

contributions of each of these metabolites to

muscle fatigue development and the underlying

mechanisms?

∙ What is themain finding and its importance?

Using 31P-MRS and electromyography data from

exercising humans and a computational model, we

demonstrate that Pi accumulation inhibits force

generation by hindering actin–myosin cross-bridge

cycling during intense exercise. The developed

skeletal muscle model helps in understanding the

role of metabolite accumulation in muscle fatigue

development.

2.2 Iso-time constant-power plantar flexion
exercise protocol

2.2.1 Exercise set-up

Participants performed dynamic (0.75 Hz) plantar flexion exercise

to fatigue while lying supine using a custom-designed ergometer

with a constant resistance controlled by a double-acting air cylinder

(McMaster-Carr, Elmhurst, IL, USA) (Figure 1a). Briefly, the ergometer

consisted of a foot pedal, with a range ofmotion of∼15◦–20◦, attached

to a non-ferromagnetic cylinder piston that was in turn connected

to an air compressor. The air compressor was used to modulate the

resistance experienced by the participants while performing plantar

flexion motion on the foot pedal. We measured the range of motion

using a potentiometer (model 3590; Bourns, Riverside, CA, USA)

mounted on the pedal and interfaced with anMP160 analog-to-digital

converter (Biopac Systems, Goleta, CA, USA). Our custom ergometer

design was compact enough to fit into the bed of a Siemens Skyra

scanner (Siemens Medical Solutions, Erlangen, Germany). Since the

plantar flexion cycles were executed successively without break, half

of each cycle was spent in active plantar flexion and the other half in

relaxation, implying a duty cycle of∼50%.
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F IGURE 1 Schematic illustration of the plantar flexion exercise
protocol used in this study. (a) Participants, in a supine position,
performed plantar flexionmovement on a custom ergometer
consisting of a foot pedal connected to a non-ferromagnetic cylinder
piston. The pressure inside the cylinder is controlled using an air
compressor. The ergometer is compact enough to be placed inside an
MRI scanner (Skyra, Siemens). (b) Schematic outline of the different
sessions that were part of the constant-power plantar flexion
experiment conducted in this study. Subjects completed a
familiarization session, after which we estimated the critical power
(CP) andwork rate (W′) required to reachmuscle failure within 10min
based on four trials, carried out at 48-h intervals. Next, the subjects
visited the laboratory for two separate sessions where they
performed iso-time constant-power plantar flexion exercise at a work
rate ofW′ for∼10min. During their first of these visits, wemeasured
the concentration of ADP, Pi, H

+ and phosphocreatine in the skeletal
muscles of the actively exercising subjects using 31P-magnetic
resonance spectroscopy. During the second visit, we recorded the
surface electromyography (sEMG) of the actively exercising subjects
using bipolar surface electrodes. During this visit, we alsomeasured
the changes in fascicle length and pennation angle associated with
plantar flexionmotion in these subjects.

2.2.2 Estimation of critical power and work rate
for iso-time constant-power plantar flexion exercise

Before participants performed the iso-time constant-power plantar

flexion exercise,weestimated the critical power (CP) and themaximum

amount of work that can be performed above CP (W′) for each subject,
from four trials. We defined task failure as the inability to successfully

maintain the full range of motion (<15% of initial displacement) for

three consecutive contraction cycles. We repeated this calculation for

different work rates (P) randomized within the range of ∼4–9 W to

obtain a range of task failure times (t), varying between 1 and 15 min.

Each of the above visits was separated by 48 h and was preceded by a

3-min warmup and followed by a 5-min recovery period.We estimated

CP andW′ by fitting the equation P =W′(1/t) + CP against the P versus

1/t curve obtained from the above trials (Broxterman et al., 2017). We

then used the same equation alongside the estimated CP and W′ to
calculate the work rate, P10 (W), needed to reach task failure within

10min.

2.2.3 Iso-time constant-power plantar flexion
exercise

Once the CP was estimated during the initial visits, each participant

then performed a constant-power plantar flexion exercise, with the

targeted power set to reach fatigue within 10 min and the exact

time to fatigue recorded so that subsequent visits were of similar

duration (Figure 1b). During each participant’s first visit, we quantified

the concentration of metabolites, such as ATP, ADP, Pi, H
+ and

PCr, in the muscles during the course of the exercise using 31P-

MRS. During the participant’s second visit to the laboratory, using

bipolar surface electrodes, we measured EMG changes in the lower

legs, including the gastrocnemius medialis, gastrocnemius lateralis,

tibialis anterior and vastus lateralis, during the course of an iso-time

exercise. In addition, we measured the pennation angle and fascicle

length of the medial and lateral gastrocnemius muscles using an

ultrasound (Brennan et al., 2017; Loram et al., 2006), before and after

exercise.

2.3 Measurement protocols

2.3.1 31P-MRS

We performed 31P-MRS using a whole-body 3 TMRI system (Siemens

Skyra) operating at 49.9 MHz for 31P resonance and running on the

VE11C platform. We acquired the 31P-MRS data using a dual-tuned
31P-proton (1H) custom-made surface coil with linear polarization

positioned under the gastrocnemius muscle. The 31P single-loop coil

diameter was 80 mm, which was surrounded by a 100-mm 1H coil

loop (Stark Contrast, Erlangen, Germany). After a three-plane proton

image to determine the position of the leg with respect to the surface

coil, we performed advanced localized volume shimming followed by

manual shimming (full width at half maximum <
1H: 45 Hz). Before

each experiment, we acquired two fully relaxed spectra at rest with

five averages per spectrum and a repetition time of 30 s. Then,

we performed MRS data acquisition throughout the rest–exercise–

recovery protocol using a free-induction-decay pulse sequence with a

0.1-ms excitation radiofrequency rectangular pulse and the following

parameters: repetition time of 2 s, receiver bandwidth of 4 kHz, 1024

data points, and five averages per spectrum. Supporting information

Figure S1 shows a slack plot of the 31P spectra obtained for one of

the participants. We quantified the saturation factors by comparing

fully relaxed (repetition time = 30 s) and partially relaxed (repetition

time= 2 s) spectra.
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As previously described (Layec et al., 2008), we obtained the

[PCr], [Pi] and [ATP] using a time-domain fitting routine using the

AMARESalgorithm (Vanhammeet al., 1997) incorporated intoCSIAPO

software. We calculated the intracellular pH from the chemical

shift difference between the Pi and PCr signals. We calculated the

free cytosolic [ADP] from [PCr] and pH using the creatine kinase

equilibrium constant (KCK = 1.66 × 109 M−1) and assuming that PCr

represents 85%of the total creatine content (Jeneson et al., 1996). The

concentration of the H2PO4
− was calculated as:

H2PO4− = [Pi] ∕
(
1 + 10pH−6.75

)
(1)

We calculated the free cytosolic adenosine monophosphate (AMP)

based on the equilibriumof the adenylate kinase reaction corrected for

the effects of pH, assuming a free magnesium concentration of 1 mM.

We calculated the resting concentrations from the average peak areas

of the two relaxed spectra recorded at rest and assuming an 8.2 mM

[ATP] (Harris et al., 1974) under these conditions.

2.3.2 Surface EMG measurements

We used bipolar surface electrodes to measure EMG changes

occurring in the medial and lateral gastrocnemius muscles during the

plantar flexion exercise to task failure (iso-time with first visit). We

pre-amplified (gain 1000) and filtered (common mode rejection ratio

20–500 Hz) the signal using a commercialized system (model MP160;

Biopac Systems). We sampled the analog signal at a rate of 2000 Hz.

Wenormalized the time-dependent changes in integratedEMG (iEMG)

obtained from the raw EMG signal with peak EMG signal from three

5-s isometric maximal voluntary contractions and averaged them over

10 s. For modelling purposes, we converted the normalized EMG data

from time scale to plantar flexion cycles using the average number of

cycles executed by a subject in a 10 s duration (6.3 cycles).We used the

average of the normalized gastrocnemius medialis and gastrocnemius

lateralis EMG signals as themodel input.

2.3.3 Muscle geometry

We determined the pennation angle (PA) of the medial and lateral

gastrocnemius muscles from images taken along the longitudinal

axis of the muscle belly at rest utilizing a two-dimensional, B-mode

ultrasound (12-MHz probe) (Logiq P9; GE Healthcare, Chicago, IL,

USA) (Brennan et al., 2017). We chose the measurement point

corresponding to 30% of the shank length (measured as lateral tibial

condyle to lateral malleolus) distal from themedial tibial condyle along

the muscle belly. For the fascicle length (FL), we placed transducers at

∼30% of the shank length. We used the following formula to calculate

FL:

FL = visible fascicle length + h∕sin (PA) (2)

where h represents the vertical distance between the intersection of

the visible fascicle with the image border and the deep aponeurosis,

and PA denotes the pennation angle of the tracked fascicle. We

repeated the measurements at two different angles, replicating the

range of motion during the plantar flexion exercise (90◦ and ∼35–40◦

range of motion/7 cm displacement) before and after task failure.

2.3.4 Calculation of sarcomere shortening velocity

We calculated the sarcomere shortening velocity as follows

dL
dt

= ΔFL

NSar × Tcyc
(3)

where ΔFL represents the change in fascicle length for a 7-cm

displacement in plantar flexion motion, which is the difference

between fascicle lengths measured with the feet positioned at 90◦

versus at 30–40◦ (corresponding to a 7-cm displacement in plantar

flexion) relative to the lower leg,NSar (=17,600;Huijing, 1985) denotes

the number of sarcomeres, and Tcyc represents the time taken for a

plantar flexion cycle by the subject.

2.4 Model development and simulations

2.4.1 Modelling cross-bridge cycling and force
generation

We used the five-state model (illustrated in Figure 2a) of Tewari et al.

(2016) to simulate cross-bridge kinetics and force generation.We used

N(t), P(t), p1(t, s), p2(t, s) and p3(t, s) to represent state probabilities of

the five states (N, P, A1, A2 and A3), where s denotes the strain on

the attached states (A1, A2 and A3). We evaluated the fraction of total

cross-bridges in one of the three attached states, at time t, by p̂i (t) =
∞∫

−∞
pi(t, s)ds . The mean strain of the cross-bridges in one of the three

attached states is given by
+∞∫
−∞

spi(t, s)ds∕p̂i(t). Since the total number of

actin–myosin complexes does not change with time at any given time,

the sum of all fractional state probabilities (both unbound and bound

cross-bridge states) equals 1.

N (t) + P (t) +
+∞∫
−∞

p1 (t, s) ds +
+∞∫
−∞

p2 (t, s) ds +
+∞∫
−∞

p3 (t, s) ds = 1 (4)

The equations that govern the kinetics of cross-bridge cycling and

its metabolite-mediatedmodulations are depicted as follows:

dN
dt

= −knpN (t) + kpnP (t) (5)

dP
dt

= knpN (t) − kpnP (t) + k̃dp1 (t, s) − kaP (t) + k̃3e𝛼3(s+s3)
2
p3 (t, s) (6)

𝜕p1
𝜕t

+ dL
dt

𝜕p1
𝜕s

= ka𝛿 (s)P (t) − k̃dp1 − k̃1e−𝛼1sp1 + k̃−1e+𝛼1sp2 (7)
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F IGURE 2 Schematic illustration of a cross-bridge cyclingmodel for skeletal muscle force generation. (a) The 5-statemodel of the
actin–myosin cross-bridge cycle (Tewari et al., 2016). In the non-permissible state (N), the binding sites on the actin filament are blocked by
troponin, preventing any interaction withmyosin. The permissible state (P) represents the state in which actin binding sites are free of troponin
and open for myosin interaction. A1 represents the state in which actin andmyosin are loosely bound. A2 represents the pre-power-stroke state
where actin andmyosin are strongly bound. A3 is the post-power-stroke state where actin andmyosin are still strongly bound. The rate constants
knp, kpn, ka, kd, k1, k−1, k2, k−2 and k3 model the transitions between these states. (b) The rapid equilibrium transition steps involved in the
cross-bridge cyclingmodel. Transitions between some of these states (indicated by a box) require the association/dissociation of metabolites, such
as ATP, ADP, H+ and Pi. Accordingly, the rate constants of these transitions aremodelled to account for the appropriate dissociation constants
representing these interactions as binding polynomials. (c) Schematic illustration of different metabolic processes included in themodel that
provide the ATP needed for cross-bridge cycling. (d) Schematic illustration of overall skeletal muscle force generation. Here, the total force (FLoad)
is the sum of the force (FXB) generated by the contractile element (CEE) and the parallel elastic elements (PEE).

𝜕p2
𝜕t

+ dL
dt

𝜕p2
𝜕s

= k̃1e−𝛼1sp1 − k−1e+𝛼1sp2 − k2e−𝛼2sp2 + k̃−2p3 (8)

𝜕p3
𝜕t

+ dL
dt

𝜕p3
𝜕s

= k2e−𝛼2sp2 − k̃−2p3 − k̃3e𝛼3(s+s3)
2
p3 (9)

knp = 𝛽 × iEMGj (10)

kpn = 𝛽 × (1 − iEMGj) (11)

k̃d = kd
[Pi]∕KPi

1 + [Pi]∕KPi
(12)

k̃1 = k1
1

1 + [Pi]∕KPi
(13)

k̃−2 = k−2
[ADP] ∕KADP

1 + [ADP] ∕KADP + [ATP] ∕KATP + ([ADP] ∕KADP × [H+] ∕KH+)
(14)

k̃3 = k3
[ATP] ∕KATP

1 + [ADP] ∕KADP + [ATP] ∕KATP + ([ADP] ∕KADP × [H+] ∕KH+)
(15)

A complete description of all the parameters used in Equations (4)–

(15) is presented in Table 1. Equations (10) and (11) mimic the

overall muscle activation captured by the EMG data. iEMGj denotes

the normalized EMG data for cycle j calculated as described in

Section 2.3.2, L represents sarcomere length, dL/dt denotes sarcomere
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HENDRY ET AL. 1289

TABLE 1 Estimates of model parameters from human subject data (n= 5) compared tomouse and rat values compiled from the literature.

Parameter Description Human Mouse* Rat* Units

Cross-bridge parameters

ka Rate of actin–myosin transition from permissible

state to loosely attached state

3.6 454 (3.3) 294 (18) s−1

kd Rate of actin–myosin transition from loosely

attached state to permissible state

39.7 1.25 (3.7) 35.5 (3) s−1

k1 Rate of cross-bridge transition from loosely bound

to strongly bound state

13.4 41.2 (0.9) 10.2 (0.1) s−1

k−1 Rate of cross-bridge transition from strongly bound

to loosely bound state

11.8 17.6 (0.1) 10.3 (0.8) s−1

k2 Rate of ratcheting 16.7 159.3 (12.9) 88.6 (3.8) s−1

k−2 Rate of unratcheting 18.9 153.7 (0.04) 2.1 (0.2) s−1

k3 Rate of actin–myosin detachment 18.7 87.7 (5.3) 35.6 (0.8) s−1

α1 Stretch sensing parameter for k1 and k−1 36.6 15.1 (0.01) 10 (0.1) µm−1

α2 Stretch sensing parameter for k2 171.8 10.1 (0.04) 9.1 (0.9) µm−1

α3 Stretch sensing parameter for k3 80.1 50.2 (0.3) 59.3 (0.9) µm−1

s3 Stretch in state A3 at which k3 is minimum 2.0 9.9 (0.1) 9.9 (0.1) nm

KATP ATP dissociation constant 5,956.2 597 (55) 489 (13.2) µM

KADP ADP dissociation constant 0.06 0.194 0.194 mM

KPi Pi dissociation constant 21.2 4 (0.1) 4 mM

KH+ H+ dissociation constant 0.292 NA NA µM

Force generation parameters

kstiff,1 Stiffness constant of frictional forces during

actin–myosin interaction

87,091.4 1137 (4) 2,827.1 (54) mNmm−2 µm−1

kstiff,2 Stiffness constant of forces generated during the

cross-bridge power stroke

28,173 19,066 (11) 51,871 (526) mNmm−2 µm−1

Metabolic parameters

kCKf Rate constant for creatine kinase (ATP forming) 0.43 NA NA mM−1 s−1

kCKr Rate constant for creatine kinase (ADP forming) 0.0026 NA NA mM−1 s−1

kGly Rate constant for glycolysis 0.26 NA NA mM−1 s−1

kPi,dil Rate constant for Pi dilution or export from

myocytes

0.004 NA NA s−1

kadk Rate constant for adenylate kinase 28.3 NA NA mM−1 s−1

Values in parentheses are standard deviations. *Data from Tewari et al. (2016). NA, not applicable.

shortening velocity, and [Pi], [ADP], [ATP] and [H+] represent the

concentrations of Pi, ADP, ATP and H+, respectively. We modified

Equations (14) and (15) from Tewari et al. (2016)) to account for

proton-mediated modulation of the state A3→P and A3→A2 trans-

itions (as depicted in Figure 2b) based on the mechanisms proposed in

Jarvis et al. (2018) for H+-mediated inhibition of cross-bridge kinetics.

2.4.2 Calculation of force generated from
cross-bridge cycling

In the 5-state model, the force, FXB, generated due to cross-bridge

cycling and intermittent attachment–detachment of actin–myosin

filaments is given by the following equation:

FXB = kstiff,1
⎛⎜⎜⎝
+∞

∫
−∞

sp2 (t, s) ds +
+∞

∫
−∞

sp3 (t, s) ds
⎞⎟⎟⎠ + kstiff,2´r

+∞

∫
−∞

p3 (t, s) ds

(16)

where kstiff,1 represents the stiffness of frictional forces arising due

to actin–myosin interaction, kstiff,2 denotes the stiffness of ratcheted

cross-bridges, and ´r represents the power stroke size. The total force,

Ftotal, produced by the cross-bridge model was then calculated as

follows:

Ftotal = FXB + FPEE (17)
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1290 HENDRY ET AL.

TABLE 2 Metabolic processes, their stoichiometric chemical equations and rate expressions used in ourmodel.

No. Reaction/pathway Chemical equation Rate formulation

1 ATP hydrolysis *ATP +H2O→ ADP + Pi + 0.6H+ k̃3e𝛼3(s+s3)
2

p3

2 Creatine kinase (ATP

buffering)

PCr + ADP +H+ → ATP + Cr kCKf[PCr][ADP]

3 Creatine kinase (PCr

regenerating)

ATP + Cr → PCr + ADP +H+ kCKr([PCr]0 − [PCr])[ADP]

4 Glycolysis Glucose + 2NAD+ + 2ADP + 2Pi →

2Pyruvate + 2NADH + 2H+ + 2ATP + 2H2O

kGly[ADP][Pi]

5 Adenylate kinase ADP + ADP → ATP + AMP kadk[ADP][ADP]

Cr, creatine; PCr, phosphocreatine. *The stoichiometric coefficient of H+ was set to 0.6 based on the ratio in which H2PO4
− and HPO4

2− constitute Pi at

physiological pH (Kushmerick, 2011).

We calculated the force accounting for parallel elastic elements,

FPEE, using themethod of Rockenfeller et al. (2020).

2.4.3 Modelling the dynamics of muscle metabolite
alterations

We found in the literature that changes in ATP, ADP, Pi, H
+ and

PCr levels are the result of coordinated activities of the following

metabolic processes: (1) myosin-associated ATP hydrolysis (Lymn &

Taylor, 1971), (2) creatine kinase (Meyer et al., 1984; Paul, 1983), (3)

glycolysis (Gastin, 2001), and (4) adenylate kinase (Janssenet al., 2003),

as illustrated in Figure 2c. Table 2 lists the stoichiometry of these

reactions and the rate expressions used to model their contributions.

During each cross-bridge cycle, ATP binds to myosin and becomes

hydrolysed, releasing ADP, Pi and H+ (Lymn & Taylor, 1971). This ATP

hydrolysis, which immediately follows the power stroke, leads to the

detachment of myosin from the actin binding site, which frees up myo-

sin to bind to a new actin site, leading to the next cross-bridge cycle. In

our five-state cross-bridge model, ATP binds to myosin at the A3 state

and is hydrolysed during theA3→P transition. Given that 1mole ofATP

is hydrolysed for each cross-bridge cycle, the rate of ATP hydrolysis

equals the rate of transition from A3 to P, which is in turn a function

of k3, s, and p3(t, s). So, we used the rate expression for the A3→P

transition tomodel theATPhydrolysis processes accompanyingmuscle

contraction.

We accounted for both the ATP-buffering and PCr-regenerating

activities of creatine kinase. We modelled the rate expression for

ATP-buffering activity as a function of [ADP] and [PCr], assuming

second-order rate kinetics. Similarly, we modelled the rate expression

for PCr-regenerating activity as a function of [ATP] and [creatine],

assuming second-order rate kinetics. Because we did not measure

the creatine level during the experimental exercise, we indirectly

estimated it by subtracting the [PCr] at any given time from the

concentration estimated at the beginning of the exercise ([PCr]0). We

modelled the rate of glycolytic ATP synthesis using second-order rate

kinetics with respect to [ADP] and [Pi]. Similarly, we modelled the rate

of adenylate kinase reaction as a function of [ADP] assuming second-

order rate kinetics. We also accounted for the buffering capacity of

Pi using its buffering capacity (𝛾) as detailed in Kemp et al. (1993).

Considering all the above processes, wemodelled the dynamics of ATP,

ADP, PCr, Pi and H
+ using the following equations:

d[Pi]

dt
= k̃3e𝛼3(s+s3)

2
p3 − kGly [ADP] [Pi

]
−kPi,dil[Pi

]
(18)

d
[
H+]
dt

= 0.6 × k̃3e𝛼3(s+s3)
2
p3 + kGly [ADP] [Pi] − kCKf [PCr] [ADP]

+ kCKr
(
[PCr]0 − [PCr]

)
[ADP] + 𝛾´pH (19)

d [ADP]
dt

= k̃3e𝛼3(s+s3)
2
p3 − kGly [ADP] [Pi] − kCKf [PCr] [ADP]

+ kCKr
(
[PCr]0 − [PCr]

)
[ADP] − kadk [ADP] [ADP] (20)

d [PCr]
dt

=] − kCKf [PCr] [ADP] + kCKr
(
[PCr]0 − [PCr]

)
[ADP] (21)

d [ADP]
dt

= −
d [ATP]

dt
(22)

Table 1 contains a complete description of all the parameters used in

Equations (18)–(22).

2.4.4 Simulation of plantar flexion cycles

For each plantar flexion cycle, we solved Equations 4–22

simultaneously, for a cycle period of 1.6 s, to evaluate the time-

dependent fractions of the N, P, A1, A2 and A3 states and the levels

of ATP, ADP, PCr, Pi and H+. We calculated the force generated using

Equation 17. For the first plantar flexion cycle, we set the fractions of

the P, A1, A2 and A3 states to 0 and the fraction of the N state to 1. For

subsequent cycles, we initiated the A1, A2 and A3 states from 0 and

used the following equation to initiate the P state:

P(t0)
j = p̂1(tf)

j−1 + p̂2(tf)
j−1 + p̂3(tf)

j−1 + P(tf)
j−1 (23)
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HENDRY ET AL. 1291

where j denotes the index of the current cycle, j−1 represents the index
of the previous cycle, and t0 and tf denote the beginning and end of the

cycle (1.6 s), respectively. Similarly, for the first cycle, we initiated the

ATP, ADP, PCr, Pi and H+ levels using those measured before exercise

(average levels recorded for aperiodof60 swith10-s sample intervals).

For subsequent cycles, we used the final concentration values reached

from the earlier cycle.We programmed and simulated themodel in the

MATLAB (R2022a) environment.

2.4.5 Model parameterization

The model contains a total of 23 parameters for simulating the

fractions of cross-bridge states,metabolite levels and force generation.

We estimated these parameters using a non-linear least-squares

method by fitting the experimentally measured force, ADP, PCr and

Pi levels for 240 plantar flexion cycles (Nc). We used the averaged

data from five of the seven participants for parameterization.We used

the normalized EMG as input to the model and defined an objective

function of non-linear least squares for optimization as shown below:

fobj =

∑Nc

j=1

(
[Pi]

data
j − [Pi]

Model
j

)2

max([Pi]
data
j )

+

∑Nc

j=1

(
[ADP]

data
j − [ADP]

Model
j

)2

max([ADP]
data
j )

+

∑Nc

j=1

(
[PCr]

data
j − [PCr]

Model
j

)2

max([PCr]
data
j )

+

∑Nc

j=1

(
Ftotal

data
j − Ftotal

Model
j

)2

max(Ftotal
data
j )

(24)

We used the MATLAB ‘fmincon’ function for the parameter

estimation routine and repeated it 100 times starting from random

points within the parameter space. We chose the best-fit parameter

set, which gave fobj closest to zero, as the most accurate estimate and

used it for the subsequent simulations.

2.4.6 Sensitivity analysis

Once we obtained the parameters, we performed a sensitivity analysis

to analyse the parameter space. To calculate the local sensitivities, we

perturbed each parameter one at a time, by 1%, and evaluated the

change in force relative to the change in parameter (Nagaraja et al.,

2014;Wei et al., 2007).We determined the sensitivity values using the

following equation:

Si(x0) =

Ftotal
(
x0
1
,⋯,x0

i
+dxi ,⋯,x0

I

)
−Ftotal

(
x0
1
,⋯,x0

i
−dxi ,⋯,x0

I

)
Ftotal(x0)(
2 × dxi

x0
i

) (25)

where x0 denotes to the best-fit parameter set and Si represents the

sensitivity with respect to force for the ith parameter. For the global

sensitivity analysis,weuniformly sampled10,000parameter sets in the

vicinity of the optimal parameter set x0, allowing for 10% variation in

the value of each parameter (Nagaraja et al., 2014; Wei et al., 2007).

We used Latin hypercube sampling (MATLAB function ‘lhsdesign’)

to identify the 10,000 parameters sets. We then performed a local

sensitivity analysis, as described above, for all 10,000 models defined

by the sampled parameters. Finally, we used box plots to analyse the

parameter sensitivities calculated with thesemodels.

2.4.7 Evaluating the effect of ADP, Pi and H+

levels

For each study, we simulated 240 plantar flexion cycles using

the procedure described above. We evaluated the effect of each

metabolite on force generation by simulating an additional 10% of

the cycles (i.e., 24 cycles) with an increasing concentration of that

metabolite, ranging from 1 to 2 times the concentration reached

at the end of 240 cycles. During these additional cycles, we set

the rate of change of concentration for the other metabolites to

zero.

3 RESULTS

3.1 Experimental measurement of muscle
activation and intramuscular metabolite alterations

Figure 3 depicts the average power generated, the neuronal muscle

activation required to sustain the power generation, and the evolution

of metabolite profiles during the plantar flexion exercise (n = 5). As

per the plantar flexion exercise protocol, all participants maintained

a constant power, as depicted in Figure 3a. During the exercise, the

power required to execute the plantar flexion cycles was constant

(P10). However, to maintain this power, muscles either continuously

recruited more motor units or increased their motor unit firing rate

as shown in Figure 3b. Our measurement shows that the average

iEMG signal increased monotonically from 36% to 60% as the exercise

progressed. Furthermore, indicating energy expenditure, we observed

a rapid decline in PCr levels within 100 s (60 cycles) and then a steady-

state level for the rest of the exercise (Figure 3c). In comparison,

the levels of Pi (Figure 3d), ADP (Figure 3e), and H+ (Figure 3f)

increased rapidly at the beginning before reaching a plateau in the

later part of the exercise. These observations were consistent with

those reported in the literature for other types of exercise (Broxterman

et al., 2017). Furthermore, our fascicle length measurements before

and after participants performed a full range of plantar flexion motion

indicated an average change of 1.1 µm (SD = 0.68; n = 4). Based on the

average time taken to execute a plantar flexion cycle (∼1.6 s, n= 5), we

calculated the average sarcomere shortening velocity as ∼0.68 µm/s

for the five subjects (Equation 3).
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1292 HENDRY ET AL.

F IGURE 3 Experimental measurements during an iso-time constant-power dynamic plantar flexion exercise. (a) Average power generated as a
function of plantar flexion cycles executed as part of the experiment. (b)Muscle activationmeasured as an average normalized integrated
electromyogram (EMG) (%) as a function of plantar flexion cycles. (c–f) Average levels of intramuscular metabolite perturbations of
phosphocreatine (PCr) (c), Pi (d), ADP (e), and H+ (f) as a function of plantar flexion cycles. Data are reported as an average of five subjects, and
error bars indicate the experimental standard deviation between the subjects.

3.2 The proposed skeletal muscle cross-bridge
model captures muscle force generation and
metabolite alterations during a plantar flexion
exercise

To accurately simulate the cross-bridge cycles and their associated

metabolite dynamics, we estimated 23 kinetic rate parameters using

the normalized iEMG data and sarcomere shortening velocity as the

model inputs and fitting the power, PCr, Pi and ADP profiles by

minimizing the difference between the experimental data and the

model simulations (Equation 24). We did not include the pH data in

our parameterization process as we reserved it for model validation.

Figure 4 shows a comparison of the model-simulated (obtained with

the optimal parameter set; continuous line) and experimental data

(circles with error bars) for power, PCr, Pi, ADP and pH. The initial

increase in power, observed in our simulations (Figure 4a), is closely

related to how the model is initiated for the first plantar flexion cycle.

As described in Section 2.4.4, for the first cycle, the state probabilities

of the unbound and bound states (P, A1, A2 and A3) were set to zero

while the state probability of the non-permissible state (N-state) was

set to1. This followsour assumption that all the cross-bridges are in the

non-permissible state before the start of exercise. As a result, it takes a

few cycles before the model accumulates enough cross-bridges in the

P-state to be able to produce the required force/power. Our skeletal

muscle model was able to fit the experimental data with excellent

accuracy across all four datasets. Table 3 summarizes the root mean

square error (RMSE) values for different fits obtained as part of our

parameterization process. We obtained a RMSE value of 0.24 W for

power generation, with 98% of the simulated cycles generating the

powerwithin1 standarddeviationof the experimental data (Figure4a).

Similarly, the RMSE values for PCr (Figure 4b) and Pi (Figure 4c) were

1.0 and2.3mM, respectively,with themodel fitting all theexperimental

data points within 1 standard deviation. The ADP fit had a RMSE of

4µM,with themodel fitting 97%of the experimental data pointswithin

1 standard deviation (Figure 4d). Interestingly, our model was able to

predict the alterations in pH (Figure 4e), the dataset we did not use

as part of the optimization process, attesting to the accuracy of the

model. The parameterized model was able to predict the measured pH

dynamics with a RMSE of 0.065 pH units, with 82% of the predicted

data points lying within 1 standard deviation of the experimentally

measured values, providing a partial validation of the proposed skeletal

muscle model.

Table 1 shows the best-fit parameter values obtained using our

parameter estimation procedure. For 16 parameters, we were able to

compare our estimates with those reported by Tewari et al. (2016) for

mouseand rat cardiacmuscle studies.Note that for certainparameters,

for example, k−2, the mouse and rat estimates differed by more than

one order of magnitude. For most of the 16 parameters, our estimates

were on the same order of magnitude as those for either mouse or

rat, and for only five parameters (ka, α2, KATP, KADP, and kstiff,1) did the
estimates differ by an order of magnitude or more. We attribute these

differences to various factors, including biological differences between

species and muscle types as well as variations in the experimental

conditions. Specifically, the experimental data used for estimating

rat and mouse parameters were collected from myocardial strips

excised from the left ventricle. In comparison, our data were collected
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HENDRY ET AL. 1293

F IGURE 4 Cross-bridgemodel simulation of dynamic plantar flexion exercise and parameterization. (a) Plot comparingmodel-simulated
power (continuous line) and experimentally recorded power (circles with error bar). (b–e)Model description of the intramuscular metabolite
alterations (continuous lines) comparedwith the experimental data (circles with error bars) for phosphocreatine (PCr) (b), Pi (c), ADP (d), and H+

(e). Error bars indicate standard deviations (n= 5 subjects).

TABLE 3 Rootmean square error (RMSE) calculated between themodel predictions and experimental datasets during the parameterization
and validation steps.

No. Data

RMSE betweenmodel

simulations and experimental

dataset in Figure 4a

RMSE betweenmodel predictions

and experimental dataset in

Figure 5b

RMSE between the two

independent experimental

datasets

1 Power,W 0.236 (98%) 0.600 (70.6%) 1.3

2 PCr, mM 0.993 (100%) 5.614 (50.8%) 8.5

3 Pi, mM 2.315 (100%) 4.592 (41.3%) 7.0

4 ADP, mM 0.004 (92%) 0.014 (55.6%) 27.7

5 pH, pH units 0.065 (82%) 0.118 (60.3%) 0.2

Values in parentheses indicate the percentage of data points that were within one standard deviation of the experimental data points. PCr, phosphocreatine.
aRMSE between themodel predictions and the data used for parameterization, which were the average of the five subjects.
bRMSE between themodel predictions and the data used for validation, which was the average of the two additional subjects.

from exercising human participants using non-invasive techniques and

account for the activities of different and diverse muscle types, such

as the gastrocnemiusmedialis, gastrocnemius lateralis, tibialis anterior

and vastus lateralis.

3.3 The proposed model predicts dynamic plantar
flexion exercise from two independent subjects

To validate the proposed human skeletal muscle model, we further

used the parameterized model to simulate the data collected from

two independent subjects not included as part of the parameterization

process.Weused the average iEMGdata (n=2) andaverage sarcomere

shortening velocity (n = 2) as inputs to simulate the dynamic plantar

flexion cycles and compared the model simulations (continuous lines)

with experimental data (circle with error bars) as shown in Figure 5.

Table 3 shows the RMSE and fraction of predicted data points lying

within 1 standard deviation of the experimental data. Our model pre-

dictions showed good agreement with the experimental data. For

example, more than 50% of the model-predicted points for power

generation (Figure 5a), PCr (Figure 5b), ADP (Figure 5d) and pH

(Figure 5e) were within 1 standard deviation of the experimental data
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1294 HENDRY ET AL.

F IGURE 5 Cross-bridgemodel predictions of dynamic plantar flexion exercise and validation with two additional subjects. (a) Model
predictions of constant power generation using the integrated electromyography (EMG) data as input and comparison with experimentally
recorded power data (circles with error bars). (b–e)Model predictions of the intramuscular metabolite alterations (continuous lines) compared
with experimental data (circles with error bars) for phosphocreatine (PCr) (b), Pi (c), ADP (d), and H+ (e). Error bars indicate standard deviations
(n= 2 subjects). RMSE, root mean square error.

points. For Pi, we observed that 41% of the predicted data points

were within 1 standard deviation of the experimental data points

(Figure 5c). Overall, our model validation results showed that the

RMSEs were within the experimental noise calculated between the

two independent datasets, indicating that the model has the capability

to predict alterations in muscle dynamics during a specific exercise

protocol.

3.4 Effect of muscle activation potential and
metabolite accumulation (ADP, H+ and Pi) on force
generation during plantar flexion exercise

We used the validated model to study the effect of muscle

activation potential, ADP, H+ and Pi on muscle force generation.

Our experimentally measured EMG results showed an increasing

muscle activation during the exercise (normalized iEMG data in

Figure 3b). To understand the effect of this incremental muscle

activation on force generation during the sustained plantar flexion

exercise, we performed simulations with normalized iEMG remaining

at the initial value (36%) throughout the exercise. These model

simulations (dashed line in Figure 6a) showed that the subjects were

not able to generate the required force early on and that force stayed

consistently lower throughout the exercise as compared to that during

the original experiment (continuous line, Figure 6a). These results

suggest that the subjects would not be able to continue the exercise at

the same intensity if they were not recruiting additional motor units or

increasing their motor unit firing rate and may quit much earlier than

the original experiment duration due tomuscle fatigue.

To further understand the factors that might cause reduced force

during exercise, we performed simulations to predict the change in

force-generating capacity with altered ADP, Pi or pH concentrations

(Figure 6). We used the association/dissociation constants of these

metabolites with different actin–myosin complexes to modulate the

intramuscular metabolite levels and investigated whether their over-

accumulation affected force generation. In the case of ADP, our model

predicted only a marginal rise in force generation even after a two-

fold increase (Figure 6b) compared to the physiological concentration

observed at the end of the plantar flexion exercise (Figure 3e). In

comparison, we did not see any notable effect on generated force

with a two-fold increase in H+ concentration (Figure 6c). However,

we observed a notable decrease in force generation with an over-

accumulation of Pi (Figure 6d). Our simulations showed that the

normalized force dropped to 30% when Pi increased by 50% and

dropped to 47% when Pi accumulated 100% above its physiological

concentration at the end of the plantar flexion exercise. The results

show that the intramuscular accumulation of Pi is one of the major

factors that inhibits the force-generating capacity during exercise.
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F IGURE 6 Model predictions for the effect of muscle activation potential andmetabolite alterations (ADP, H+ and Pi) on force generation. (a)
Plot comparing force-generating capacity simulated withmeasured iEMG profile (continous line) and force-generating capacity simulated with a
hypothetical constant basal activation (dotted line). (b–d) Plots showing the change in the normalized force with respect to relative change in ADP
(b), H+ (c), and Pi (d) levels.We simulated plantar flexion cycles for 240 cycles and then continued for an additional 24 cycles at elevated
concentrations of themetabolite under consideration while the rest of themetabolite levels were left unchanged. The y-axis shows simulated
force, at the end of 240+ 24 cycles, normalized by force required tomove the piston during constant-power plantar flexion exercise, and the x-axis
shows the concentration of metabolite normalized by the final concentrations recorded at the end of 240 cycles.

3.5 Skeletal muscle force-generating capacity is
sensitive to the Pi dissociation step during
cross-bridge cycling

To understand the mechanism through which Pi inhibits force

generation, we performed a sensitivity analysis to identify the

parameters that impact a specific model output. This technique also

evaluated the robustness of the model with regard to parameter

estimation uncertainties. Specifically, we were interested in the

parameters that most impact muscular force generation. Therefore,

we performed both local (Figure 7a) and global (Figure 7b) sensitivity

analyses with respect to force generation for the 23model parameters

we estimated using experimental data. Both the local and global

sensitivity values were within the −2 to 2 range. Furthermore, of the

15 parameters found to impact cross-bridge kinetics, both analyses

revealed kd, α1, α2, ka and KPi as the top five parameters to which

force was most sensitive. Interestingly, three (kd, ka and KPi) of the

five parameters were associated with the cross-bridge cycle P state

to A1 state transition. Of the parameters controlling the interactions

between the cross-bridge cycle andmetabolite levels, force generation

was at least four times more sensitive to KPi than others (KATP,

KADP and KH+), which agrees with our earlier observation that Pi

inhibits force generation significantly compared to other metabolites

accumulated during plantar flexion exercise. Of the five metabolic

parameters in themodel, we found that forcewas sensitive only to kGly,

kPi,dil and kadk, and these observations were consistent between the

local and global sensitivity analyses.

4 DISCUSSION

To understand how physiological factors, such as muscle activation

and metabolite accumulation, affect force generation, we developed

a computational model that combines a five-state actin–myosin

cross-bridge cycle with key metabolic processes associated with

skeletal muscle energetics. We used a mathematical implementation

of Huxley’s sliding filament theory (Huxley, 1957), used in the study

by Tewari et al. (2016), to account for the cross-bridge cycle. This

implementation consisted of five cross-bridge states and accounted

for the effect of ADP, ATP and Pi on the kinetics of the cross-bridge

cycle. We updated the model by integrating metabolic processes,

such as creatine kinase, glycolysis, adenylate kinase and intra-

cellular phosphate buffering of pH, using mass action kinetics. We

parameterizedandvalidated themodel usingexperimentallymeasured

muscle activation signals and intramuscular metabolite alterations

(PCr, Pi, ADP and H+) collected as human participants performed

a dynamic plantar flexion exercise at ∼20% above their critical

power.
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F IGURE 7 Parameter sensitivity analysis. Plots of local (a) and global (b) sensitivities calculated for all 23 parameters in themodel. For the
global analysis, we sampled 10,000 random parameter sets around the estimated optimal parameters by allowing for 10% variation in individual
parameter values.We calculated the force sensitivities for each parameter for all 10,000 parameter sets and summarized them as box plots.

Our strategy of combining a five-state cross-bridge model with a

kinetic model representing metabolic processes that are specific for

skeletal muscles enabled us to leverage both force and metabolomics

data from exercising humans for model parameterization and

validation. The resultant skeletal muscle cross-bridge model not

only could simulate force generation but also recapitulated the

dynamics of ADP, Pi, PCr and pH during a plantar flexion type

of exercise. Although the skeletal muscle cross-bridge (Herzog &

Schappacher-Tilp, 2023) and metabolic models (Lai et al., 2008;

Lambeth & Kushmerick, 2002; Lopez et al., 2020) were developed

previously, they have rarely been used together in the context of

muscle fatigue. This study demonstrates that by combining these two

frameworks we can take advantage of non-invasively collected time

course metabolomics data from exercising humans to understand

muscle fatigue development. Furthermore, the model also allowed

us to evaluate the effect of different physiological factors, such as

muscle activation and metabolic concentration, on skeletal muscle

force-generating capacity.

Surface EMG provides an indirect measure of muscle activation in

exercising skeletal muscles. In our study, we observed that normalized

integrated surface EMG increased over the exercise period, indicating

a progressive recruitment of muscle motor units or increased motor

unit firing rate by the neuromuscular system. Using a mathematical

model, Contessa et al. (2016) reported a similar observation and hypo-

thesized that the increased motor unit firing rate compensated for

the decreased force generation from fatigued muscles. Our studies

simulating constant muscle activation also supported this hypothesis

(Figure 6a) since the model predicted a reduced force generation

early into the exercise. Thus, in agreement with earlier studies, this

study attests to the important role the neuromuscular system plays in

providing a compensatory stimulation to mitigate the effects of early

peripheral muscle fatigue development.

In our simulations investigating the effects of the accumulation

of various metabolic species, we found that Pi accumulation greatly

impacted the force generated by the skeletal muscles, which agrees

with earlier studies where elevated Pi concentrations (25–30 mM)

reduced peak isometric force by 5–19% in Ca2+-activated rabbit and

rat fibres (Coupland et al., 2001; Debold et al., 2004). The five-state

cross-bridge model used in this study considers the release of Pi

from the weakly bound state (A1) as a prerequisite for reaching the

strongly bound state (A2) (see Figure 2 for details) (Kawai et al., 1993;

Muangkram et al., 2020; Pate & Cooke, 1989; Tewari et al., 2016). A

consequence of this assumption is that both the rate constants of the

A1→P transition (kd) and the A1→A2 transition (k1) are modulated

by Pi concentration and KPi. Our model uses mass action- and rapid

equilibrium-based formulations of substrate inhibition kinetics to

capture this relationship (Equations12and13).Our sensitivity analysis

indicated that force was sensitive to both kd and KPi. In fact, they were

among the top five parameters to which force was most sensitive, with

kd being number 1. This in combination with the lack of sensitivity

for k1 indicates that, in our model, Pi impacts force by increasing

the rate of cross-bridge detachment by promoting the A1→P trans-

ition. Other models of cross-bridge cycling assume that Pi release

occurs after the actomyosin cross-bridge transitions from the weakly
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HENDRY ET AL. 1297

F IGURE 8 Evaluation of an alternate cross-bridgemechanismwhere H+ was released from the A2 state as opposed to from the A3 state. (a)
Schematic depiction of themodified cross-bridgemodel that uses an alternativemechanism to explain proton (H+)-mediated inhibition of
cross-bridge cycling and force generation. In this mechanism, H+ dissociation is a prerequisite for the A2→A3 transition, and therefore the rate of
this transition is a function of the H+ dissociation constant (KH+). (b) Plot comparing force-generating capacity simulated with ameasured iEMG
profile (continuous line) andwith a hypothetical constant basal activation (dotted line). (c–e) Plots showing the change in the normalized force with
respect to change in ADP (c), H+ (d), and Pi levels (e).

bound state to the strongly bound state (Debold, 2021; Hibberd et al.,

1985; Linari et al., 2010; Takagi et al., 2004). Simulations based on

these models can also reproduce the Pi-mediated inhibition of force

in skeletal muscle fibres (Dantzig et al., 1992) and in isolated myosin

molecules (Debold et al., 2013). There are other indirect mechanisms

throughwhich Pi might inhibit the cross-bridge kinetics. One proposed

mechanism is that Pi directly interacts with the ryanodine receptor

(RyR) on the surface of the sarcoplasmic reticulum (SR) and modulates

Ca2+ release (Duke & Steele, 2001). Another potential mechanism is

that Ca2+–Pi precipitation directly reduces the Ca2+ content in the

SR (Westerblad & Allen, 1996). The model currently does not account

for these mechanisms due to the lack of real-time data on intracellular

Ca2+ dynamics. Therefore, it is difficult to rule out the contribution of

thesemechanisms to fatigue development in this study.

Our simulations showed only a marginal effect on force for a two-

fold higher ADP accumulation thanwhat was experimentally observed

(Figure 6b). This indicates that ADP accumulation may not play a

significant role in the development of muscle fatigue. Indeed, studies

with transgenicmice accumulating up to∼1.5mMADP in their skeletal

muscles have shown that ADP does not affect normal force production

(Hancock et al., 2005). For [H+], the model showed no effect even

when the concentration was doubled (pH 6.43). This contradicts some
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of the experimental studies that observed a 10–20% decline in force

even for pH ranges of 6.5–6.6 (Westerblad et al., 1997; Woodward &

Debold, 2018). While the exact mechanism remains unknown, it has

been hypothesized that H+ slows down the release of ADP from the

A3 state (Figure 2) (Debold et al., 2008, 2011; Jarvis et al., 2018).

Althoughwe incorporated this hypotheticalmechanism intoourmodel,

the simulations still predicted no effect on force production under

elevated [H+].

In order to test other potential mechanisms that simulate H+

inhibition of force production, we explored an alternative cross-

bridge-based mechanism (Figure 8a) where the H+ from ATP hydro-

lysis remained attached to myosin until it was released in the A2

state and this H+ dissociation was a prerequisite for the A2→A3

transition. Parameterizing this model provided comparably good fits

(Figure S2), although there was a slight increase in RMSE values

compared to the original model. Interestingly, the modified model

indicated force inhibition with increasedH+ concentration (Figure 8d),

and also showed a similar behaviour for the perturbations in EMG

(Figure 8b), ADP (Figure 8c) and Pi (Figure 8e) compared to the original

model. This indicates the usefulness of our computational model

to generate hypothetical mechanisms that can explain the observed

metabolite-mediated inhibition of force generation inmuscles. Overall,

these results show some gaps in our understanding of the inter-

action between H+ and cross-bridge cycles as well as the complexity

involved in developing skeletal muscle models and the limitations

associated with them. For example, one of the proposed mechanisms

through which H+ affects muscle force generation is by modulating

the Ca2+/troponin-mediated activation of muscle fibres (Nelson &

Fitts, 2014; Parsons et al., 1997; Unger & Debold, 2019). Other

possible mechanisms include H+-mediated modulation of ATPase

activity associated with myofibrils and Ca2+ transporters on the SR

membrane and sarcolemma. However, due to challenges in accurately

measuring intracellular Ca2+ dynamics during exercise, we were not

able to incorporate them in our current model formulation.

We also note that the model in its current form does not segregate

the metabolite pools into different organelles/compartments, such as

the mitochondria and cytoplasm, as found in musculoskeletal cells.

Such compartmentalization, as used in recentmodelling studies (Lopez

et al., 2020), would allow us to study the effect of energy shuttle

reactions, such as creatine kinase, on force generation. Furthermore,

due to challenges in obtaining Ca2+ concentration measurements in

exercising humans, the current model uses EMG data as an overall

indication of muscle stimulation. Modelling Ca2+-mediated activation

of skeletal muscles would facilitate the evaluation of other potential

mechanisms through which H+ and Pi are hypothesized to modulate

calcium dynamics and thereby impact force generation. Such potential

mechanisms include but are not limited to: (1) modulation of Ca2+-

troponin interaction by H+ (Nelson & Fitts, 2014), (2) modulation of

myofibrillar ATPases by H+ (Fitts, 2016), (3) H+-mediated modulation

of ATPase activity of Ca2+ channels on the SR membrane (Wolosker

et al., 1997) and Na+–K+ channels on the sarcolemma (Fitts, 2016),

(4) Pi-induced inhibition of RyR (Duke & Steele, 2001), and (5) Ca2+-Pi

precipitation in the SR (Westerblad & Allen, 1996).

4.1 Conclusion

We developed a computational skeletal muscle model that accounts

for cross-bridge cycling and key metabolic processes of contra-

ctile function. We parameterized and validated the model using

force, surface EMG, and metabolite concentration data collected

non-invasively from human participants performing a plantar flexion

exercise above their critical power to task failure. The model

predicted that the observed increase in muscle activation during

exercise compensates for the fatigue-induced force reduction and

that Pi accumulation affects force production by increasing the

rate of detachment of actin and myosin at the weakly bound

state. Furthermore, the model predicted that accumulation of ADP

only had a minimal effect on force in agreement with literature

reports. Using the proposed cross-bridge cycling model, we explored

alternativemechanisms to explain the observed inhibitory effect of H+

accumulation on force generation. However, we need further studies

exploring the role of H+ in cross-bridge kinetics to better under-

stand how H+ contributes to muscle force generation and fatigue

development.
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