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A B S T R A C T

A characteristic feature of obstructive lung diseases is the narrowing of small airways, which affects regional
airflow patterns within the lung. However, the extent to which these patterns differ between healthy and dis-
eased states is unknown. To investigate airflow patterns in detail, we first used particle image velocimetry
measurements to validate a large eddy simulation model of flow in a patient-specific geometry. We then pre-
dicted flow patterns in the central airway under exhalation for three flow conditions—normal, intermediate, and
severe—where boundary conditions represented the effect of lower airway obstructions. We computed Pearson
correlation coefficients (R) to assess the similarity of flow patterns, and found that flow patterns demonstrated
the greatest differentiation between flow conditions in the right main bronchi (R ≤0.60), whereas those in the
secondary branches and regions of the trachea showed high correlation (R ≥0.90). These results indicate that
although flow patterns are distinct between flow conditions, the choice of measurement location is critical for
differentiation.

1. Introduction

Obstructive lung diseases, such as asthma and chronic obstructive
pulmonary disease (COPD), typically result in narrowing, or obstruc-
tion, of small airways in the lung, i.e., those with a diameter of less than
2mm (Hogg et al., 1968; Kuyper et al., 2003; McDonough et al., 2011;
Van den Berge et al., 2011). The obstructions increase resistance to flow
in the small airways and are non-uniformly distributed throughout the
lung (Turato et al., 2001; Burgel, 2011; Berg and Wright, 2016). This
results in regional variations in lung function, including ventilation
heterogeneity (Downie et al., 2007; Tzeng et al., 2009). However, the
effect of obstructions on regional flow characteristics within the lung is
not well understood.

Multi-detector computed tomography (CT) creates high-resolution
images of the lung that are used to investigate disease characteristics in
a wide array of pulmonary diseases, including asthma (Walker et al.,
2012; Ash and Diaz, 2017), COPD (Diaz et al., 2010; Haruna et al.,
2010; McDonough et al., 2011), and pulmonary fibrosis (Gotway et al.,

2007; Kitaguchi et al., 2010). However, while CT produces a highly
detailed view of lung structures, it does not provide information about
flow characteristics within the lung. In contrast, the pulmonary func-
tion test measures volumetric flow in the lung and provides information
about certain flow characteristics, such as bulk flow rate (Ruppel and
Enright, 2012). Nevertheless, this test cannot discern any regional
heterogeneities underlying the flow.

Computational fluid dynamics (CFD) models are useful for in-
vestigating flow characteristics in the lung and assisting in the design of
clinical treatments. Idealized lung geometries have been used widely in
previous CFD studies, in particular, the Weibel Type A model (Weibel
et al., 1963). For example, Yang et al. (2006) examined the alteration to
flow characteristics during inhalation in a lung geometry based on the
three-dimensional (3-D), 23 generation Weibel lung model. Their study,
which used a series of four-generation truncations of the lung, de-
monstrated that obstructions significantly influence airflows both up-
and down-stream through the presence of recirculation regions. More-
over, they determined that obstructions significantly increase flow
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resistance. In addition, Sul et al. (2014) studied the alteration to airflow
characteristics resulting from obstructions in a Weibel model of the
8th–14th generations of the lung. They computed Pearson correlation
coefficients to compare airflow pattern similarity and found that the
patterns were clearly different for high-rate expiratory flows but not for
inspiratory flows.

Advances in CT imaging techniques and software have led to the
increased use of patient-specific geometries in CFD models. For in-
stance, Choi et al. (2009) studied intrasubject variability of airflow
characteristics and determined that two morphological features of the
lung were primarily responsible for the variation in flows between
subjects. Separately, Xi et al. (2014) compared exhaled aerosol patterns
(also called aerosol fingerprints) between healthy and diseased subjects
and found a correlation between the exhaled patterns and lung condi-
tion. In another study, Qi et al. (2018) examined the flow character-
istics of subjects with tracheal bronchus and showed that compared to
healthy subjects, the structural features of this condition presented in-
dividualized flow attributes.

Whereas the use of patient-specific geometries is widely accepted,
the use of patient-specific boundary conditions remains a potential
concern in CFD models, because frequently used boundary conditions
(i.e., uniform pressure or velocity) fail to reproduce physiologically
realistic distributions of airflow within the lungs. Previously, De Backer
et al. (2010) and Yin et al. (2010) independently proposed physiolo-
gically derived boundary conditions and found them to be in good
agreement with in vivo CT measurements. In addition, Yin et al. (2010)
found that the use of improper boundary conditions produce errors in
flow characteristics, indicating the necessity of using patient-specific
boundary conditions to accurately represent flow characteristics in the
lung.

In a separate study, Sul et al. (2018) assessed flow characteristics
under exhalation in an idealized geometry with patient-specific
boundary conditions that represented regional changes in flow dis-
tribution due to a pulmonary disease, which they termed lobar flow
fractions. Their results demonstrated that flow patterns differ
throughout the central airway because of changes in flow distribution.
However, that study relied on an idealized lung geometry. Patient-
specific geometries, which are considerably more complex than idea-
lized ones, lead to much more complex flow behavior (Lin et al., 2007;
Choi et al., 2009; Bernate et al., 2017). This increase in flow complexity
is likely to affect the observed flow patterns in the central airway and
may alter the degree of pattern similarity compared to that observed in
the idealized geometry.

In this study, we extended the analysis of Sul et al. (2018) to include
a patient-specific geometry and investigated flow pattern differences
due to changes in lobar flow fractions representing lower airway ob-
structions. To this end, we validated a CFD model with particle image
velocimetry (PIV) measurements, predicted flow patterns for three flow
conditions under exhalation, and then used Pearson correlation coeffi-
cients and root-mean-square differences to determine their similarity.

2. Methods

2.1. Geometry and flow conditions

Fig. 1a shows the patient-specific central airway geometry based on
the reconstruction and modification of a CT scan provided by the
University of Virginia (Charlottesville, VA). The scan, obtained from a
healthy, 39-year-old female subject, comprised the oral cavity, or-
opharynx, larynx, trachea, and bronchial tree extending up to the sixth
generation. We processed the CT scan with MIMICS (Materialise, Ann
Arbor, MI) and created a 3-D model. We further modified the 3-D model
to make it suitable for construction of an in vitro model with 3-Matic
(Materialise, Ann Arbor, MI), by increasing the cross-sectional area of
the glottis and enlarging the model by a scale factor of 1.8. Although we
enlarged the geometry for the in vitro model, some of the distal bronchi

were too small in diameter to be sufficiently resolved by the 3-D
printing technique we adopted for this study (described below in Sec-
tion 2.2). Because of this limitation, we reduced the total number of
distal bronchi from 42 to 26 so that the diameters were greater than
0.3 cm and could be fully resolved by 3-D printing. The resulting model
had a tracheal diameter of 3 cm, with the diameters of the distal
bronchi varying between 0.3 and 0.9 cm. Fig. 1b shows the full model
geometry with lobe plena attached to the distal bronchi of the central
airway. Each lobe plenum represented the lower airways of a lung lobe.
We attached the lobe plena accordingly to the central airway; that is,
we grouped the distal bronchi by lung lobe and attached the bronchi to
the corresponding lobe plenum. Each lobe plenum terminated in a
single inlet, enabling us to control the flow rates for the five lobe plena

Fig. 1. Model geometry and experimental setup. a) Frontal view of the patient-
specific central airway obtained from a computed tomography scan of a
healthy, 39-year-old female subject, comprised of the oral cavity, oropharynx,
larynx, trachea, and bronchial tree extending up to the sixth generation. b)
Geometry of the full model with lobe plena attached to the distal bronchi of the
central airway, where each plenum is attached to the bronchi corresponding to
a single lung lobe. c) Schematic of the particle image velocimetry experimental
setup with individual piston pumps attached to each lobe plenum in a trans-
parent cast of the full model geometry. With this setup, the flow rate for each
lobe plenum is independently controlled.
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independently.
For this study, we considered a steady exhalation flow condition

with a total flow rate Q of 770.4mL/s (this correlates to a flow rate of
600mL/s on the human scale). We chose this flow rate as it corresponds
to a mean breathing flow rate during moderate activity (Anderson et al.,
2006), which falls within the physiological range of human breathing.
We specified the fraction of the total flow rate distributed to each lobe
plenum, which we termed the lobar flow fraction. Table 1 shows the
three flow conditions considered (normal, intermediate, and severe)
where each corresponds to a different set of lobar flow fractions. We
derived the lobar flow fractions for two of the flow conditions (normal
and severe) from two subjects at the University of Virginia following a
previously described protocol (Yin et al., 2010; Sul et al., 2018), cor-
responding to a healthy subject and a subject diagnosed with COPD,

respectively. We determined the lobar flow fractions for each subject by
calculating the volume change of each lung lobe from peak inspiration
to peak expiration, and calculated the volume change of each lobe re-
lative to the total volume change of the lungs. For the normal condition,
we derived lobar flow fractions from the subject that was the basis for
the central airway geometry. For the severe condition, we evaluated
lobar flow fractions for three subjects with COPD and found them to
show similar patterns of distribution. In all cases, the lower lobes ex-
hibited lower flow fractions compared to the healthy subject, along
with concomitant increases in flow fractions for the upper lung lo-
bes—e.g., the lobar flow fraction for the left lower lobe is 28% in the
healthy subject and 17% in the COPD subject, while the fraction for the
left upper lobe is 21% in the healthy subject and 28% in the COPD
subject. Comparing the three subjects, the difference between flow
fractions for a given lung lobe was at most 10% of the total flow.
Subsequently, we chose one representative subject for the severe con-
dition whose flow fractions represented the median of those evaluated.
To represent a subject in the early stages of disease progression, we
determined the intermediate flow condition by averaging the lobar flow
fractions from the normal and severe conditions.

2.2. Experimental methods

Fig. 1c shows a schematic diagram of the flow model used for the
PIV experiments. We used fused deposition modeling techniques to

Table 1
Flow conditions and their associated lobar flow fractions.

Lobar flow fraction (%)

Flow
condition

Left
upper lobe

Left
lower lobe

Right
upper lobe

Right
middle lobe

Right
lower lobe

Normal 21.0 28.0 14.0 7.0 30.0
Intermediate 24.5 22.5 22.0 9.0 22.0
Severe 28.0 17.0 30.0 11.0 14.0

Fig. 2. Experimental setup used to acquire stereoscopic particle image velocimetry measurements. a) The optical setup and traverse system for image acquisition. b)
Structure of the customized 3-D printed prism frame attached to the front face of the tank with a bellow. c) Camera calibration setup with the cameras translated
away from the model and the calibration target placed in front of the cameras. d) A photograph of the imaging setup.
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print the 3-D model, which included the lobe plena and central airway
(Fig. 1b). We used a Fortus 400mc (Stratasys, Eden Prairie, MN) to
fabricate the 3-D printed model with acrylonitrile butadiene styrene at
a resolution of 0.33mm. We further polished the 3-D printed model
using an acetone vapor bath (Neff et al., 2018) and then secured it in a
glass container. We casted the model in clear silicone (SYLGARD 184;
Dow Corning, Midland, MI) and dissolved the 3-D printed material from
the cured silicone, which resulted in a hollow, transparent model of the
original geometry (Fig. 1c). To match the refraction index of the
working liquid for the PIV experiments to that of the silicone (Budwig,
1994), we accordingly chose a water-glycerine mixture of 61% gly-
cerine, with a density of 1155 kg/m3 and a kinematic viscosity of
9.2× 10−6m2/s. Finally, we attached a piston pump to the inlet of
each lobe plenum, so that we could individually control the lobar flow
fraction in each lobe plenum.

We performed stereoscopic PIV measurements of the three compo-
nents of the velocity field within prescribed imaging planes. We se-
lected hollow glass spherical particles (Potters Industries LLC, Malvern,
PA) with a median diameter of 20 μm and density of 1.10 ± 0.05 g/
cm3 for the PIV measurements. We selected these particles for their
density [which was similar to that of the working liquid (1.15 g/cm3)]
and size (large enough to reflect sufficient light to be visible and small
enough to occupy 2–3 pixels in the recorded images). We studied the
dynamic response of a single particle to ensure that the particles would
faithfully track the fluid (Adrian and Westerweel, 2011). For a tracer
particle subjected to a sinusoidal external flow with a frequency of
100 Hz, the normalized amplitude error was on the order of 10−6 and
the phase error on the order of 10−3 degrees.

Fig. 2a shows the laser and camera setup used to acquire the ste-
reoscopic images. We employed a Nd:YAG double-pulsed laser (NANO
L; Litron Lasers Ltd., Warwickshire, England) and two 4-Megapixel
cameras (Imager pro X 4M; LaVision Inc., Ypsilanti, MI) with Nikon
micro-Nikkor 60-mm lenses mounted via Scheimpflug mounts and se-
parated by an angle of 60°. With the regular cube-shaped test section,
prisms are necessary for reducing astigmatic aberrations. Fig. 2b shows
the customized, 3-D printed prism frame, filled with the same cast si-
licone used for the model, attached to the front face of the tank with a
bellow.

We poured the index-matched working liquid used in the model into
the bellow, creating a homogeneous optical path from the prism face to
the imaging plane. Calibrating this model is a challenge, because the
complex geometry of the flow paths forbids in situ accessibility to any
kind of calibration target. We solved this issue by securing the cameras,
the prism, and the light-sheet optics onto a rigid optical frame and
precisely controlled traverser (minimum measurable incremental dis-
tance of 0.1 mm). We aligned the laser beam to be parallel with the
traverse translation direction, so that the relative position and or-
ientation between the cameras and the light sheet remained the same
during translation. Fig. 2c shows the setup used for calibration, which
we performed by translating all of the fixed optical components away
from the model and placing an aquarium filled with the same working
liquid in between them. We then placed the calibration target in the
tank and aligned it with the laser light sheet, providing an optical
mapping for any distortion in the path. We completed the final regis-
tration using the self-calibration procedure with the collected PIV
images (Wieneke, 2005), which removed any residual alignment errors
between the calibration target and the light sheet.

The translation frame, combined with the customized prism, also
provided the option to translate the imaging plane to different out-of-
plane positions while maintaining an identical optical viewing path.
Thus, we only performed camera calibration and self-calibration one
time each. We repeated calibration to check for consistency and ensure
that nothing was disturbed during a given test sequence. We measured
flow fields at different imaging planes to provide a better understanding
of the volumetric flow characteristics in a statistical sense. We acquired
images and calculated instantaneous velocity vectors with DaVis 8.2

(LaVision Inc., Ypsilanti, MI). The calculation process involved an
iterative multi-resolution method, starting with a first pass using a
coarse interrogation window of 64× 64 pixels, followed by a higher-
resolution pass using a window of 32× 32 pixels with an overlap of
50%. This represented a spatial resolution of approximately
0.55mm×0.55mm for the interrogation cell, which varied slightly
with the exact magnification at different measurement locations. We
selected the time interval between image pairs to allow a maximum
displacement of 12 pixels in the region of interest, which corresponds to
an interface time of 300 μs. With a conservative performance estimate
of 0.1 pixels for the subpixel interpolation, this gives a typical dynamic
range of over 100 for the velocity measurement. We assessed inter-
rogation quality by examining the number of spurious vectors in a
single realization. Spurious vectors were identified after each inter-
mediate and final pass using the standard normalized median test,
which has been shown to be very effective at identifying random noise
signals within resolved PIV data (Westerweel and Scarano, 2005). For a
single realization, the ratio of the spurious vectors detected in the final
pass to the total number of vectors within the masked region of mea-
surement is typically within 2–3%, which indicates an excellent image
quality.

We observed unsteady flow structures in the PIV velocity field
measurements, consistent with a transition toward a turbulent state. To
assess the convergence of our reported mean velocities, we acquired
more than 700 independent PIV velocity field measurements each
measurement location, where we selected the position with the largest
degree of variability and determined the convergence speed of the
mean velocity, as this position is expected to show the lowest con-
vergence speed in the velocity field. Fig. 3 shows that after about 250
images, the velocity magnitude remains within a band of± 5%, in-
dicating an approximate level of convergence of mean values within
this range. In addition, we determined 95% confidence intervals of the
velocity magnitude at the four cross-sections (a-a’, b-b’, c-c’, d-d’) spe-
cified in Fig. 5. The 95% confidence interval at each point is obtained

using: +V µ Vk
n

k
n

¯ ¯
, where µ represents the true local mean

velocity magnitude, V
¯
is the sample population local mean value of the

velocity, is the standard deviation of the velocity magnitude, n is the
number of instantaneous velocities being averaged (n= 700) and k
corresponds to the 95% confidence level with a value of 1.96 being
used. We found that the maximum uncertainty band represented by this

Fig. 3. The local mean velocity magnitude obtained from particle image velo-
cimetry measurements averaged over an increasing number of instantaneous
velocities and normalized by the corresponding local mean velocity averaged
over all of the 700 velocity fields. The normalized averaged velocity magnitude
varied over the first 250 collected field measurements, before stabilizing within
a band of± 5%, indicating a statistical convergence of the local mean velocity
magnitude. This indicates that 700 velocity fields were sufficient to describe the
mean velocity field.
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estimate, normalized by the spatially averaged velocity of the corre-
sponding profile, was less than±3.6% throughout the measurement
planes.

2.3. Numerical methods

We performed CFD simulations with conditions matching those used
in the PIV experiments. We calculated the Reynolds number in the
trachea to be ∼3500 (Re= 4Q/πDυ, for a total flow rate Q of
770.4mL/s, tracheal diameter D of 3 cm, and kinematic viscosity υ [of
the water-glycerin mixture] of 9.2× 10−6m2/s). This Reynolds
number is in the transitional regime, and we consequently evaluated
both large eddy simulation (LES) and Reynolds-averaged Navier–Stokes
(RANS) turbulence models for incompressible flows to address their
suitability of reproducing experimentally observed flow patterns. For
the LES model, we used a dynamic Smagorinsky–Lilly representation
for the sub-grid scale (Germano et al., 1991; Lilly, 1992). For the RANS
model, we employed the shear stress transport k–ω turbulence method
(Menter, 1994).

We used the fluid properties of the water-glycerin mixture from the
PIV experiments. We applied no-slip boundary conditions on the walls
of the domain and a boundary condition of zero gauge pressure at the
outlet. We specified uniform velocity profile boundary conditions at
each lobe plenum inlet where the velocity magnitude was determined
from the corresponding flow condition and lobar flow fraction. Flow is
distributed within the plena and to the distal branches of the patient-
specific geometry without specifying flow rates at each branch inlet.
When using the RANS model, we also specified a turbulence intensity of
5% and a turbulence length scale of 0.2 cm at each lobe plenum inlet.

We numerically solved the equations of fluid flow using the finite-
volume based solver FLUENT (version 18.0.0; ANSYS Inc., Canonsburg,
PA), with a second order central-differencing scheme for the convective
terms. For the RANS model, we performed steady-state calculations
with a coupled method for the pressure-velocity coupling. For the LES
model, we used a fractional step method for the pressure-velocity
coupling and performed transient calculations with a time step Δt of
10−4 s, ensuring the Courant–Friedrichs–Lewy number was less than
one throughout the computational domain. We began collecting flow
statistics after the flow developed in the trachea, and averaged the
subsequent flow over a 2 s period to yield statistically steady velocity
and pressure fields.

Using ICEM CFD (version 18.0; ANSYS Inc. Canonsburg, PA), we
generated unstructured, tetrahedral meshes where the near-wall region
featured high-resolution mesh layers that transitioned to coarser cells in
the interior of the computational domain. We first created an Octree-
type mesh for the surface and extruded 10 prism layers in the near-wall
region featuring a thickness of 0.1 mm. Then, we filled the remaining
mesh volume utilizing the advancing front method. To ensure a high-
quality mesh, we smoothed the mesh so that the skewness for each cell
was less than 0.8 and the orthogonality quality was greater than 0.5.

We performed a grid independence test by examining the velocity
magnitude and turbulent kinetic energy values located along the cen-
terline of the midplane of the trachea. We examined two different mesh
configurations, each with 10 mesh layers in the near-wall region fea-
turing a thickness of 0.1 mm, but different spatial resolutions in the
interior of the domain (1.0 or 0.75mm in the bulk of the flow consisting
of 18.3 million or 24.7 million cells, respectively). The velocity mag-
nitude values showed a relative difference of less than 2% across the
centerline of the midplane of the trachea, where the maximum differ-
ences were 1.58 and 1.55m/s for the 1.0- and 0.75-mm meshes, re-
spectively. In addition, the turbulent kinetic energy in the trachea
varied by a relative difference of less than 1%, where the maximum
differences were 0.283 and 0.281 m2/s for the 1.0- and 0.75-mm me-
shes, respectively. Hence, we chose the mesh configuration with a re-
solution of 1.0mm. We ran simulations on 256 CPU cores of the
Excalibur cluster at the U.S. Department of Defense Supercomputing

Resource Center, located at the U.S. Army Research Laboratory in
Adelphi, MD.

2.4. Measure of flow pattern similarity

We quantified the similarity of flow patterns with Pearson correla-
tion coefficients and root-mean-square differences for the velocity field
in chosen planes of the computational domain. The Pearson correlation
coefficient (R) between two velocity fields u x( ) and v x( ) in the mea-
surement plane is defined as:

=
u x u v x v

u x u u x u v x v v x v
R

dx
dx dx

( ( ) ¯) ( ( ) ¯ )
( ( ( ) ¯) ( ( ) ¯ ) ( ( ) ¯) ( ( ) ¯ ) )1/2

(1)

where ū and v̄ denote the velocity fields averaged over the plane and
represents the dot product. R indicates the pattern similarity in the
measurement plane, but does not take into account velocity magnitude
differences. The root-mean-square difference (Drms) between two velo-
city fields u x( ) and v x( ) in the measurement plane is defined as:

=
u x v x u x v x

D
dx( ( ) ( )) ( ( ) ( ))

Arms

1/2

(2)

where A denotes the area of the plane . Drms takes into account both
magnitude differences and pattern similarity in the measurement plane.
For both metrics, we compared the intermediate and severe conditions
to the normal condition to identify any differences in the flow field
associated with the disease condition.

3. Results

3.1. Flow unsteadiness

We obtained PIV measurements of flow in the full model geometry
(Fig. 1b) under steady exhalation conditions at a flow rate Q of
770.4mL/s for the normal condition in Table 1 (note that for air in a
human scale geometry, this corresponds to Q=600mL/s and Re ≈
3500 in the trachea). The PIV measurements exhibited fluctuations over
time at all locations; these fluctuations did not decay despite the con-
stant flow rate, suggesting that the flow was inherently unsteady. We
characterized the unsteadiness with the turbulence intensity, I= u′/UT,
where u′ is the root-mean-square of the velocity fluctuations and UT
=1.5m/s is the bulk velocity in the trachea. Fig. 4 shows plots of
turbulence intensity values for the PIV measurements averaged over the
700 velocity fields. The turbulence intensity showed considerable
fluctuations at all four measurement locations, with I values greater
than 10% occurring at all locations. The trachea (Fig. 4, location A)
showed a relatively uniform distribution of I, with a small reduction as
the flow exited the measurement plane. The main bronchi (Fig. 4, lo-
cation B) showed an increase in I associated with the formation of a jet
in the left branch. The right secondary branch (Fig. 4, location C) ex-
hibited quite complex behavior where the branches merge, leading to
the highest observed degree of fluctuations. Similarly, the left sec-
ondary branch (Fig. 4, location D) showed an increase in I in the vici-
nity of where the branches merge, although the behavior was less
complex than that in the right secondary bifurcation.

3.2. Validation

We predicted flow fields using the LES and RANS models with the
same flow conditions as the PIV measurements and then compared the
predictions with the measurements to validate our CFD model. Fig. 5a
shows a comparison of the mean flow for the PIV measurements, the
LES model (averaged over a 2 s period), and the RANS model (at steady
state). Overall, the LES model showed better agreement with the PIV
measurements than did the RANS model. The PIV measurements in the
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trachea (Fig. 5a, location A) exhibited a blunted flow profile, which the
LES model captured, but for which the RANS model predicted a skewed
profile with a peak velocity magnitude displaced from the centerline of
the trachea. Similarly, compared with the RANS model, the LES model
showed better agreement with the PIV measurements in the main
bronchi (Fig. 5a, location B). The PIV measurements showed the for-
mation of a jet and separation region in the left branch of the main
bronchi, which both models predicted. PIV measurements in the right
branch of the main bronchi exhibited an asymmetric profile with an
increase in velocity magnitude towards the left boundary of the right
branch. The LES model predicted two peaks that dissipated near the
bifurcation of the main bronchi, whereas the RANS model predicted
two peaks that continued beyond the bifurcation.

The LES and RANS models produced comparable predictions in the
right secondary branch (Fig. 5a, location C). PIV measurements in the
right secondary branch showed a recirculation region near the bi-
furcation of the right branch. Whereas both models predicted this re-
circulation region to be quite wide, the corresponding region was quite
narrow for the PIV measurements. Both models also predicted two
peaks that reached the main bronchi, which were not seen in the PIV
measurements. Furthermore, in the left secondary branch (Fig. 5a, lo-
cation D), both models predicted a peak in velocity magnitude that
formed towards the center of the lower branch and connected to a re-
gion of increased velocity magnitude past the bifurcation of the left
branch, consistent with the PIV measurements.

Fig. 5b shows plots of the mean velocity magnitude profiles along
specified lines indicated in Fig. 5a, which offer more detailed com-
parisons of the velocity magnitude. Overall, the LES model showed
good agreement with the PIV measurements, except for the right sec-
ondary branch (Fig. 5b, c-c′). The RANS model predictions showed
good agreement with the PIV measurements in the left secondary
branch (Fig. 5b, d-d′), but showed notable differences at all other lo-
cations. Consequently, we chose the LES model to generate predictions
for the following results.

3.3. Lobar flow fractions

We predicted flow profiles with the LES model under steady ex-
halation conditions averaged over a 2 s period for the three flow con-
ditions listed in Table 1: normal, intermediate, and severe. We used the
full model geometry with plena attached to the central airway (Fig. 1b)

and a constant flow rate Q of 770.4mL/s for all three conditions. Be-
cause Q was fixed, the Reynolds number in the trachea (Re= 4Q/πDυ
≈ 3500) was the same for all flow conditions. However, the Reynolds
number in the branches of the lower airways varied between flow
conditions due to the alteration in flow fractions.

Fig. 6 shows contours of the mean velocity magnitude in planes
taken throughout the left main bronchus and secondary branches.
Table 2 shows the computed values of R and Drms comparing both the
intermediate and severe flow conditions to the normal condition for the
corresponding planes in Fig. 6. For the intermediate condition, the flow
was highly correlated (R≥0.98) with that of the normal condition in
the lower branches (Fig. 6, locations D and E) and became less corre-
lated (0.84≤ R ≤0.87) as it developed along the main bronchus,
where the correlation became minimal (R =0.80) at the uppermost
slice of the main bronchus (Fig. 6, location A). The values for Drms also
showed the largest difference (Drms =0.54m/s) at the uppermost slice
due to the skewness of the flow as it developed along the curved main
bronchus. For the severe condition, we observed a similar trend for R,
although the correlation was smallest (R =0.67) at the location near
the bifurcation of the left main bronchus (Fig. 6, location C). Because
the flow is highly correlated in the secondary branches (R ≥0.98), this
decreased correlation is due to the increased difference between flow
fractions from the left upper and left lower lobes, where the merging
flows produce a different flow pattern. At higher slices along the left
main bronchus (Fig. 6, locations A and B) the flow showed a slight
increase in correlation with that in the normal condition (R =0.72),
although the correlation was less than that of the intermediate condi-
tion with the normal condition (0.80 ≤ R ≤ 0.87). The value of Drms
became maximal at the uppermost slice of the main bronchus (Fig. 6,
location A), and all values of Drms showed greater differences with the
normal condition than did those of the intermediate condition.

Fig. 7 shows contours of the mean velocity magnitude in planes
taken throughout the right main bronchus and secondary branches with
corresponding values of R and Drms in Table 3 comparing the inter-
mediate and severe flow conditions to the normal flow condition.
The intermediate condition was highly correlated (R≥0.95) with
the normal condition at locations in the secondary branches
(Fig. 7, locations C, D, and E), but the flow patterns became
considerably less correlated (R≤0.60) in the right main bronchus
(Fig. 7, locations A and B). Compared to the left main bronchus, the
right main bronchus showed significantly less correlation due to the

Fig. 4. Contours of mean turbulence intensity
values from the particle image velocimetry ex-
periments averaged over 700 velocity fields at
four measurement locations (A, trachea; B,
main bronchi; C, right secondary bronchi; and
D, left secondary bronchi). Turbulence intensity
I is defined as u′/UT, where u′ denotes the root-
mean-square of the velocity fluctuations and UT
(=1.5m/s) represents the bulk velocity in the
trachea. At all locations, the values of I are
greater than 10%, indicating that the flow field
is inherently unsteady. The plots of I reveal
marked fluctuations in the right and left sec-
ondary branches (locations C and D) suggesting
that the sources of unsteadiness are in the
smaller branches of the central airway. Local
geometric features of the branches, e.g., branch
curvature or a change in cross-sectional shape,
are likely to initiate the formation of turbulent
structures that intensify when flows merge at
branch bifurcations.
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increased cross-sectional area of the bronchus. Despite the highly cor-
related flow pattern in the right upper branch (Fig. 7, location C), this
location exhibited the maximum value for Drms =0.71m/s because of
the significant increase in velocity magnitude. For the severe condition,
only one location showed a high correlation (R =0.93) with the normal
condition (Fig. 7, location C), with all other locations showing
lower correlations (0.39≤ R ≤0.76). In the right lower branches
(Fig. 7, locations D and E), the decrease in flow fraction produced larger
regions of decreased velocity magnitude, which led to the reduced
correlation with the normal condition. However, Drms still became
maximal (Drms =1.40m/s) in the right upper branch (Fig. 7, location C)
because of the marked increase in flow fraction.

Fig. 8 shows contours of the mean velocity magnitude in transverse

slices of the trachea, and Table 4 contains the associated values of R and
Drms comparing the intermediate and severe flow conditions to the
normal flow condition. In the intermediate condition, the flow became
more correlated with that in the normal condition as it developed along
the length of the trachea, attaining a minimum correlation (R =0.80)
at the middle plane (Fig. 8, location B). We observed a similar trend for
the severe condition, although the correlation became minimal
(R =0.81) at the lowest plane (Fig. 8, location C). In both conditions,
however, the flow became similarly correlated (R≥0.94) with the
normal condition at the uppermost plane (Fig. 8, location A) as the flow
developed along the length of the trachea. Similarly, in both conditions,
Drms became maximal (Drms =0.31m/s for the intermediate condition
and Drms =0.37m/s for the severe condition) at the lowest slice (Fig. 8,

Fig. 5. Comparison of particle image velocimetry (PIV) experiments, large eddy simulation (LES) predictions, and Reynolds-averaged Navier–Stokes (RANS) pre-
dictions. a) Contours of the velocity magnitude at four measurement locations (A, B, C, and D) for the instantaneous and mean flows. Instantaneous flows obtained at
an arbitrary time point demonstrated marked variations in the flow field over time. These fluctuations were the result of mixing behavior that occured when streams
merged near bifurcations. The experimentally observed flow patterns, particularly those at locations A and B, were captured more accurately by the LES model than
by the RANS model. At locations C and D, the models performed similarly, where both failed to reproduce the complex recirculation region at location C but captured
the observed pattern at location D. b) Cross-sectional velocity magnitude profiles for the averaged flow at the four measurement locations, providing a detailed view
of the comparison between the PIV, LES, and RANS. In the trachea (a-a’) and first bifurcation (b-b’), the predictions of the LES model resembled the PIV mea-
surements more closely than do those of the RANS model, which predicts off-centerline peaks not observed in the PIV measurements. In the right and left secondary
bifurcations, the predictions for the LES and RANS models were nearly identical. The dimensional length is 2.9 cm between points a and a’, 4.2 cm between b and b’,
2.8 cm between c and c’, and 2.5 cm between d and d’.
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location C) because of the large variation in velocity magnitude across
the plane.

Fig. 9 shows the spatial distribution of correlation coefficients taken
from Tables 2–4 throughout the central airway. For the intermediate
condition, the flow patterns were highly correlated (R ≥0.94) with the
normal condition at the upper-most plane in the trachea and planes in
the secondary branches of both the left and right main bronchi. The
correlation decreased throughout the main bronchi (0.56≤ R ≤0.87),
becoming lowest in the right main bronchus (R =0.56). The severe
condition showed a similar distribution of correlation coefficients
throughout the majority of the central airway, except for planes in the
lower right branches. The flow in these planes were highly correlated
(R≥0.95) between the intermediate and normal conditions but con-
siderably less correlated (0.65≤R≤0.76) between the severe and
normal conditions. In addition, the correlation decreased at most

measurement planes for the severe condition (0.39≤R≤0.98) com-
pared to the intermediate condition (0.56≤R≤0.99), except at two
planes in the trachea (0.80≤R≤0.94 for the intermediate condition
and 0.88≤R≤0.95 for the severe condition).

4. Discussion

We validated a CFD model of flow with PIV measurements for a
single flow condition under steady exhalation. We then utilized the CFD
model to predict flow patterns for two more flow conditions by altering
the lobar flow fractions to represent the effect of obstructions in the
lower airways on flow distribution. Subsequently, we measured the
correlation of the flow patterns by computing Pearson correlation
coefficients and root-mean-square differences at multiple measurement
planes throughout the central airway.

4.1. Flow unsteadiness in PIV measurements

We performed PIV measurements with a constant flow rate and
observed flow unsteadiness, consistent with earlier studies (Dekker,
1961). We characterized this unsteadiness by the turbulence intensity,
which was pronounced at all measurement locations within the central
airway (I > 10%). Previous studies of inhalation showing that flow
unsteadiness occurs in patient-specific geometries (Zhang and
Kleinstreuer, 2004; Xi et al., 2008; Choi et al., 2009; Bernate et al.,
2017) have attributed it to the laryngeal jet, which generates turbulent
structures that convect deeper into the lung. For exhalation, however, a
different mechanism must be responsible for generating the unsteadi-
ness. The marked fluctuations observed in the right and left secondary

Fig. 6. Comparison of mean velocity magnitude contours in measurement planes taken throughout the left main bronchus and secondary branches for the normal,
intermediate, and severe flow conditions. At locations D and E, flow patterns across the flow conditions were highly correlated but of different magnitude. As the flow
merged at the branch bifurcation then developed along the curvature of the main bronchus, the alteration to lobar flow fractions resulted in differing flow patterns.

Table 2
Computed Pearson correlation coefficient (R) and root-mean-square differences
(Drms) between intermediate and normal flow conditions (Intermediate) and
between severe and normal conditions (Severe) for the measurement locations
indicated in Fig. 6.

Measurement
Location

R Drms (m/s)

Intermediate Severe Intermediate Severe

A 0.80 0.72 0.54 0.63
B 0.84 0.72 0.39 0.53
C 0.87 0.67 0.31 0.50
D 0.99 0.98 0.18 0.36
E 0.99 0.98 0.29 0.58
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branches (Fig. 4, locations C and D) suggest that the source of un-
steadiness is in the smaller branches of the central airway. A likely
possibility is that the local geometric features of the branches, e.g.,
branch curvature or change in cross-sectional shape, initiate the for-
mation of turbulent structures that intensify when flows merge at
branch bifurcations.

4.2. Suitability of turbulence models

We evaluated both LES and RANS models in the central airway
geometry and compared their predictions to PIV measurements. The
LES model was more accurate in the larger airways (Fig. 5a, locations A
and B), although both models performed similarly in the right and left
secondary branches (Fig. 5a, locations C and D). In particular, the LES

model captures the mixing behavior observed in the trachea that results
from the merging of streams in the main bronchi. However, the LES
model is more computationally intensive than the RANS model, and
there may be occasions when use of the RANS model is sufficient.

4.3. Flow patterns

We predicted flow patterns in the central airway for three flow
conditions (Figs. 6–8), and then measured the correlation between the
predicted flow patterns for the intermediate and normal conditions as
well as those for the severe and normal conditions (Tables 2–4, Fig. 9).
For locations in the secondary branches of the bronchi (Fig. 6, locations
D and E; Fig. 7, location C), we observed a high correlation (R≥0.93)
between the normal and intermediate conditions and between the
normal and severe conditions. This indicates that the influence of flow
rate is negligible at these locations, likely because of the dominance of
streamwise velocity components. However, in the lower right branch
(Fig. 7, locations D and E), we observed a transition where the corre-
lation between the intermediate and normal conditions was high
(R≥0.95), whereas correlation between the severe and normal condi-
tions was not (0.65≤ R ≤0.76). This suggests the presence of a tran-
sition point at which secondary flows become more apparent as the
flow rate decreases, and the flow patterns show a greater difference.
Because of this transition, lower total flow rates would be optimal in
differentiating flow conditions.

We observed the greatest flow pattern differences
(0.39≤ R ≤0.87) in the main bronchi (Fig. 6, locations A, B, and C;
Fig. 7, locations A and B). Although the flow patterns generated in the

Fig. 7. Comparison of mean velocity magnitude contours in measurement planes taken throughout the right main bronchus and secondary branches for the normal,
intermediate, and severe flow conditions. At location C, flow patterns were highly correlated with differing magnitudes across all flow conditions, but at locations D
and E, the flow patterns in the severe condition became less correlated with the normal and intermediate conditions. The cross-sectional area of the measurement
plane significantly increased at locations A and B, resulting in flow patterns with a low correlation.

Table 3
Computed Pearson correlation coefficient (R) and root-mean-square differences
(Drms) between intermediate and normal flow conditions (Intermediate) and
between severe and normal conditions (Severe) for the measurement locations
indicated in Fig. 7.

Measurement
Location

R Drms (m/s)

Intermediate Severe Intermediate Severe

A 0.56 0.39 0.52 0.65
B 0.60 0.54 0.53 0.78
C 0.96 0.93 0.71 1.40
D 0.96 0.65 0.26 0.60
E 0.95 0.76 0.30 0.60
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secondary branches are highly correlated (R ≥0.93), the flow fractions
are different. Hence, when the flow patterns merge past the bifurcation
with differing strengths, a different pattern is generated. This is most
evident when comparing the intermediate condition to the normal
condition (0.56≤ R ≤0.60) in the right main bronchi (Fig. 7, locations
A and B). However, the correlation dissipated as the flow reached the
trachea, where the streamwise flow dominated and the flow developed
along the length of the trachea to be nearly indistinguishable
(R ≥0.94) between the conditions (Fig. 8, location A).

These predictions suggest that although flow patterns in the central
airway can identify flow abnormalities in the lung, the choice of mea-
surement location is critical to differentiating flow conditions. This
stands in contrast to the results obtained for idealized airways by Sul
et al. (2018), which indicate a more robust spatial distribution of flow
pattern variation throughout the airway. Specifically, their results ex-
hibit significant differences in flow patterns in the secondary branches
of the lung between healthy and diseased flow conditions, which were
less evident in the current study. However, their results also indicate
that the maximum flow pattern differentiation is attained at the main
bronchi, consistent with our predictions. Taken together, both sets of
predictions suggest that the main bronchi should be the focus of further
investigations, as this is where we observed the greatest differences in
flow patterns. Another factor that complicates the use of flow patterns
to differentiate flow conditions is the presence of flow unsteadiness in
the patient-specific geometry. Given the observed unsteadiness, mea-
surement of flow patterns would require multiple breathing cycles to
capture the mean flow.

However, the flow pattern predictions presented here are limited in

scope. In the present study, we used a single central airway geometry
and evaluated the effect of lobar flow fractions on flow patterns. Lung
structure among patients is highly variable, and this variability will
further influence the observed flow patterns, even among healthy pa-
tients. Furthermore, we assumed the airways were rigid, but the air-
ways deform during the breathing cycle, which would also likely in-
fluence flow patterns. Lastly, we used a steady exhalation condition for
this study, and alterations to flow rate throughout the breathing cycle
will certainly influence flow patterns when combined with the observed
unsteadiness. Despite these limitations, our study found that flow pat-
terns corresponding to altered lobar flow fractions in a single lung
geometry differentiate primarily in the main bronchi, and we expect
these findings to be reproducible for any given, single lung geometry.
That is, for a single lung geometry, alterations to lobar flow fractions
will significantly influence flow patterns in the main bronchi.

5. Summary

In this study, we numerically examined flow patterns of a patient-
specific geometry under steady exhalation, with boundary conditions
representing the effect of obstructions in the lower airways. PIV mea-
surements indicated that the flow was markedly unsteady. We evaluated
two turbulence models, RANS and LES, for their suitability of reprodu-
cing the measured velocity fields, and found that the LES model pre-
dictions were more consistent with the PIV measurements. Subsequently,
we used the LES model to predict flow patterns for three flow conditions
representing subjects ranging from healthy to diseased, by altering the
boundary conditions associated with the distribution of flow across the
lung lobes (lobar flow fractions). We used Pearson correlation coeffi-
cients and root-mean-square differences to evaluate flow pattern simi-
larity between the flow conditions. Flow patterns showed differentiation
across the flow conditions, primarily with low correlations in the right
main bronchi (R≤0.60) high correlations in the secondary branches and
the uppermost region of the trachea (R ≥0.90). These results indicate
that flow patterns are useful for differentiating flow conditions, but that
this depends critically on the choice of measurement location.
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Fig. 8. Comparison of mean velocity magnitude contours in transverse slices through the trachea for the normal, intermediate, and severe flow conditions. The flow
patterns showed the least correlation at location C; they then developed along the length of the trachea and became highly correlated at the uppermost plane at
location A.

Table 4
Computed Pearson correlation coefficient (R) and root-mean-square differences
(Drms) between intermediate and normal flow conditions (Intermediate) and
between severe and normal conditions (Severe) for the measurement locations
indicated in Fig. 8.

Measurement
Location

R Drms (m/s)

Intermediate Severe Intermediate Severe

A 0.94 0.95 0.15 0.13
B 0.80 0.88 0.26 0.20
C 0.86 0.81 0.31 0.37
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