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Abstract 

Per- and polyfluoroalkyl substances (PFASs) are widespread in the environment, bioac-
cumulate in humans, and lead to disease and organ injury, such as liver steatosis. How-
ever, we lack a clear understanding of how these chemicals cause organ-level toxicity. 
Here, we aimed to analyze PFAS-induced metabolic perturbations in male and female rat 
livers by combining a genome-scale metabolic model (GEM) and toxicogenomics. The 
combined approach overcomes the limitations of the individual methods by taking into 
account the interaction between multiple genes for metabolic reactions and using gene 
expression to constrain the predicted mechanistic possibilities. We obtained tran-
scriptomic data from an acute exposure study, where male and female rats received a 
daily PFAS dose for five consecutive days, followed by liver transcriptome measurement. 
We integrated the transcriptome expression data with a rat GEM to computationally pre-
dict the metabolic activity in each rat’s liver, compare it between the control and PFAS-
exposed rats, and predict the benchmark dose (BMD) at which each chemical induced 
metabolic changes. Overall, our results suggest that PFAS-induced metabolic changes oc-
curred primarily within the lipid and amino acid pathways and were similar between the 
sexes but varied in the extent of change per dose based on sex and PFAS type. Specifically, 
we identified that PFASs affect fatty acid-related pathways (biosynthesis, oxidation, and 
sphingolipid metabolism), energy metabolism, protein metabolism, and inflammatory 
and inositol metabolite pools, which have been associated with fatty liver and/or insulin 
resistance. Based on these results, we hypothesize that PFAS exposure induces changes 
in liver metabolism and makes the organ sensitive to metabolic diseases in both sexes. 
Furthermore, we conclude that male rats are more sensitive to PFAS-induced metabolic 
aberrations in the liver than female rats. This combined approach using GEM-based pre-
dictions and BMD analysis can help develop mechanistic hypotheses regarding how tox-
icant exposure leads to metabolic disruptions and how these effects may differ between 
the sexes, thereby assisting in the metabolic risk assessment of toxicants. 
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1. Introduction 
Per- and polyfluoroalkyl substances (PFASs) are human-made chemicals containing 

one or more perfluoroalkyl moieties (CnF2n+1). The perfluoroalkyl moieties enhance the hy-
drophobic and oleophobic properties of the chemicals and make them useful in consumer 
products, such as food packaging, cosmetics, cookware, and aqueous film-forming foams 
[1–5]. Ingestion of PFAS-contaminated food and water is the primary source of exposure 
in humans, followed by inhalation. Although dermal absorption is possible, its occurrence 
is considered low compared to oral and inhalation-based exposures, although more stud-
ies are needed [1]. The functional “head” group and the C-F chain length characterize 
PFAS chemicals [4,6]. The most commonly found PFASs contain a carboxylic acid (per-
fluoroalkyl carboxylic acids, PFCAs) or a sulfonic acid (perfluoroalkyl sulfonates, PFSAs) 
functional group. Long-chain PFASs include PFCAs with at least eight carbons and PFSAs 
with six or more carbons [6]. PFOA (perfluorooctanoic acid) and PFOS (perfluorooc-
tanesulfonic acid), two of the most well-studied long-chain PFASs, contain a carboxylic 
acid and a sulfonic acid functional group, respectively. PFASs have gained interest as 
chemicals of concern due to their widespread use, chemical stability, bioaccumulation, 
and association with multiple adverse human health outcomes, including thyroid dys-
function, increased risk of cancer, neurotoxicity, and diminished reproductive health 
[1,5,7–12]. Chain length and functional group attachments are known to influence the bi-
oaccumulation and effects of PFAS chemicals [3,13,14]. Furthermore, several precursors 
of PFASs, such as fluorotelomers, are gaining interest due to their ability to bio-transform 
into perfluoroalkyl acids, leading to their increased bioaccumulation in various organisms 
and in the environment [4,15–17]. Although some adverse effects of PFASs have been 
linked to peroxisome proliferator-activated receptor and constitutive androstane receptor 
activation [3], other effects, in particular those on the adaptive immune system, are poorly 
characterized at a mechanistic level [18]. 

PFASs are known to accumulate in the liver and have been associated with liver dam-
age and disease, including non-alcoholic fatty liver disease (NAFLD), steatosis, and hepa-
tocellular carcinoma [3,4,11,17,19–28]. Various studies have also reported sex-based PFAS 
outcomes [11,21,27,29–32], making it important to investigate PFAS-induced effects in the 
liver and in both sexes. Omics-based methodologies, such as transcriptomics and metab-
olomics, are routinely used to probe the perturbations in liver metabolism to understand 
the mechanisms of PFAS toxicity. For example, metabolic methods, such as serum metab-
olomics, can measure metabolite levels and help in assessing the progression of liver in-
jury [33–35]. However, metabolomic-based analyses often face the challenges of reproduc-
ibility and a lack of well-defined annotations for metabolite identification. Furthermore, it 
is very difficult to link metabolomic measurements with the mechanisms of toxicity [36]. 
In contrast, transcriptomic methods can measure changes in gene expression and can be 
linked to known molecular pathways using various pathway-enrichment analysis plat-
forms. However, these pathway-enrichment methods do not consider the interaction of 
multiple genes that take part in catalyzing metabolic reactions and the connectivity be-
tween the reactions for a quantitative understanding of the mechanisms behind the per-
turbations [37–39]. 

Genome-scale metabolic modeling is a systems-level approach that captures cellular 
dynamics by integrating gene and metabolic information into genome-scale metabolic 
models (GEMs), which are mathematical representations of all the metabolic bio-transfor-
mations within a cell or organism. The models are comprised of metabolites and reactions 
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in the form of a stoichiometric matrix, which considers the connectivity between the reac-
tions. The models also contain gene–protein–reaction (GPR) rules that connect genes to 
reactions and allow for integration of omics measurements to simulate cellular pheno-
types using constraint-based algorithms, such as flux balance analyses [40]. In addition to 
containing metabolism-associated data, GEMs group reactions into metabolic subsystems 
(such as central carbon metabolism, electron transport chain, and fatty acid oxidation) and 
assign reactions to their cellular compartments (cytoplasm, nucleus, mitochondria, etc.). 
GEMs, along with constraint-based algorithms, find applications in research that require 
the study of cellular metabolism, such as for developing novel strains to produce value-
added chemicals, generating hypotheses, identifying novel drug targets, and understand-
ing diseases [41–45]. Recently, GEMs have helped us understand toxicity responses in 
various cellular systems [46–52], but most of these studies focused on predicting changes 
in metabolite secretions or studying differences in selected liver metabolic tasks and sub-
systems, based on the differentially expressed genes, but did not include dose–response 
studies. Furthermore, the approach of Moore et al. [52] relied on using metabolic models 
that meet the requirement of at least 40% original maximum biomass flux, suggesting the 
need for a well-defined biomass function that may not always be available and could vary 
by experiment. 

One of the primary objectives of chemical risk assessment is to identify the critical 
dose, called the benchmark dose (BMD), beyond which exposure is toxic. The BMD mod-
eling approach fits mathematical models to dose–response data to identify the dose at 
which the response is associated with a benchmark response (such as a 10% increase from 
the controls) [53]. The U.S. Environmental Protection Agency (EPA) released a benchmark 
dose software (BMDS) that aids in the estimation of BMDs using dose–response data as 
input [54]. The methods embodied in the BMDS have been adapted to the evaluation of 
gene expression, allowing for estimates of biological function potency [55,56]. Many stud-
ies have applied the BMD modeling method; however, none have used it to identify ref-
erence doses for individual metabolic pathway alterations while considering the intercon-
nectedness of the metabolic network. GEM-based modeling allows us to predict metabolic 
reaction flux distributions based on gene expression data, which can be used to identify 
BMDs for metabolic pathways in the liver. 

To overcome the limitations of individually performing transcriptomics-based or 
GEM-based analyses, an approach that combines both was applied. By integrating the two 
methods, the transcriptomic data function as the additional constraints that GEMs require 
for predicting accurate metabolic flux states. There are several algorithms available to in-
tegrate transcriptomics with GEMs, and we direct the reader to a review by Sen et al. [57] 
for more details on these algorithms. However, most of these algorithms predict the acti-
vation of reactions rather than their flux rate. The linear programming-based algorithms 
that predict flux values (such as flux balance analysis) use an objective function to con-
strain the solution space and could have multiple alternate optimal solutions due to the 
presence of loops within the network, making it harder to identify a mechanism that rep-
resents the biological phenotype. However, the Pheflux algorithm, in contrast to other 
constraint-based algorithms, uses the principles of maximum entropy and minimized sum 
of fluxes to predict a set of genome-scale reaction rates (i.e., the fluxome) that closely 
match the gene expression pattern based on the GPR rules defined in the metabolic model 
[58]. Pheflux is designed to predict the fluxome solution that is the most likely to be bio-
logically observed, and, importantly, the algorithm does not require an objective function, 
making it advantageous in our analysis because the objective of cellular adaptations to 
toxic exposures is not yet completely known. We hypothesize that the PFAS chemicals 
studied here will induce sex- and dose-dependent metabolic alterations that connect the 
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exposures to liver injury phenotypes, such as steatosis, and that our combined GEM- and 
transcriptomic-based approach will capture these alterations. 

In this study, we utilized the transcriptomic measurements from a National Institute 
of Environmental Health Sciences (NIEHS) 5-day exposure study [59–61], where Auer-
bach et al. exposed male and female rats to a daily dose of a PFAS chemical for 5 days, 
and then extracted liver tissue samples and measured gene expression using S1500+ 
TempO-Seq [62]. Following our hypothesis, the gene expression measurements were in-
tegrated with an updated rat GEM to predict individual rat liver phenotypes using the 
algorithm Pheflux [58]. We analyzed the Pheflux-predicted fluxomes to understand how 
male and female rats differed at the control level and how each sex responded to the PFAS 
chemicals, and compared fluxomes across different conditions to understand how expo-
sure dose and sex can alter metabolism in the liver. Finally, the fluxome predictions were 
used to estimate BMDs for each subsystem alteration in response to each PFAS chemical 
in each sex. Our analysis revealed the key metabolic pathway alterations induced by PFAS 
exposure in male and female rat livers, including subsystems from lipid, amino acid, and 
energy metabolism. Our BMD analysis further revealed that males were more sensitive to 
the PFAS chemicals and that 6:1 fluorotelomer alcohol (FTOH) induced the earliest 
changes. We propose this metabolic modeling and BMD approach as a novel metabolic 
risk assessment tool that describes the transcriptome-driven metabolic changes induced 
by chemical exposures. 

2. Materials and Methods 
2.1. Animal Exposure Experiments and Transcriptomics 

To measure the transcriptomic responses to PFAS chemicals, male and female Spra-
gue Dawley rats were exposed to various doses of three PFAS compounds [6:1 FTOH, 10:2 
FTOH, and perfluorohexanesulfonamide (PFHxSAm)] [59–61]. Two of the PFASs, 10:2 
FTOH and PFHxSAm, were sourced from SynQuest Laboratories, Inc. (Alachua, FL, 
USA), and 6:1 FTOH was obtained from Apollo Scientific, Ltd. (Stockport, UK). At the 
time of the experiments, these PFAS chemicals were classified as data-sparse, with no in 
vivo toxicological information. Auerbach et al. used median lethal dose (LD50) predictions 
from the OPEn structure–activity/property Relationship App (OPERA) [63] as well as 
point-of-departure predictions from the U.S. EPA to select the test doses for each chemical. 
Table 1 provides a brief summary of the selected chemicals and the dosages used in the 
experiments. 

Table 1. Summary of PFAS chemicals and the doses selected for testing. 

PFAS 
Chemical 

CASRN 
PubChem 

CID 

OPERA LD50 Prediction 
(Uncertainty Range), 

mg/kg/day 

U.S. EPA Estimated POD 
(Uncertainty Range), 

mg/kg/day 

Selected Dose Lev-
els, 

mg/kg 

6:1 FTOH 375-82-6 550386 
460  

(230–918) 
85  

(0.6–637) 
0, 0.15, 0.50, 1.40, 4, 

12, 37, 111, 333, 1000 

10:2 FTOH 865-86-1 70083 
636  

(319–1270) 
18  

(0.3–197) 
0, 0.07, 0.20, 0.70, 2, 6, 

18, 55, 160, 475 

PFHxSAm 
41997-13-

1 11603678 
263  

(131–525) 
35  

(0.9–916) 
0, 0.15, 0.50, 1.40, 4, 

12, 37, 111, 333, 1000 
EPA, Environmental Protection Agency; FTOH, fluorotelomer alcohol; LD50, median lethal dose; 
OPERA, OPEn structure–activity/property Relationship App; PFASs, per- and polyfluoroalkyl sub-
stances; PFHxSAm, perfluorohexanesulfonamide; and POD, point of departure. 
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Rats were randomly assigned to the control or dose groups, where each dose group 
contained 5 rats of each sex, and the control group contained 10 rats of each sex. The rats 
received the assigned dose of chemical or vehicle via oral gavage for 5 consecutive days 
starting on Day 0. On Day 5 (24 h after the final dose administration), the rats were eu-
thanized, and liver tissue samples were collected for RNA sequencing. Total RNA was 
extracted from the liver samples and sequenced using the S1500+ TempO-Seq platform 
[62,64]. The S1500+ TempO-Seq read alignment, normalization, log2 transformation, and 
extrapolation to the whole transcriptome (~17k genes) were performed using the GeniE 
software (version 3.0.4) [65] as described in Hari et al. [32]. Figure 1A summarizes the 
NIEHS experiments. For a complete description of the experimental studies, we direct the 
reader to the published NIEHS reports [59–61]. We used the extrapolated, whole tran-
scriptome dataset for the rest of this study. 

 

Figure 1. Overview of the workflow of this study. (A) The National Institute of Environmental 
Health Sciences (NIEHS) 5-day rat exposure study. (B) Our computational approach for metabolic 
risk assessment, including integration of transcriptomics with a rat genome-scale metabolic model 
(network visualization from [66]) for prediction of the fluxome using Pheflux [58], processing flux-
ome predictions to predict metabolic subsystem alterations in PFAS-exposed rats compared to the 
control rats, and dose–response analysis to calculate benchmark doses of each chemical for each 
metabolic subsystem alteration. FTOH, fluorotelomer alcohol; PFASs, per- and polyfluoroalkyl sub-
stances; and PFHxSAm, perfluorohexanesulfonamide. 

2.2. Computational Approach for Metabolic Risk Assessment of PFAS Chemicals 

To estimate the metabolic risk of each PFAS chemical, we developed and applied a 
computational approach that combines GEM and BMD modeling. Figure 1B depicts the 
computational approach used in this study. Briefly, the Pheflux algorithm [58] was first 
applied to integrate the gene expression data with a rat GEM, and the predicted fluxes 
were used to estimate metabolic subsystem alterations induced by each dose of each PFAS 
used in the rat experiments. Then, the subsystem alterations between the control and 
PFAS-treated rats were compared to assess the effects of exposure, and the alterations 
between male and female PFAS-exposed rats were compared to identify sex-dependent 
effects. Finally, we used the subsystem alterations to predict the BMD at which each of the 
chemicals alters fluxes in the subsystem. We describe each step of the workflow in the 
following sections. 
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2.3. Rat Genome-Scale Metabolic Model 

Prediction of metabolic pathway alterations using transcriptomics requires a net-
work that contains all the metabolic reactions associated with the genes that produce the 
proteins catalyzing the reactions. To predict the metabolic alterations resulting from PFAS 
exposure, we used the latest version of the rat metabolic network model, i.e., iRnov4.2, 
which was derived from previous versions of iRno [46,48,67,68] and the latest RAT-GEM 
[69]. The previous version of iRno (iRnov4.1) [46] contained 13,043 reactions, 8414 metab-
olites, and 3102 genes. For this study, we used the same network configuration as iRnov4.1 
and modified only the subsystem organization of the reactions. In iRnov4.1, each reaction 
belonged to one of 76 subsystems. We reconciled the reaction subsystem associations us-
ing annotations from the recently updated RAT-GEM [69]. Information from the KEGG 
pathway database [70,71] was used to further classify subsystems into their major path-
ways, such as amino acid metabolism, lipid metabolism, and vitamin and cofactor metab-
olism. This updated version of the model (iRnov4.2) thus contains reactions organized 
into 58 metabolic subsystems and 27 major pathways. Figure 2B contains a global network 
visualization of iRnov4.2 in the metabolic flux estimation step that was generated using 
Fluxer [66] (https://fluxer.umbc.edu, accessed on July 31, 2025). Supplementary File S1 de-
tails the subsystem mappings for iRnov4.2, and Supplementary File S2 contains the meta-
bolic model in .xml format. We used the Python package cobrapy (0.29.1) [72] to read the 
metabolic network model in order to calculate the metabolic subsystem alterations. 

 

Figure 2. Metabolic network analysis of sexual dimorphism in the control rat livers. (A) Principal 
component (PC) analysis of male (blue circles) and female (green crosses) control rats. (B) Heatmap 
showing z-scores for the mean metabolic fluxes of the top 15 sex-dependent subsystems in each rat 
with respect to the mean subsystem fluxes across all the control rats. 

2.4. Fluxome Prediction Using the Pheflux Algorithm 

The Pheflux algorithm developed by González-Arrué et al. [58] was used to predict 
the fluxome from the metabolic network and transcriptome. Briefly, the algorithm uses 
the principle of maximum entropy to estimate the flux on a reaction (v). For any metabolic 
state represented by a transcriptome measurement, the algorithm assumes a steady-state 
condition (Equation (1)): 

Sv = 0 (1) 

LB ≤ v ≤ UB (2) 

where 𝑆 is the stoichiometric matrix of a metabolic network containing 𝑁 reactions and 𝑀 metabolites. Each reaction was constrained by using a lower bound (𝐿𝐵) and an upper 
bound (𝑈𝐵), as defined in the original iRnov4.1 model. The constraints on exchange reac-
tions, which represent the movement of metabolites from the extracellular to the intracel-
lular space, were set to a default value of 1000 mmol/g dry cell weight/h in both directions: 
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-1000 ≤ v ≤ 1000 (3) 

The polytope of all possible fluxomes (℘) is described as a set of all possible reaction 
fluxes satisfying Equations (1) and (2): 

℘ = ൛v ϵ RN| Sv = 0, LB ≤ v ≤ UBൟ (4) 

where 𝑅ே is a vector of all reaction fluxes. 
Pheflux estimates the fluxome by solving the optimization problem to minimize the 

Kullback–Leibler distance between the fluxome and transcriptome, ensuring that the dis-
tribution of predicted reaction fluxes is closest to the measured transcriptome while ap-
plying metabolic model constraints. Thus, the algorithm applies the constraints in Equa-
tions (1) and (2) and solves the following objective function: 

min: DKL(P∥Q) = ෍P(vi) log
vi

gi

N

i=1

 (5) 

where DKL represents the Kullback–Leibler distance, P denotes the probability distribution 
of the fluxome, Q represents the probability distribution of gene expression per reaction, 
and g and v denote the expression of genes and flux on the ith reaction, respectively. De-
tailed derivations and a full explanation of the Pheflux algorithm are given in the original 
publication [58]. 

To calculate the metabolic subsystem flux in each rat (µsubsystem), the absolute reaction 
fluxes of all reactions in the subsystem were averaged over the total number of reactions 
in that subsystem (r): 

µsubsystem = 
∑ |vi|N

i=1

r  (6) 

The response to a dose was estimated using an average of the individual rat subsys-
tem fluxes to estimate, as shown below: 

µsubsystem,dose = 
∑ vsubsystem,i

n
i=1

n  (7) 

where n represents the number of rats in the dose group and vsubsystem,i denotes the sub-
system flux in the 𝑖th rat. 

A z-score was used to calculate the change in flux, with respect to the controls, per 
subsystem: 

z = 
µsubsystem,dose  −  µsubsystem,control

σsubsystem,control
 (8) 

Because the S1500+ extrapolated transcriptome dataset contained gene expression 
data that were log2-normalized, we performed the inverse of the log2 function and pro-
vided the raw gene counts as input to Pheflux. Furthermore, because the gene expression 
dataset already contained genes in the ENTREZ ID namespace, which matches the gene 
IDs in the metabolic model, we did not perform any gene ID conversion when using the 
expression dataset. 

2.5. Principal Component Analysis of Subsystem Fluxes 

We applied a principal component analysis (PCA) to reduce the number of dimen-
sions in the fluxome dataset into two principal components, with each component con-
taining the ranking of each feature (subsystem flux) based on its contribution to the vari-
ance between the datasets. Here, the PCA was performed, using the PCA function from 
the sklearn Python library, to identify the key metabolic subsystems that separate the rats 



Toxics 2025, 13, 684 8 of 27 
 

 

in each chemical dose group. Each input data point represented an individual rat with 
metabolic subsystem fluxes (calculated from Equation (5)) as features. Thus, each chemi-
cal- and sex-based PCA included 55 data points (10 controls, 5 rats per exposure group) 
and 45 features (metabolic subsystems). We also performed a sex-aggregated PCA to iden-
tify the contribution of features selected from the chemical- and sex-based analyses. In the 
sex-aggregated PCA, there were 325 data points (30 controls of each sex, 135 PFAS-ex-
posed female rats, and 130 PFAS-exposed male rats). 

2.6. Computational Resources 

The scripts for the Pheflux algorithm (v1.0.1) were downloaded from GitHub 
(https://github.com/mrivas/pheflux, accessed on July 31, 2025) and run on Python (3.12.7). 
The Pheflux results were saved as .csv tables. The pandas (2.2.2) Python library was used 
to read and process the Pheflux-generated reaction flux tables, the Seaborn (0.13.2) library 
was used to plot the heatmaps, and the Python plotting libraries matplotlib (3.9.2) and plotly 
(5.24.1) were used for the PCA plots. 

2.7. Benchmark Dose Analysis 

We used the Python package pybmds (24.1) [73] to estimate the BMDs for each pair of 
chemical and metabolic subsystem responses, and we further performed the analysis in-
dependently for each sex. We provided individual rat subsystem fluxes for each dose as 
continuous data for BMD prediction and fit the data to five types of dose–response mod-
els: linear, polynomial, power, hill, and exponential. We used the default benchmark re-
sponse (BMR) of one standard deviation (SD), relative to the control, to predict the BMDs 
and kept all the default dose–response model parameter values. 

The pybmds package follows the recommended logic described by Wignall et al. for 
BMD modeling [53]. Thus, the program classifies each model as unusable, questionable, 
or viable. We consecutively deleted the highest dose when the existing set of doses and 
responses produced a non-viable BMD model (questionable and unusable models), until 
the BMD modeling function either returned a viable model or there were only three doses 
left to input to the function. Here, we report the latter case, i.e., modeling with three dose–
response groups, as “no viable model was found.” 

3. Results 
3.1. Metabolic Flux Analysis to Quantify Liver Metabolic Activity Using Gene Expression Data 

We applied the Pheflux algorithm to predict the metabolic flux of each reaction in 
iRnov4.2 using gene expression data from each untreated and chemical-treated rat as in-
put. Each Pheflux optimization returned the metabolic flux for the 13,043 reactions that 
are divided into 58 subsystems in iRnov4.2. To calculate the flux-based activity in each 
subsystem for each rat, the absolute fluxes of all the reactions in the subsystem were av-
eraged using Equation (5) and then that value was normalized by the sum of all the abso-
lute fluxes in the rat, resulting in a table with 58 rows and 301 columns that represent the 
subsystems and rats, respectively. We removed all the subsystems (miscellaneous, artifi-
cial reactions, pool reactions, biomass, exchange, isolated, and transport) that contained 
reactions associated with less than two genes as well as the subsystems with fluxes that 
did not change across the rats (SD = 0), resulting in a total of 45 metabolic subsystems that 
were associated with at least two genes and showed a change in flux across the rats. Sub-
sequently, the generated individual reaction fluxes at the subsystem level from each rat 
were used to quantify the liver metabolic activity across chemicals, sex, and conditions 
using the PCA and BMD analyses. 

3.2. Metabolic Analysis of Liver Metabolism in Untreated Rats (Controls) 
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The metabolic flux predictions for the male and female control rats were used to as-
sess whether our network modeling approach captured sexual dimorphism at the meta-
bolic level. The metabolic activity at the subsystem level was estimated using the GEM-
predicted reaction fluxes from each rat in the male and female groups. Figure 2A shows 
the PCA analysis using the reaction flux distributions at the subsystem level, which clearly 
indicates a sex-dependent segregation of metabolic activity between the male (circles) and 
female (crosses) groups as well as differences in liver metabolism between the sexes. To 
discover the potential contributing factors behind the observed differences, we extracted 
the top 15 metabolic subsystems that significantly contributed to the largest variation ob-
served along principal component 1 (PC1, with 51% variance). Figure 2B shows a heatmap 
of the liver metabolic activity for the top 15 metabolic subsystems identified based on their 
weighted contribution in the PCA analysis. Here, we used a z-score-based calculation to 
compare the reaction fluxes at the subsystem level between the two sexes, with positive 
(red) and negative (green) values indicating reaction fluxes that were higher and lower 
than the average subsystem flux across all the control rats, respectively. The top subsys-
tems contributing significantly to the observed metabolic differences between the male 
and female control rats included central carbon metabolism, bile acid metabolism, carbo-
hydrate metabolism, arginine and proline metabolism, and tyrosine metabolism. Further-
more, the positive z-score values in the central carbon metabolism, electron transport 
chain, and carbohydrate metabolism subsystems suggested that female rats have higher 
metabolic activity in these pathways compared to male rats. Similarly, the results showed 
higher metabolic activity in the bile acid metabolism, fatty acid metabolism, and eico-
sanoid metabolism subsystems in female compared to male rats. In contrast, the metabolic 
activity in amino acid metabolism (such as tyrosine, alanine, aspartate, and glutamate) 
and serotonin and melatonin metabolism subsystems was higher in male compared to 
female rats. These differences suggest that male and female rats have different liver-based 
metabolic needs at the control level and that our network modeling approach was able to 
capture these differences. 

3.3. Effect of PFAS Exposure on Sexual Dimorphism in Male and Female Rat Livers 

To determine how PFAS exposure affects sex-dependent metabolism in rats, a com-
bined PCA analysis for each chemical was performed by providing the reaction fluxes at 
the subsystem level for each control and chemical-exposed group (male and female) to-
gether as input features. Our results revealed that the rats exposed to PFASs primarily 
clustered by sex and, within each sex-based cluster, by exposure dose (Supplementary 
Figure S1). The separation between dose-based clusters differed for males and females, 
suggesting differences in dose sensitivity between the sexes. Overall, these results suggest 
that rats maintain sexual dimorphism even after exposure to various PFAS concentrations. 

3.4. Analysis of PFAS Dose-Dependent Alterations in Rat Liver Metabolism 

To understand the overall effect of PFAS exposure on liver metabolism and identify 
the metabolic subsystems altered for each sex and each PFAS chemical, we calculated the 
mean subsystem reaction fluxes for each rat in the control and PFAS-exposed groups and 
performed a PCA analysis. Figure 3 shows an overview of the dose-dependent alterations 
in liver metabolic activity for each PFAS chemical in male (top panel) and female rats 
(bottom panel). The PCA plots show that PFAS exposure dose-dependently altered liver 
metabolism, with a clear separation of low-dose (blue) and high-dose (red) PFAS expo-
sures. The results also show that high doses of 6:1 FTOH induced the largest change for 
male (63%) and female rats (52%) from their respective controls (Figure 3A), compared to 
10:2 FTOH (Figure 3B; male 37% and female 38%) and PFHxSAm (Figure 3C; male 44% 
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and female 36%). Furthermore, the PCA plots revealed that male rats generally showed a 
larger dose-dependent variance in metabolic perturbations than females. 

 

Figure 3. Identification of PFAS-induced metabolic pathway perturbations in male (top) and female 
(bottom) rats using principal component analysis. (A) Exposure to 6:1 fluorotelomer alcohol 
(FTOH). (B) Exposure to 10:2 FTOH. (C) Exposure to perfluorohexanesulfonamide (PFHxSAm). Cir-
cles denote male rats, and crosses denote female rats. Color gradient corresponds to exposure dose. 

3.5. Metabolic Pathways Affected by PFAS Chemicals 

To understand the dose-dependent metabolic changes induced by PFAS exposure, 
we extracted the top 10 most-altered metabolic subsystems based on the features separat-
ing the low-dose and high-dose exposures in the PCA analyses shown in Figure 3. A com-
plete list of the most-altered subsystems and their ranking as detected along PC1 for each 
chemical is provided in Supplementary Table S1. Of these, fatty acid oxidation, electron 
transport chain, and fatty acid biosynthesis were common for all three chemicals and both 
sexes, suggesting that alterations in these three subsystems are central to the PFAS-in-
duced adverse effects in both sexes. To identify the common subsystem alterations across 
the PFAS types, we created a set of the most-altered subsystems for each chemical that 
combines the male and female most-altered subsystems for that chemical. Figure 4A 
shows a Venn diagram comparing the sets of most-altered subsystems for each chemical 
and the subsystems common between them. The combination of all three sets included 22 
metabolic subsystems, with eight subsystems common to all three PFAS chemicals. Sub-
sequently, a PCA using the mean fluxes in only these 22 subsystems for both male and 
female rats was used to assess their dose-dependent variation. Figure 4B shows the PCA 
results, with colors indicating exposure doses, circles representing male rats, and crosses 
representing female rats, which revealed that alterations in these 22 subsystems account 
for a large proportion of the difference between rats in the low-dose and high-dose expo-
sure groups. Furthermore, the PCA plot showed sex-dependent responses in the 22 sub-
systems, with dose-based separation more pronounced in the male rats, suggesting that 
the dose sensitivity to these chemicals is also sex dependent. 

To investigate whether PFAS exposure increased or decreased the flux-based activity 
in each of these metabolic subsystems, the change in mean subsystem fluxes with respect 
to the controls as a z-score was calculated and estimated using Equation (7). The z-score 
represents the number of SDs by which the mean subsystem flux in a chemical-exposed 
group changes compared to the corresponding control group. Positive and negative z-
scores for a pathway imply that the fluxes in the chemical-exposed group were higher and 
lower than in the control rats, respectively. Figure 4C shows a heatmap of the z-scores for 
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the 22 most-altered subsystems, with positive (red) and negative (green) z-scores indicat-
ing increased and decreased metabolic activity, respectively. The metabolic subsystems 
were grouped based on their super-pathway classifications (i.e., metabolism of amino ac-
ids, lipids, vitamins and cofactors, nucleotides, and other amino acids). The heatmap re-
vealed that the alteration direction for each subsystem was similar between the chemicals 
and between the sexes. Furthermore, most of the alterations were dose-dependent, and 
males showed alterations earlier than females. Exposure to high doses of PFASs decreased 
the activity in the amino acid metabolism subsystem, except for metabolism of the 
branched-chain amino acids (valine, leucine, and isoleucine), which showed a dose-de-
pendent increase in activity. However, the mean fluxes in metabolism of cysteine and me-
thionine increased in females in response to high doses of PFHxSAm, which was different 
from the trend observed for the other chemicals and in male rats. The lipid metabolism 
subsystems mostly showed an increase in activity for both male and female rats compared 
to the controls, except for sphingolipid metabolism, which showed decreased fluxes at 
high-dose exposures. For the vitamin and cofactor subsystem, porphyrin metabolism 
showed an increased activity only in response to 10:2 FTOH and PFHxSAm, ubiquinone 
synthesis showed a dose-dependent decrease in flux-based activity at high doses of all 
three chemicals in male rats, while vitamin E metabolism decreased consistently com-
pared to the controls only in males exposed to 6:1 FTOH. Exposure to the PFAS chemicals 
caused a decrease in activity in the nucleotide metabolism subsystems, whereas the me-
tabolism of other amino acids (glutathione and beta-alanine) showed an increase in activ-
ity. For the other 22 most-altered subsystems, apart from eicosanoid metabolism and the 
electron transport chain, the mean flux decreased compared to the controls. 

 

Figure 4. The most-altered metabolic subsystems across different PFAS exposures. (A) Venn dia-
gram of the most-altered subsystems for each PFAS. (B) Principal component (PC) analysis of rat 
fluxes in the top 22 PFAS-associated pathways. (C) Z-scores for average metabolic subsystem fluxes 
per dose group with respect to the controls. Triangles depict increasing PFAS doses. The colored 
ribbon on the left of the heatmap denotes the super-pathway classifications of the subsystems: yel-
low—amino acid metabolism; brown—inositol phosphate metabolism; pink—eicosanoid metabo-
lism; blue—electron transport chain; orange—lipid metabolism; sage green—vitamin and cofactor 
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metabolism; sky blue—metabolism of other amino acids; olive—nucleotide metabolism; lavender—
protein metabolism; purple—serotonin and melatonin metabolism; gray—xenobiotic metabolism. 
FTOH: fluorotelomer alcohol; PFHxSAm: perfluorohexanesulfonamide. 

To identify the metabolic perturbations that were significantly altered after all the 
PFAS exposures, we performed a Mann–Whitney U test to compare the subsystem fluxes 
in the control and chemical-exposed rats. Supplementary Figure S2 shows a heatmap of 
the z-score changes for the eight common PFAS-altered subsystems. Our results revealed 
significant changes compared to the controls in response to high doses of 6:1 FTOH in 
both male and female rats (p-value < 0.05). For high-dose 10:2 FTOH and PFHxSAm, alt-
hough some of the subsystem changes were not significant, their average direction of 
change was consistent, suggesting that the tests likely failed due to intra-sample variation 
within the dose group. 

3.6. Correlation Between Male and Female Responses to PFAS Exposures 

To assess the similarity in PFAS-induced metabolic alterations between males and 
females, we plotted a correlation map comparing the average fluxes in all the subsystems 
in each chemical dose group in male and female rats. Figure 5 shows the correlation plots, 
with negative correlations in blue and positive correlations in red. Figure 5B shows the 
correlation between male and female rat fluxomes at each dose of exposure, indicating 
that the metabolic fluxes were negatively correlated (different) between the sexes at low 
doses but positively correlated (similar) for high-dose exposures. Furthermore, when ex-
posed to the same chemical, the metabolic responses of male and female rats (Figure 5A,C, 
respectively) were correlated based on the exposure dose: low-dose exposures were pos-
itively correlated with each other and negatively correlated with the high-dose exposures, 
and vice versa. For each exposure in a single sex, the doses at which the correlations sep-
arated roughly indicate the metabolic alteration points of departure. Some of the dose 
responses across chemicals were also positively correlated at high doses, which suggests 
that these chemicals induced similar responses for high-dose exposures. 

 

Figure 5. Correlation of metabolic fluxes between PFAS-exposed male and female rats. Blue and red 
boxes represent negative and positive correlations between groups, respectively. (A) Correlation 
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between male rats. (B) Correlation between male and female rats. (C) Correlation between female 
rats. Triangles depict increasing PFAS doses. FTOH: fluorotelomer alcohol; PFHxSAm: perfluoro-
hexanesulfonamide. 

3.7. Benchmark Doses of PFAS Common Metabolic Alterations 

To identify the doses that represent the metabolic alteration points of departure cor-
responding to a BMR (>1 SD) from the control rats, we performed sex-based BMD model-
ing to determine the mean fluxes in each subsystem in response to each chemical. The 
default BMD modeling workflow was applied, as described in Section 2. With the default 
settings, the BMD modeling software found 208 viable models (listed in Supplementary 
File S3). The results included the predicted BMDs for each subsystem in response to each 
chemical and a confidence interval (BMDL–BMDU) for the BMD, where BMDL represents 
the lower confidence limit and BMDU the upper limit. The list of BMD results was filtered 
to remove any models that predicted BMD or BMDU values outside the doses that were 
input to the BMD function, as these represent results fitting the model curves rather than 
the real exposure data. This filtering resulted in 130 viable models: 59.2% exponential, 
14.6% polynomial, 11.5% Hill, 7% linear, and 7.7% power models. 

Table 2 summarizes the BMDs predicted for each chemical and sex for the 22 PFAS-
associated subsystems identified from the PCA analysis. Of the 22 subsystems, fatty acid 
oxidation and purine metabolism had viable models for all chemicals and both sexes, but 
fatty acid oxidation was the only PFAS common pathway. Furthermore, of all the sex and 
chemical-exposure combinations, males exposed to 6:1 FTOH had the lowest BMDs for all 
the subsystems, suggesting that males exposed to this PFAS showed alterations earlier 
than when exposed to the other chemicals and even earlier than females exposed to any 
of the PFASs. The BMD of branched-chain amino acid metabolism (valine, leucine, and 
isoleucine) had the lowest BMD in response to 6:1 FTOH. The subsystem alterations in 
female rats exposed to 6:1 FTOH were higher than for males exposed to the same chemical, 
except for glutathione metabolism, which had a lower BMD for females. However, the 
BMD confidence interval (BMDL–BMDU) for this subsystem overlapped between the 
sexes, suggesting its perturbation to low doses of 6:1 FTOH is a sex-independent mecha-
nism. The predicted BMDs for males and females exposed to 10:2 FTOH were similar for 
glutathione metabolism, purine metabolism, sphingolipid metabolism, and xenobiotic 
metabolism. The BMDL and BMDU values for these subsystems contained overlapping 
BMD ranges for males and females, suggesting that exposure to low doses of 10:2 FTOH 
induced similar responses in both sexes. Similarly, the BMDs predicted for rats exposed 
to PFHxSAm had overlapping ranges for cysteine and methionine metabolism, fatty acid 
oxidation, omega-6 fatty acid metabolism, purine metabolism, and ubiquinone synthesis 
in males and females. 

Table 2. Benchmark doses for the top PFAS-altered pathways in male and female rats. 

Metabolic Subsystem 
Male Female 

6:1 FTOH 10:2 FTOH PFHxSAm 6:1 FTOH 10:2 FTOH PFHxSAm 
β-alanine metabolism * 6.6  55.8 260.4 49.0  

Cysteine and methionine me-
tabolism 

  37.5 33.0 23.4 59.1 

Eicosanoid metabolism * 7.7 66.2 54.6 312.9   

Electron transport chain *   3.9 304.6   

Fatty acid biosynthesis * 4.8   12.9 251.7  

Fatty acid metabolism * 4.0   298.8 317.5 63.0 
Fatty acid oxidation * 2.3 21.9 20.6 107.8 191.2 31.0 

Glutathione metabolism 39.9 10.1  20.0 10.5  
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Inositol phosphate 
metabolism * 

4.3      

Nucleotide metabolism 4.0  11.8 76.8  22.3 
Omega-3 fatty acid 

metabolism 
  22.5 75.5   

Omega-6 fatty acid 
metabolism 1.6 36.2 18.9   31.0 

Porphyrin metabolism  9.6     

Protein metabolism 5.0      

Purine metabolism 2.0 9.8 8.5 36.2 10.0 7.4 
Serotonin and melatonin bio-

synthesis 
17.7  22.5  618.9 17.6 

Sphingolipid metabolism * 2.9 13.1 35.1  12.2  

Tyrosine metabolism 4.3 70.8  145.4  12.3 
Ubiquinone synthesis 3.8 8.4 20.4 23.8  18.4 
Valine, leucine, and 

isoleucine metabolism 1.4   159.5  20.1 

Xenobiotic metabolism  16.4 40.1  23.9  

FTOH: fluorotelomer alcohol; PFHxSAm: perfluorohexanesulfonamide. Asterisks (*) mark the com-
mon subsystems between the 6:1 FTOH, 10:2 FTOH, and PFHxSAm exposures. If no value is given, 
then no viable models were found. 

To specifically compare the BMDs between the sexes, the difference pathways with 
BMD predictions for both males and females were visualized in a scatter plot. Figure 6 
shows the differences in BMDs between female and male rats, with positive values indi-
cating male sensitivity and negative values indicating female sensitivity. As shown in Fig-
ure 6, males were more sensitive to 6:1 FTOH exposure than females, particularly for beta-
alanine metabolism, eicosanoid metabolism, fatty acid metabolism, fatty acid oxidation, 
nucleotide metabolism, tyrosine metabolism, and valine, leucine, and isoleucine metabo-
lism. In contrast to 6:1 FTOH, both sexes showed a similar sensitivity to PFHxSAm and 
10:2 FTOH, with most of their BMDs within 15 mg/kg of each other. Overall, these results 
indicate that the sexes show different sensitivities to different PFAS types. 
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Figure 6. The difference between the male and female benchmark doses predicted for each chemical. 
Positive values indicate male sensitivity, and negative values indicate female sensitivity. Subsystem 
names in bold indicate the largest differences. FTOH: fluorotelomer alcohol; PFHxSAm: perfluoro-
hexanesulfonamide. 

4. Discussion 
In this study, we developed a workflow that incorporates GEM and BMD modeling 

for metabolic risk assessment of chemicals using gene expression data. We applied the 
approach to analyze the metabolic risk of three PFAS chemicals in male and female rat 
livers and identified potential similarities and differences in the liver’s response to the 
PFAS chemicals. We integrated the gene expression data with a GEM to predict the flux-
based activity in metabolic subsystems for each rat, compared the flux predictions be-
tween PFAS-exposed and unexposed rats to identify the subsystems altered due to PFAS 
exposure, and predicted the BMDs for each altered subsystem to determine their sensitiv-
ity. 

The most-altered metabolic subsystems were identified by performing PCA for each 
chemical dose exposure in each sex and extracting the top features (subsystems) from each 
PCA. The PCA identified 22 PFAS-relevant pathways, with eight common to all three 
chemicals in this study (Figure 4). The results showed that most of the metabolic altera-
tions were similar between the three PFAS chemicals, with most of the disrupted subsys-
tems belonging to lipid, energy, and amino acid metabolism, and had the same direction 
of change (increase or decrease in flux activity with respect to the controls). However, 
comparing these changes across all the subsystems in the GEM revealed that PFAS expo-
sure significantly decreased the metabolic activity in amino acid and nucleotide metabo-
lism but increased the metabolic activity in lipid metabolism (Supplementary Figure S3). 
Specifically, with PFAS exposure, there was a consistent increase in metabolic activity in 
branched-chain amino acid metabolism (valine, leucine, and isoleucine) for both male and 
female rats compared to several other pathways in amino acid metabolism. We also found 
some differences in response based on the PFAS type. For example, exposure to 6:1 FTOH 
and PFHxSAm consistently increased the metabolic activity in tryptophan metabolism for 
both male and female rats, but decreased it with 10:2 FTOH. In contrast, there was an 
opposite behavior for lysine metabolism, with its activity increased in response to 10:2 
FTOH but decreased or unchanged for the other two chemicals. Our analysis also identi-
fied protein and β-alanine metabolism alterations in response to individual PFASs, which 
likely resulted from changes in the individual amino acid subsystems. Several literature 
studies link these amino acid aberrations with PFAS exposure [11,74] as well as NAFLD 
and fibrosis [75–77]. Interestingly, Mardinoglu et al. used a GEM-based approach to com-
pare hepatocyte activity between non-alcoholic steatohepatitis (NASH) and control pa-
tients and identified similar amino acid disruptions in the NASH patients, particularly the 
downregulation of serine [44,78]. 

Compared to changes in amino acid metabolism, there was a dose-dependent in-
crease in the activity of most subsystems in lipid metabolism, with the activity of the ma-
jority of the subsystems consistently increasing as the dose increased. For example, for 
both male and female rats, several pathways in fatty acid metabolism, such as fatty acid 
oxidation, fatty acid biosynthesis, and omega-3 and omega-6 fatty acid metabolism, 
showed consistently increased metabolic activity with increasing PFAS doses, indicating 
potentially common mechanisms between males and females for PFAS exposure. How-
ever, there also were some chemical- and sex-specific changes in lipid metabolism, such 
as changes in the metabolism of bile acids, arachidonic acid, glycerolipids, sphingolipids, 
and steroids, in response to PFAS exposure (Supplementary Figure S3). Several other 
studies have also reported a decrease in bile acid metabolism due to PFAS exposure, 
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particularly via the gene Cyp7a1, which codes for the enzyme (CYP7A1) that catalyzes the 
rate-limiting step of bile acid synthesis [3,21,29,30,79–81]. Our previous steatosis adverse 
outcome pathway-based analysis of the same dataset revealed that Cyp7a1 decreased spe-
cifically in males [32]; however, the metabolic network analysis in this study predicted 
that females also showed a decrease in bile acid metabolism. It is possible that female rats 
reduce bile acid metabolism by a Cyp7a1-independent mechanism, but the current results 
and data are insufficient to validate this. 

Cholesterol homeostasis in the liver includes conversion of cholesterol to bile acids 
via Cyp7a1. An impairment in this mechanism can thus lead to cholesterol accumulation 
and imbalance in the liver, contributing to steatosis and NAFLD [29,32]. The PFAS-in-
duced disruption of bile acids has also been associated with hepatomegaly and cholestasis 
in mice [82,83]. Interestingly, our results showed an increase in bile acid metabolism in 
response to PFHxSAm in female rats, suggesting that the sulfonic acid attachment could 
be influencing bile acid metabolism in female rat livers. Furthermore, glutathione func-
tions as an antioxidant and protects cells from oxidative stress and damage [84,85]. We 
thus hypothesize that the increase in glutathione metabolism predicted in our study is in 
response to the increase in fatty acid oxidation mechanisms. The glutathione responses to 
10:2 FTOH were higher in both male and female rats compared to the other two PFASs, 
which could be attributed to 10:2 FTOH’s chain length. 

Similar to our findings, other metabolomic studies have reported that metabolites of 
sphingolipid metabolism (such as ceramides and phosphosphingolipids) were altered in 
response to PFAS exposure. Ceramides, which are products of sphingolipid metabolism, 
take part in signaling and inflammation, contribute to the structural stability of cell mem-
branes, and play a role in autophagy, cell proliferation, and immune responses [86]. Al-
terations in these metabolites could thus lead to increased inflammation and cellular dam-
age [87], which are also reported consequences of PFAS exposure [88,89]. In addition, 
ceramides function in supporting mitochondrial homeostasis, and their dysregulation 
leads to oxidative stress and apoptosis [90]. Furthermore, ceramide imbalances have been 
associated with NASH development, liver fibrosis, and cirrhosis [91]. A study on prenatal 
PFAS exposure suggested that sphingolipid alterations due to PFASs could lead to type 1 
diabetes later in life [92]. Sphingomyelins are another class of sphingolipids that are al-
tered on PFAS exposure and have been associated with insulin resistance, liver dysfunc-
tion, and obesity [88]. These findings suggest that PFAS-induced altered sphingolipid me-
tabolism could drive cells towards morphological damage and apoptosis, and can con-
tribute to an insulin-resistant phenotype. Overall, the observed changes in amino acid and 
lipid metabolism in this study match findings from other PFAS studies [87], suggesting 
that the metabolic network and modeling approaches applied here can capture PFAS-in-
duced alterations. 

Interestingly, our results showed that PFAS exposure decreased inositol phosphate 
metabolism (Figure 4C), which could contribute to insulin resistance [93], the first hit for 
NAFLD development. Additional environmental factors, such as diet and medication, 
could trigger the second hit for NAFLD, which typically involves disruption of fatty acid 
oxidation and accumulation of reactive oxygen species (ROS) [94–96]. The results of this 
study showed an increase in fatty acid oxidation and the electron transport chain, which 
can lead to ROS production and subsequently oxidative stress [97,98], the second hit for 
NAFLD. Notably, the BMD for fatty acid oxidation in males exposed to 6:1 FTOH was 
smaller than the BMD for inositol phosphate metabolism. Additionally, there were other 
NAFLD-associated metabolic disruptions that occurred in parallel and with similar dose 
responses, including an increase in fatty acid biosynthesis, omega-6 fatty acid metabolism, 
and omega-3 fatty acid metabolism, which disrupt lipid concentrations in the liver and 
could contribute to steatosis [99]. The increase in eicosanoid metabolism could contribute 
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to inflammation and even hepatocellular carcinoma [100]. Finally, alterations in sphin-
golipid metabolism have also been associated with insulin resistance and NAFLD [101–
104]. From these observations, we hypothesize that PFAS-induced NAFLD likely follows 
the “multiple parallel hits theory” rather than the “two-hit theory” [105]. Based on this 
hypothesis, PFASs would induce multiple mechanisms in parallel, including an imbal-
ance in fatty acids, insulin resistance, mitochondrial dysfunction, and oxidative stress, 
which can lead to NASH/NAFLD. The alterations in pro-inflammatory eicosanoids and 
amino acid metabolism would further increase the risk of NAFLD development and pro-
gression. Figure 7 summarizes our findings in the context of our hypothesis that PFAS 
exposure leads to altered metabolism of amino acids and lipids that prime the liver for a 
fatty and insulin-resistant phenotype. 

 

Figure 7. Overview of our findings. PFAS chemicals affect pathways of lipid, energy, and amino 
acid metabolism that can lead to inflammation, oxidative stress, insulin resistance, and non-alco-
holic fatty liver disease (NAFLD). Subsystem names in green and red denote decreased and in-
creased activity, respectively. Dotted lines connect the PFAS-induced changes with existing 
knowledge of liver diseases. Solid gray lines show disease progression, as reported in the literature. 
The two hits of NAFLD (insulin resistance and oxidative stress) are marked as 1 and 2. FA: fatty 
acid; met.: metabolism; NASH: non-alcoholic steatohepatitis; and PFASs: per- and polyfluoroalkyl 
substances. 

The PCA plots for the sex-combined analysis of the PFAS-exposed rats showed that 
the metabolic flux predictions cluster by sex and within each sex cluster by exposure dose. 
However, our observations of the specific metabolic subsystem alterations showed that 
PFASs affected similar pathways in both sexes, with differences in relation to the dose of 
exposure. Male rats showed a higher magnitude of change (higher z-scores) for each sub-
system perturbation than female rats across different PFAS chemicals and exposure dose 
levels, suggesting that the variation between males and females exposed to PFASs is due 
to the differences in magnitude of change and that dose sensitivity is sex-dependent. Of 
the PFAS chemicals, 6:1 FTOH induced the largest z-score changes in both sexes (Figures 
4 and S3). One mechanism that could account for the observed higher sensitivity in males 
could be potential differences in PFAS elimination rates between the two sexes. Other 
studies have reported that females eliminate PFAS compounds much faster than males, 
leading to lower PFAS bioaccumulation in females [106,107]. In this case, female rats 
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would require higher concentrations of PFASs to elicit a similar response as observed for 
male rats. Some subsystems, such as porphyrin metabolism, vitamin E metabolism, pro-
tein metabolism, and xenobiotics metabolism, responded differently to PFAS types, sug-
gesting that PFAS type also influences the magnitude of alteration. Exposure to 10:2 FTOH 
caused a large dose-dependent increase in glutathione metabolism and arachidonic acid 
metabolism that was absent in the other two PFAS compounds, possibly due to carcino-
genic mechanisms or to 10:2 FTOH being a long-chain PFAS. Interestingly, 10:2 FTOH can 
bio-transform into the phased-out PFOA [17], which may indicate that the liver’s meta-
bolic responses to high doses of 10:2 FTOH could resemble those to PFOA. To further 
compare the PFAS chemicals’ effects between males and females, the differences in the 
BMDs predicted for each chemical were plotted (Figure 6), which revealed that some 
PFAS chemicals had a greater sex dependence than others. These results could indicate 
that the sex-dependent effects are more important for some PFAS types than others. This 
and our observation that metabolic activity in the liver remained sexually dimorphic even 
upon exposure to PFAS chemicals (Supplementary Figure S1) reiterate the importance of 
studying exposures in both sexes, particularly to understand the sex-based outcomes. 

Our analysis of control rat gene expression showed that some of the metabolic sub-
systems showed sex-dependent activity (Figure 2). The female-biased subsystems in-
cluded central carbon metabolism, carbohydrate metabolism, and the electron transport 
chain, which influence energy production in the liver. Other studies have also reported 
that energy metabolism and amino acid usage for energy production are sexually dimor-
phic [52,108,109]. The discrepancies in the specific amino acid usage between the sexes 
could be due to differences in experimental conditions, such as animal diet or age. The 
influence of these factors on sex-dependent liver metabolism requires further experi-
ments. The female-biased subsystems also included bile acid metabolism, which is known 
to be sex-dependent [110]. The enterohepatic circulation of bile acids has been associated 
with PFAS accumulation in the liver [111], and it is possible that the increased bile acid 
metabolism in female rats allows them to clear PFASs faster than male rats. Although the 
results presented with respect to sexual dimorphism in the control rats are not enough to 
confirm whether these sex-dependent subsystems protect either sex from liver injury, they 
do provide hypotheses for experimental validation. 

This study has potential limitations with regard to the PFAS exposure setting, rat to 
human translation, and using transcriptomics to predict the true fluxome. First, we ana-
lyzed the effect of a 5-day daily exposure to a single PFAS, which may be different from 
exposure scenarios for humans, particularly when the latter involves PFAS mixtures and 
long-term or chronic durations. While the 5-day exposure duration may not fully repre-
sent the steady-state or adaptive responses that would occur during chronic, lifetime ex-
posure, it provides a critical snapshot of the initial molecular perturbations in response to 
the chemicals. It is plausible that some of the observed gene expression changes reflect an 
initial stress response that could be attenuated over time via homeostatic mechanisms, 
such as the induction of metabolic enzymes or compensatory feedback loops. Conversely, 
prolonged exposure could lead to the exhaustion of these adaptive capacities, resulting in 
different or more severe pathological outcomes not predicted by this short-term profile. 
Therefore, these findings should be interpreted as a hypothesis-generating exploration of 
the chemical’s initial mechanism of action rather than a definitive prediction of chronic 
disease. Furthermore, previous studies have shown that the toxicological potency evalu-
ations from short-term in vivo gavage studies, such as the one described here, are a rea-
sonable approximation, from the standpoint of toxicological potency, of the traditional 
long-term toxicological assessments [59–61,112]. This suggests that the mechanisms pre-
dicted here likely describe the early adaptations to PFASs and underlie the initiation of 
the chemicals’ long-term effects. Second, translating findings from rodents to humans is a 
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challenge that is not unique to this study. Here, we studied the effect of single PFAS ex-
posures on rat livers, while human exposures involve PFAS mixtures as well as possible 
chronic exposures (compared to the 5-day acute exposure studied here). Translating our 
findings to humans would require the availability of similar transcriptomic datasets. We 
could apply our framework, for example, by utilizing liver tissue samples from cadavers, 
measuring gene expression and PFAS concentrations in the tissue, integrating the gene 
expression data with a human metabolic model (such as RECON3D [113]), and relating 
the PFAS concentrations with the predicted metabolic fluxome. Additional information 
from histopathology of the same tissue would help connect the predicted metabolic state 
with the histopathological observations. Such experiments would be particularly useful 
to study the variance within human populations. Alternatively, hepatocyte cell line data 
could be integrated with hepatocyte/liver-specific metabolic models (such as iHepatocyte 
[44]), which would be a more controlled experiment and may provide more insights into 
human-relevant mechanisms. These experiments could also be designed to consider hu-
man-relevant doses and chronic exposure conditions, which were not addressed in the 
current study. Finally, our study did not consider molecular processes, such as gene reg-
ulation, translation, posttranslational modifications, and protein degradation. Here, we 
used transcriptomic data, which may not reflect the true enzyme concentrations in the 
tissue, limiting the accuracy of the fluxome predictions from Pheflux [58]. While some of 
our results match proteomics work on PFAS exposures [114], our approach, particularly 
Pheflux optimization and the consequent BMD predictions, would be more accurate with 
proteomic measurements. 

Future experiments could apply our approach in combination with histopathology 
to correlate the computational findings with biological observations. Since our approach 
predicts metabolic activity within the liver, we propose that we validate our findings us-
ing metabolomics of liver tissues exposed to these PFASs rather than serum measure-
ments. The levels of ROS, cholesterols, glutathione, branched-chain amino acids, bile ac-
ids, and sphingolipids would confirm their roles in PFAS-induced fatty liver and insulin 
resistance as hypothesized here. Furthermore, validating the findings would inform us of 
therapeutic strategies to overcome PFAS adverse outcomes in the liver. Based on the BMD 
calculations, our approach provides the mechanistic insights required for characterizing 
toxicity and can be applied to rapidly design specific and effective therapeutics. In con-
trast, traditional apical endpoints, such as organ weight, cell death, and body weight, lack 
information on the mechanisms underlying the outcomes. In addition to supporting tra-
ditional BMDs for regulating safe exposure limits, the BMD values predicted here can 
serve as a guide to design additional experiments with correct dose spacing for chemical 
risk assessment and can be correlated with sera chemical concentration measurements to 
predict the stage of adversity. Finally, the pathways with the lowest BMDs can be used as 
a guide to identify susceptible individuals in a population. Furthermore, our study did 
not include the influence of diet and medication, which are known to increase the risk of 
developing liver injury [115,116]. We hypothesize that the metabolic alterations induced 
by PFASs increase the burden on male and female livers (Figure 7), consequently increas-
ing the risk of hepatic injury and contributing to NAFLD progression. Further experimen-
tation is needed to confirm the importance of these metabolic subsystems in PFAS-in-
duced hepatic injury and progression. 

5. Conclusions 
Identifying metabolic alterations that precede and occur during toxic responses is 

important for risk assessment of chemicals and the development of countermeasures. 
Here, we presented a novel approach for predicting metabolic risk due to chemical expo-
sures and applied it to understand PFAS toxicity mechanisms. We used a gene expression 
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dataset from a 5-day acute exposure study that focused on three PFAS chemicals, includ-
ing two carboxylic acid-type fluorotelomers and one sulfonamide-type PFAS. The inter-
pretation of metabolic model fluxes and consequently the calculated z-score values re-
quires caution, as some of the parameters, such as those relating to diet, do not exactly 
match the experimental conditions. While precise constraints would predict more accu-
rate flux values, the overall metabolic predictions may not differ from the current results 
since the Pheflux algorithm was designed to predict the fluxome closest to the gene ex-
pression distribution [58]. The fact that our results agree with existing PFAS exposure 
studies also corroborates this. Finally, our study is the first to integrate BMD modeling 
with metabolic fluxes to identify metabolic points of departure. Although the robustness 
of combining the two methods requires further assessment, it paves the way for compu-
tational approaches that can generate more hypotheses and predictions for chemical ex-
posure-induced risk assessment. 

Supplementary Materials: The following supporting information can be downloaded at 
https://www.mdpi.com/article/10.3390/toxics13080684/s1: Figure S1: Sex-combined principal com-
ponent analysis of metabolic fluxes in PFAS-exposed rats; Table S1: Ranking of the top features ex-
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Abbreviations 
The following abbreviations are used in this manuscript: 

PFASs Per- and polyfluoroalkyl substances 
GEM Genome-scale metabolic model 
BMD Benchmark dose 
PFCA Perfluoroalkyl carboxylic acid 
PFSA Perfluoroalkyl sulfonate 
PFOA Perfluorooctanoic acid 
PFOS Perfluorooctanesulfonic acid 
NAFLD Non-alcoholic fatty liver disease 
GPR Gene–protein–reaction 
EPA Environmental Protection Agency 
BMDS Benchmark dose software 
NIEHS National Institute of Environmental Health Sciences 
FTOH Fluorotelomer alcohol 
PFHxSAm Perfluorohexanesulfonamide 
PCA Principal component analysis 
BMR Benchmark response 
SD Standard deviation 
PC Principal component 
NASH Non-alcoholic steatohepatitis 
ROS Reactive oxygen species 
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