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Abstract

Certain occupational and geographical exposures have been associated with an increased

risk of lung disease. As a baseline for future studies, we sought to characterize the upper

respiratory microbiomes of healthy military personnel in a garrison environment. Nasal, oro-

pharyngeal, and nasopharyngeal swabs were collected from 50 healthy active duty volun-

teers eight times over the course of one year (1107 swabs, completion rate = 92.25%) and

subjected to pyrosequencing of the V1–V3 region of 16S rDNA. Respiratory bacterial taxa

were characterized at the genus level, using QIIME 1.8 and the Ribosomal Database Project

classifier. High levels of Staphylococcus, Corynebacterium, and Propionibacterium were

observed among both nasal and nasopharyngeal microbiota, comprising more than 75% of

all operational taxonomical units (OTUs). In contrast, Streptococcus was the sole dominant

bacterial genus (approximately 50% of all OTUs) in the oropharynx. The average bacterial

diversity was greater in the oropharynx than in the nasal or nasopharyngeal region at all

time points. Diversity analysis indicated a significant overlap between nasal and nasopha-

ryngeal samples, whereas oropharyngeal samples formed a cluster distinct from these two

regions. The study produced a large set of pyrosequencing data on the V1–V3 region of bac-

terial 16S rDNA for the respiratory microbiomes of healthy active duty Service Members.

Pre-processing of sequencing reads showed good data quality. The derived microbiome

profiles were consistent both internally and with previous reports, suggesting their utility for

further analyses and association studies based on sequence and demographic data.

Introduction

A number of microbiome studies of the human respiratory regions have investigated individu-

als or populations of different ages, with or without acute or chronic disease [1–7]. The results

of these studies suggest the existence of core respiratory microbiome and a possible association
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between abnormal microbiota and respiratory diseases [8–10]. Military personnel may be

exposed to inhalational hazards, which may increase their risk of contracting acute or chronic

respiratory diseases [11, 12]. For example, burn pit exposures in the recent conflicts in Iraq

and Afghanistan may have long-term health consequences to respiratory illnesses in the upper

airways of Service Members. We initiated a study to characterize the upper respiratory micro-

biomes of healthy military personnel in a garrison environment in order to establish a baseline

for future studies on the effects of specific activities and exposures on respiratory microbiota.

We previously conducted a preliminary study of laboratory and data processing/analysis

procedures [13]. The methodology, which was established by using the microbial mock com-

munities developed by the Human Microbiome Project (HMP), has been used to obtain results

comparable or superior to those of other studies [14]. The workflow was applied to a pilot run

of throat swabs collected from eight subjects [13]. Here, we used the same methods to study

respiratory microbiota in a larger group of military volunteers. This project aimed to charac-

terize the composition and temporal variation of the normal military respiratory microbiota,

identify individuals with abnormal respiratory bacterial taxa, collect comprehensive demo-

graphic data, and uncover associations between variables and profiles of respiratory bacterial

communities.

Materials and methods

Sampling and DNA isolation

The study protocol WRAIR#1914 and protocol amendment were approved by the Walter

Reed Army Institute of Research (WRAIR) Institutional Review Board. Written, informed

consent was obtained with signature from each participant. One Ultra-thin minitip flocked

swab (dry tube, Catalog number 560C; COPAN Diagnostics Inc., Murrieta, CA) was applied

to each of three anatomic sites: the anterior nares, oropharynx, and nasopharynx. The side

from which the sample was collected was left to volunteer preference or chosen arbitrarily. The

swabs were kept in their tubes and stored at -80˚C in WRAIR until they were processed for

DNA isolation. The method for extracting DNA from the swabs, which was established in a

previous study [13], was applied to this study with modifications. The swabs were processed in

parallel by using 96-well plates. The swab tips were cut into the wells in a 96 Deepwell plate

(Catalog number 0030 131.517; Eppendorf, Hauppauge, NY). A 450-μl aliquot of pre-chilled

lysis solution containing 20 mM TrisCl, pH8.0, 2 mM EDTA, 1mM DTT, 1.2% Triton X-100,

1 mg/ml Lysozyme, and 0.1 mg/ml lysostaphin (Sigma, St Louis, MO) was added to each well.

The plate was incubated at 37˚C for 90 min and mixed by shaking at 1000 rpm for 2 min on an

Eppendorf MixMate before and after incubation. Subsequently, 25 μl of 10 mg/ml Proteinase

K (Qiagen, Germantown, MD, USA) was added to each well and mixed. A 300-μl aliquot of

the mixture was transferred from each well into a new 96 Deepwell plate, after which 300 μl of

Qiagen Buffer AL without ethanol was added. The new plate was then mixed at 1000 rpm for 2

min and incubated at 56˚C for 2 h. Ethanol (300 μl) was then added and mixed by pipetting 6

times. From each well, 0.9 ml of the mixture was transferred into a well of a DNeasy 96 DNA-

binding plate. DNeasy 96 extraction kit and QIAvac 96 vacuum manifold (Qiagen) were used

in DNA purification.

PCR and Roche 454 pyrosequencing

As described previously [13], the purified DNA samples were subjected to 16S rDNA quantita-

tive PCR to determine Ct values, using Taqman Universal Master Mix II (Invitrogen, Carlsbad,

CA) with 321F2 (ACTGAGAYACGGYCCA) and 533R (TTACCGCGGCTGCTGGC) as the primers

and 338P (FAM-ACTCCTACGGGAGGCAGCAGT-Black Hole Quencher) as the probe. PCR

Respiratory microbiome of healthy military personnel

PLOS ONE | https://doi.org/10.1371/journal.pone.0188461 December 7, 2017 2 / 12

Defense Medical Research and Development

Program (DMRDP) of the Department of Defense

(DoD) and the Global Emerging Infections

Surveillance and Response System (GEIS), a

Division of the Armed Forces Health Surveillance

Center.

Competing interests: The views expressed in this

article are those of the authors and do not

necessarily reflect the official policy or position of

the Department of the Army, DoD, or US

government. JH, RCR, LRM, RGJ, JR, RAK and

PBK are military service members (or employees

of the U.S. Government). This work was prepared

as part of their official duties. Title 17 U.S.C. §105

provides that “Copyright protection under this title

is not available for any work of the United States

Government.” Title 17 U.S.C. §101 defines a US

Government work as a work prepared by a military

Service Member or employee of the US

Government as part of that person’s official duties.

Abbreviations: 16S rDNA, 16S ribosomal RNA

gene; HMP, Human Microbiome Project; OTUs,

operational taxonomic units; QIIME, Quantitative

Insights Into Microbial Ecology; RDP, Ribosomal

Database Project; rRNA, ribosomal RNA.

https://doi.org/10.1371/journal.pone.0188461


amplification of the V1–V3 region of 16S rDNA was performed by using the published

Human Microbiome Project protocol and modified fusion primers LB-27F2 (CCTATCCCC
TGTGTGCCTTGGCAGTCTCAG-AGAGTTTGATCMTGGCTCAG) and LARL1-533R

(CCATCTCATCCCTGCGTGTCTCCGACTCAG-ACACGACGACTTTACCGCGGCTGCTGGC),

which were shown to improve amplification of some bacteria [13]. PCR cycle number of 20,

25, or 30 was chosen for each sample depending on its Ct value from the 16S qPCR assay, as

described previously [13]. Pyrosequencing of the 16S V1–V3 region was performed by using a

Roche 454 GS FLX+ system and reagents (Roche 454 Life Sciences Corporation, Branford,

CT). Genomic DNA from Microbial Mock Community A, Even, Low Concentration (HM-

278D v3.1, BEI Resources) was diluted 10 times and used as a positive control for PCR and

pyrosequencing of 16S amplicons.

Pyrosequencing data processing and taxonomic classification

Sequencing data analysis was based on the Quantitative Insights Into Microbial Ecology

(QIIME) pipeline version 1.8 [15]; details of the workflow implementation have been

described previously. After demultiplexing sff files, raw reads were filtered to ensure read qual-

ity by using the following steps: terminal trimming to remove N from the 30-end of the raw

reads; removal of reads smaller than 200 bases or larger than 1000 bases; removal of reads with

a homopolymer eight bases or longer; removal of reads with more than one error in the 16S

primer 539R sequence; read trimming to remove primer and linker sequences; and sliding-

window trimming with a window width of 50 bases to remove terminal sequences within the

window with an average quality score below 25. Chimera filtering was subsequently per-

formed, using the UCHIME algorithm by either the reference-based or de novo method [16].

Reads that were classified as chimeric by both methods were removed. Finally, singleton reads

were excluded from further analysis. The taxonomic classification of the quality-processed

reads was based on the closed reference clustering of sequences into operational taxonomical

units, using the UCLUST tool with the sequence identity level at 97%. The read clusters were

further assigned to taxonomies, using the RDP classifier with a confidence level of 80% [17].

The microbial profiles obtained after this step contained various hierarchical levels of taxon-

omy classification and their positions in the taxonomy were used to assess the diversity of each

community. In the statistical analyses, reads assigned to taxonomy levels below the genus level

were mapped to the corresponding genus level for further evaluation of statistical significance

at the genus level.

Microbiota diversity estimation and statistical analysis

We used the microbiome profiles from QIIME/RDP analysis to evaluate the microbial com-

munity diversity within a sample (α-diversity) and the diversity between samples (β-diversity).

We estimated α-diversity for all samples by using Shannon entropy measures as implemented

in the R-package vegan (https://cran.r-project.org/web/packages/vegan), and used the Wil-

coxon signed-rank test [18] implemented in R (http://www.R-project.org/) to compare α-

diversities. We analyzed β-diversity by using the weighted UniFrac distance in the QIIME

implementation of UniFrac [19] as a measure. The results were visualized by using EMPeror

[20].

Pyrosequencing and data analysis

The resulting 16S V1–V3 amplicon libraries were sequenced by using a Roche 454 GS FLX

+ system and reagents (Roche 454 Life Sciences Corporation, Branford, CT, USA). Genomic

DNA from Microbial Mock Community A, Even, Low Concentration (HM-278D v3.1, BEI
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Resources) obtained as part of the Human Microbiome Project [21], was diluted 10 times and

used as a positive control for PCR and pyrosequencing of 16S amplicons.

The pyrosequencing data analysis pipeline was based on the Quantitative Insights Into

Microbial Ecology (QIIME) pipeline version 1.8 [15]. The 454 read data were subjected to

quality processing, chimera filtering, and removal of singleton reads. The taxonomic classifica-

tion of the quality-processed reads was based on the closed reference clustering of sequences

into operational taxonomical units (OTUs), using the UCLUST tool [22] with a sequence iden-

tity level of 97%. The read clusters were further assigned to taxonomies by using the Ribosomal

Database Project (RDP) classifier [17] with a confidence level of 80%. The bacterial commu-

nity diversity within a sample (α-diversity) was assessed by using the R-package vegan (https://

cran.r-project.org/web/packages/vegan). The diversity between samples (β-diversity) was ana-

lyzed by using the QIIME implementation of UniFrac [19] and the weighted UniFrac distance

as a measure of β-diversity.

Results and discussion

Subject recruitment and characteristics

A total of 1107 nasal, oropharyngeal, and nasopharyngeal swabs, which represented 92.25% of

the total number of planned samples (1200), were collected from 50 volunteers (Table 1, Fig

1). The volunteers were active duty military (39 males and 11 females), including members of

the US Army Band and medics from the 3rd US Infantry Regimental Aid Station, Fort Myer,

VA. These participants were chosen because they were located near our institute and moti-

vated to participate. In addition, musicians in the US Army Band at Fort Myer (“Pershing’s

Own”), unlike most other military personnel, are likely to be serving in the same location for

many years and hence available for long-term follow-up studies. Samples were collected at 8

time points over the course of a year (two visits, ideally 1–2 weeks apart, in each of four quar-

ters from mid-2014 to mid-2015) and from 3 anatomical sites: the anterior nares, oropharynx,

Table 1. Demographics of the 50 subjects enrolled in the study. The information was summarized based

on questionnaires filled in by the subjects during enrollment or each visit. Data on chronic and acute illnesses

were also collected from the subjects.

Characteristics Data

Gender Male (39), female (11)

Race White (43), Hispanic (4), Asian (1), black (1), other (1)

Occupation Medics (7), band musicians (43)

Primary instruments include wind (26), percussion (6), vocalist (4), string (3), non-

musician staff (4), unknown (3)

Median age 37.5

Median age

(medics)

21, range 20–28

Median age (band) 40, range 21–60

Brushing teeth Less than once daily (2), Once daily (17), Twice daily (22),

Three times daily or more (9)

Flossing 1–3 times a week (18), 4–6 times a week (4), Daily (14), Less than once a week

(13), Blank (1)

Mouthwash 1–3 times a week (12), 4–6 times a week (4), Daily (12), Less than once a week

(19), No (1), Yes with unknown frequency (2)

Tobacco use Smoke (8), chew (2)

Allergy/Asthma

meds

Oral antihistamine (9),intranasal steroid (5), inhaled beta agonist (4), leukotriene

antagonist (2), inhaled steroid (1) used by 13 subjects

Flu vaccination Intramuscular (26), intranasal (19)

https://doi.org/10.1371/journal.pone.0188461.t001
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and nasopharynx (S1 Table). Prior to the influenza season during that year, 26 subjects

received the intramuscular influenza vaccine (flu shot), 19 subjects received the intranasal

influenza vaccine (Flu Mist), and 5 subjects were not immunized (S1 Table). This made it pos-

sible to assess the impact of vaccination route.

Data acquired and quality assurance

We investigated technical issues related to data quality including primer design, 16S sequences

from swab or reagents, and PCR cycle numbers as well as reaction parameters. Performance

was evaluated with even and uneven mixes of HMP microbial mock community DNA as well

as a mixture of bacterial cells [13]. One of the HMP reference materials, HM-278D, was

included in each run of this study for quality control purposes to assure technical consistency

across experiments. We used 16S quantitative PCR to identify DNA extracts with exceedingly

low 16S rDNA copy numbers (Ct values greater than 30). Although these samples were

included in the initial analysis, their abnormal concentrations were taken into account in sub-

sequent data analyses and interpretation of results.

The swabs from same quarter were processed in consecutive days. The samples to be

extracted were arranged roughly in the order of their collection time, not grouped by either

subject or body site. The three swabs from a same subject and visit were processed in parallel.

In total, 18 Roche 454 FLX+ sequencing runs were conducted with the production of total data

of 15 Gbases in sequence or 41867 Mbytes in volume. Three thousand or more sequence reads

were obtained from each sample (S1 Table), except for those with high Ct values in 16S

Fig 1. Sample collection from 50 human subjects. Three swabs (nasal, oropharyngeal, and nasopharyngeal) were collected from

each volunteer (subject numbers 14–63) during each of two visits (1/2) in every quarter (i.e., S1–S4). Green diamond symbols show swab

collection dates. Red bars denote flu shot vaccination dates (26 subjects). Black bars denote Flu Mist vaccination dates (19 subjects). The

dots on the X-axis filled in with color show musician types: Empty, non-musician (11); Green, pianist or conductor (2); Purple,

percussionist (5); Cyan, vocalist (4); Yellow, violinist (3); Gray, wind instrumentalist (25).

https://doi.org/10.1371/journal.pone.0188461.g001
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Fig 2. Bacterial community composition of respiratory microbiota in 36 human subjects. Bacterial genera with an average relative

abundance of�0.5% across the 36 samples are shown. Reads that were classified at the higher taxonomic levels other than genus are

denoted as “other”. Each sample name includes the quarter number S1–S4 (first digit), visit 1 or 2 (second digit), subject number (last three

digits), and type of swab (A, anterior nares [top panel]; N, nasopharynx [middle panel]; T, oropharynx [bottom panel]).

https://doi.org/10.1371/journal.pone.0188461.g002
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quantitative assays. Approximately 72% of the raw reads passed quality processing and were

used in subsequent analyses. The Roche 454 FLX+ sequencing raw read data (sff files) were

deposited in the NCBI Sequence Read Archive database (http://ncbi.nlm.nih.gov/sra) under

BioProject PRJNA339931, BioSample SAMN05615462, with 1107 SRA accession numbers

listed in S1 Table (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA339931). Sample

information and basic statistics of the sequences are summarized in S1 Table.

Respiratory bacterial community composition and ‘core microbiome’

OTUs clustered at 97% similarity were classified at the genus level by using QIIME 1.8 and the

RDP classifier downloaded on July 2015. Fig 2 shows bacterial taxa with an average relative

abundance of greater than 0.5% for samples collected on the first visit in each of the four quar-

ters (S11 [i.e., quarter 1 visit 1]; S1 Fig for S11, S21, S31, and S41 [visit 1 in each quarter]). The

results for 36 volunteers with samples collected on all eight visits were used in the comparison.

Among these, two first-visit samples had high Ct values in 16S quantitative PCR and an insuffi-

cient number of sequence reads. Therefore, the corresponding second-visit samples, S22015N

and S32017A, were used instead.

The set of major bacterial taxa (genera with a relative abundance of�0.5% or�1.0%) that

exist in>50% of the subjects was defined as the ‘core microbiome’ (Table 2). Both nasal and

nasopharyngeal microbiota contained a high content of the same three genera—Staphylococ-
cus, Corynebacterium, and Propionibacterium—which together constituted on average 77.4%

and 75.6% of all OTUs classified to genus and OTUs classified to higher levels (shown as

‘other’ on Fig 2), respectively. In contrast, Streptococcus was the sole dominant bacterial genus

Table 2. Major bacterial taxa of human respiratory microbiota. Analysis of data (quarter S1 visit 1) from 36 subjects with samples available for all four

quarters, showing the percentage of samples with a relative abundance of�0.5% or�1.0%. Data are shown in bold for percentage of samples�50%.

Bacterial genus Relative abundance (%) Percentage of samples with abundance

Average Standard deviation � 0.5% � 1.0%

Anterior nares

Staphylococcus 38.6 25.4 94.4 94.4

Corynebacterium 25.5 20.8 91.7 91.7

Propionibacterium 13.3 10.8 91.7 80.6

Streptococcus 3.0 8.1 50.0 33.3

Anaerococcus 0.8 1.2 52.8 22.2

Nasopharynx

Staphylococcus 42.0 30.2 94.4 94.4

Corynebacterium 22.6 24.0 88.9 86.1

Propionibacterium 11.0 27.4 83.3 83.3

Oropharynx

Streptococcus 52.8 18.3 100 100

Prevotella 7.1 5.7 100 94.4

Veillonella 6.1 4.7 97.2 88.9

Neisseria 4.3 6.7 77.8 58.3

Fusobacterium 4.0 7.3 80.6 55.6

Gemella 3.4 3.5 86.1 72.2

Actinomyces 3.4 3.5 83.3 77.8

Haemophilus 1.9 1.7 80.6 55.6

Granulicatella 1.4 1.6 72.2 52.8

Rothia 1.2 1.3 66.7 47.2

https://doi.org/10.1371/journal.pone.0188461.t002
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in the oropharyngeal microbiota, although various other bacteria were also present but at

much lower levels (Table 2).

Overall, bacterial taxa with an average relative abundance of�0.5% constituted over 90% of

the respiratory microbiota for all 432 samples (Fig 2; S1 Fig). A few subjects (1 to 5 out of 36

subjects at each collection time point) had taxa with an abundance of>10%, which did not

belong to the representative bacteria shown in the charts. These subjects had bacterial taxa that

were either absent or present only at substantially lower levels in many of the 36 subjects. Mor-
axella bacteria were found at high levels, particularly in nasal and nasopharyngeal samples.

The percentage of OTUs that were not classified to genus level and shown as ‘other’ was 4.03,

on average, with a standard deviation of 3.76, as calculated from the data for all 432 samples.

Among these, 29 (6.71%) samples had more than 10% of ‘other’ OTUs, i.e., they could not be

classified to the genus level by using the pipeline based on QIIME and the RDP classifier.

Bacterial community diversity and variability

Within- and between-subject comparisons of microbiome diversity across regions and time

points were conducted for 30 subjects that had a complete set of 24 swabs and at least 3000

reads per sample. Each of the 720 analyzed samples was rarified to 3000 reads.

Fig 3 summarizes the temporal variation of α-diversity for the three regions. The average α-

diversity was higher in the oropharynx than in the other two regions, i.e., oropharyngeal

Fig 3. Variation in average α-diversity as a function of upper respiratory region and time. Within-subject α-diversity values for 30

subjects that had a complete set of 24 swabs and at least 3000 reads per sample were computed by using the Shannon entropy and

averaged over each region and time point. Samples from the anterior nares (A) are red, samples from the nasopharynx (N) are blue, and

samples from the oropharynx samples (T) are green. Plotting is performed using the ‘boxplot’ function with the standard (default)

parameters. The filled bars (boxes) represent the 25th (top) and 75th (bottom) percentiles of the samples. The error bars cover the samples

to the furthest distance within the error range. By default, an outlier is a value that is more than 1.5 times the interquartile range away from

the top or bottom of the box. The diamond symbol represents the median of the samples.

https://doi.org/10.1371/journal.pone.0188461.g003
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communities were more diverse than in the other regions (Fig 3). A Wilcoxon signed-rank test

for paired samples to compare the average microbiomes in the anterior nares and nasopharynx

across the eight time points revealed no difference; only one of the eight tested sampled time

points (S12, the second visit in the first quarter) showed a marginally significant difference

(Fig 3). We used the same test to analyze the temporal variability of α-diversity in each region.

The average α-diversity for the oropharyngeal community was larger than that for the other

two regions at all time-points. We found no significant difference between the two visits

regardless of the quarter (P> 0.05). For each of the two visits, we compared α-diversities

between quarters for each of the three regions and found significant differences in 9 of the 36

comparisons (S2 Table). Although this suggests temporal variability of the respiratory micro-

biota for the studied military community, these results do not provide clear trends in temporal

Fig 4. Variation in β-diversity as a function of upper respiratory regions. Between-subject β-diversity values were computed for 30

subjects that had a complete set of 24 swabs and at least 3000 reads per sample. The weighted UniFrac distance was used in the principal

coordinate analysis of the distance matrices between the respiratory regions.

https://doi.org/10.1371/journal.pone.0188461.g004
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variability. The data could be analyzed by using additional methods. For example, the time

dependence of individual respiratory microbiomes could be investigated [23]. In addition, the

criteria to define extreme or unusual samples, subjects, or both need to be further explored.

The inter-individual diversity (β-diversity) for 30 subjects (720 samples) was computed by

using weighted UniFrac distances and visualized in Fig 4, using EMPeror [20]. The oropharyn-

geal region community formed a cluster of points well-separated from other two regions.

There was significant overlap among anterior nares and nasopharyngeal samples. A few points

“strayed” to the oropharyngeal cluster from the anterior nares and nasopharynx regions (Fig

4). These nasal and nasopharyngeal samples near the oropharyngeal cluster had a high content

of Streptococcus, a dominant oropharyngeal genus [24–26]. Of the four samples from subject

35, three were from quarter S3 (Fig 4). In addition, one oropharyngeal sample was very far

from the others (S11018T). Its compositional analysis indicated a high abundance of Morax-
ella, which was also observed in the anterior nares and nasopharyngeal samples of this subject.

Abundant Moraxella in oropharyngeal samples of some subjects, including children and pneu-

monia patients, was also observed in other studies [6, 25–28].

Further study of the respiratory microbiomes of the healthy garrisoned military population

in this project will provide a baseline understanding of normal respiratory microbiota, longitu-

dinal within subject community composition stability and of variations in the population

between individuals and across time. The large set of sequences for region V1–V3 of the bacte-

rial 16S rDNA and the comprehensive demographic information for the 50 subjects contain

valuable data that could be analyzed in depth, using specialized statistical tools, such as vegan

(https://cran.r-project.org/web/packages/vegan) and metagenomeSeq [29], to determine the

extent of association between the subject variables and microbiome profiles. Specific factors to

be analyzed in the future include occupation (e.g., musician versus non-musician, wind instru-

ment players versus other musicians), on-going use of asthma medications, influenza vaccina-

tion, and route of influenza vaccination (intramuscular versus intranasal).
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Bacterial taxa with an average relative abundance of�0.5% across the 36 samples are shown.
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pharynx).
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