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Universal Glucose Models for Predicting
Subcutaneous Glucose Concentration in Humans

Adiwinata Gani, Andrei V. Gribok, Yinghui Lu, W. Kenneth Ward, Robert A. Vigersky, and Jaques Reifman

Abstract—This paper tests the hypothesis that a ‘“‘universal,”
data-driven model can be developed based on glucose data from
one diabetic subject, and subsequently applied to predict subcuta-
neous glucose concentrations of other subjects, even of those with
different types of diabetes. We employed three separate studies,
each utilizing a different continuous glucose monitoring (CGM) de-
vice, to verify the model’s universality. Two out of the three studies
involved subjects with type 1 diabetes and the other one with type 2
diabetes. We first filtered the subcutaneous glucose concentration
data by imposing constraints on their rate of change. Then, using
the filtered data, we developed data-driven autoregressive mod-
els of order 30, and used them to make short-term, 30-min-ahead
glucose-concentration predictions. We used same-subject model
predictions as a reference for comparisons against cross-subject
and cross-study model predictions, which were evaluated using the
root-mean-squared error (RMSE) and Clarke error grid analysis
(EGA). We found that, for each studied subject, the average cross-
subject and cross-study RMSEs of the predictions were small and
indistinguishable from those obtained with the same-subject mod-
els. These observations were corroborated by EGA, where better
than 99.0% of the paired sensor-predicted glucose concentrations
lay in the clinically acceptable zone A. In addition, the predictive
capability of the models was found not to be affected by diabetes
type, subject age, CGM device, and interindividual differences. We
conclude that it is feasible to develop universal glucose models that
allow for clinical use of predictive algorithms and CGM devices for
proactive therapy of diabetic patients.

Index Terms—Diabetes, glucose prediction, glucose regulation,
inverse problems, mathematical model, regularization, system
identification.

I. INTRODUCTION

INIMALLY invasive continuous glucose monitoring
(CGM) devices are becoming the new state-of-the-art
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standard to measure and record a patient’s glycemic state as
frequently as every minute [1]. This information can be uti-
lized by patients to alter or improve their lifestyle, to tighten
their glycemic control, or alternatively, by a clinician to adjust
therapy. These frequent measurements can also be used by data-
driven models to forecast future values of subcutaneous glucose
concentration and avoid undesired hypo- and hyperglycemic
episodes [1]-[4].

In contrast to intermittent measurements, CGM devices col-
lect information so frequently that consecutive measurements
retain a large degree of temporal correlation. This correlation is
exploited by data-driven models to infer future values as a func-
tion of previous measurements [2]-[4]. However, because of the
availability of glucose signals at high sampling rates, developers
of data-driven models implicitly assume that the models need to
be tuned for a specific individual, thus increasing the burden of
model development and reducing their practical applicability.

For example, Sparacino et al. [3] use an autoregressive (AR)
model of order one, AR(1), which continuously adapts the model
coefficient to predict glucose concentrations up to 30 min ahead.
Although such a model can produce acceptable predictions, it
needs to be continuously adapted for every individual. Addition-
ally, in spite of the adaptive nature of the model, it introduces a
significant delay between predicted and measured values. This
delay is caused by the low order of the AR model, because
a single AR coefficient is not sufficient to capture the tempo-
ral variations of the time-series glucose signal. Separately, Dua
et al. [5] employ a Kalman filter to predict blood glucose by
continuously adjusting parameters of a first-principle model.
Although the first-principle model is significantly more flexible
than the AR(1) model, the continuous adaptation also makes
this model individual-specific.

Alternatively, in our recent work [4], we report an AR(30)
model with fixed coefficients, which successfully predicts the
glucose level of patients with type 1 diabetes. The AR (30) model
is able to yield accurate 30-min-ahead glucose-concentration
predictions with an average root-mean-squared error (RMSE) of
0.10 mmol/L (SD = 0.02) and a negligible prediction time lag of
0.2 min (SD = 0.4). Moreover, we observe that, due to the robust
nature of our algorithm with respect to the modeling parame-
ters, the proposed approach yields similar AR coefficients for
different individuals, suggesting the potential existence of “uni-
versal” (or “portable””) models, which could be applied without
modification to different individuals.

Here, we hypothesize that the short-term (30 min or less)
dynamics of glucose regulation is quite similar for differ-
ent diabetic individuals, where a single, universal AR model
can be used to make predictions across different patients. We
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TABLE I
LiIST OF THE THREE CGM DEVICES AND CORRESPONDING STUDIES

CGM Device iSense Guardian RT DexCom
Manufacturer iSense Corp. Medtronic Inc. DexCom Inc.
# of Subjects 9 18 7
Diabetes Type 1 1 2
Sampling Interval 1 5 5
(minutes)
Collection Time 5 6 36
(days)

tested this hypothesis with data collected from three different
studies, involving subjects with both type 1 and 2 diabetes, and
using three different CGM devices: iSense (iSense Corporation,
Wilsonville, OR) [6], Guardian RT (Medtronic, Inc., Northridge,
CA) [7], and DexCom (DexCom, Inc., San Diego, CA) [8].' We
developed data-driven AR models of a fixed order for each sub-
ject, as described in Gani et al. [4], and tested them on data
from other subjects from the same and from different studies.
We used the RMSE, prediction time lag, and Clarke error grid
analysis (EGA) as metrics to quantify the models’ performance,
and compared the resulting AR coefficients from the different
models developed for each subject.

Our results confirmed that the developed AR models (i.e., the
AR model coefficients) were not significantly dependent on a
given individual, diabetes type, or CGM device. This suggests
the feasibility of universal, individual-independent predictive
models, which can significantly reduce the burden of model
development as one model can be used to predict any one indi-
vidual, and opens the door for clinical use of predictive glucose
models together with CGM devices for proactive regulatory
therapy.

II. METHODS

A. Subject Selection and CGM Measurements

Deidentified data for this investigation were obtained from
three different independent studies using three different CGM
systems: iSense [6], Guardian RT [7], and DexCom [8]. A total
of 34 subjects gave their voluntary and written informed consent
to participate in these studies, which had received approval by
the appropriate institutional review boards. Table I summarizes
the three studies.

1) iSense Dataset: The purpose of this study was to evalu-
ate the accuracy of the iSense CGM system [6]. Nine subjects
were confined to the investigational site for the whole duration
of the study and limited to mild physical activity. Subjects were
included if they were between 18 and 70 years of age, had been
diagnosed with type 1 diabetes and treated with insulin for at
least 12 months, had body mass index <35.0 kg/m?, and had
glycated hemoglobin (HbAlc) >6.1%. Subjects were excluded
if they had acute and severe illness apart from diabetes, clin-
ically significant abnormal electrocardiogram, hematology or
biochemistry screening test, or any disease requiring use of an-
ticoagulants. In addition, subjects were excluded if they were

'Protocol for the study is available from http://clinicaltrials.gov/ct2/show/
NCT00529815?term=continuous+ glucose+moni

pregnant or lactating. Subcutaneous glucose measurements were
collected on a minute-by-minute basis for each of the nine sub-
jects for approximately five days with the iSense CGM system.
This minute-by-minute dataset was also used in our previous
work [4], where we describe the AR modeling framework ap-
plied here. However, to standardize the sampling rate across
studies, we downsampled the data to 5-min sampling intervals.
The 5-min sampling interval is half the “optimal” sampling in-
terval (10 min) recommended in the literature [9]. Additional
information about this independent study can also be found in
the work by Reifman et al. [10].

2) Guardian RT Dataset: The dataset with the Guardian
RT [7] CGM system was retrieved from the Diabetes Research
in Children Network (DirecNet) Website [11], which makes
continuous glucose data for six different studies involving chil-
dren with type 1 diabetes publicly available, along with the
corresponding protocols. For this paper, we used the DirecNet
study entitled “A pilot study to evaluate the navigator contin-
uous glucose sensor in the management of type 1 diabetes in
children,” which included 30 subjects. Subjects were included if
they were between 3 and 7 years old or between 12 and 18 years
old, had been diagnosed with type 1 diabetes for more than one
year, had been using insulin pump, and had HbAlc <10.0%.
Subjects were excluded if they had significant medical disorder,
had a severe hypoglycemic event resulting in seizure or loss of
consciousness in the last month, had used systemic or inhaled
corticosteroids in the last month, or had cystic fibrosis. Subjects
were provided with the Guardian RT CGM system for home us-
age, which collected subcutaneous glucose concentration every
5 min for six days. For the analysis in this paper, 12 subjects, out
of the total 30, were excluded because they did not possess any
consecutive 4000-min segment (i.e., 800 data points) without
data gaps.

3) DexCom Dataset: The purpose of the study was to in-
vestigate the short- and long-term effectiveness and benefits of
frequent CGM measurements (versus the infrequent, only before
each meal and at bedtime, fingerstick blood glucose measure-
ments). Seven subjects were studied and included on an ongoing
investigation from an independent study by R. A. Vigersky. Sub-
jects were included if they were older than 18 years of age, had
been diagnosed with type 2 diabetes for at least three months
and treated with insulin, and had HbA1c between 7% and 12%.
Subjects were excluded if they had been taking glucocorticoids,
amphetamines, anabolic, or weight-reducing agents. In addition,
subjects were also excluded if they were pregnant, lactating, or
planning to become pregnant. For this study, subjects continued
to take all medications that had been prescribed for diabetes
and other medical conditions, and followed their usual meal
plans and activity schedules. Investigators of the study did not
make any recommendations to the subjects regarding medica-
tions, weight, diet, or exercise at any time during the study.
Subjects were instructed to contact their primary care provider
for all treatment decisions and consultations. Subcutaneous glu-
cose measurements with the DexCom CGM system [8] were
collected every 5 min for each of the seven subjects for approxi-
mately eight weeks on 4 two-week cycles. A complete protocol
for this study is available online [8].
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The reason for selecting three different studies was to test the
hypothesis that universal models can be developed and applied
across different individuals, with different types of diabetes,
employing distinct CGM devices, i.e., we intended to test the
invariance of the dynamics of the glucose signal in diabetic
patients and the ability of AR models to capture it.

B. Predictive Algorithm

We applied a previously developed methodology [4] to obtain
glucose models for each one of the 34 subjects and predict their
glucose concentrations 30 min ahead of time. We used the first
4000 min (i.e., 800 data points with a 5-min sampling interval)
of available CGM data of each subject and filtered the data to
remove high-frequency noise. The filtering constrained the glu-
cose rate of change to ensure that the first-order time derivative
of the glucose signal was consistent with clinically observed val-
ues reported by Kovatchev et al. [12], i.e., £0.2 mmol/(L-min)
[(£4 mg/(dL-min)], while avoiding the introduction of time lags
between the filtered and the original CGM signals.

We used the first half of each subject’s filtered data to develop
an AR model for each subject. An AR model is a type of linear
model that infers a future signal ¢,,, attimen(n=m+ 1,.. ., N,
where N denotes the total number of data samples available for
modeling), based on a linear combination of antecedent samples
Un—; weighted by a fixed set of coefficients b;

m

gn = Zbign—i (1)
i=1

where m denotes the order of the model, i.e., the number of
previously observed and filtered glucose concentrations ¥, —;
used to predict a future glucose concentration g, . This fixed set
of coefficients b;,i =1, 2, . . ., m, which defines a model of order
m, describes the correlations in the signal. We calculated these
coefficients by the method of least squares [13] with an added
smoothness constraint to insure physiologic plausibility of the
obtained coefficients [4].

Once these coefficients were inferred, the model was subse-
quently used for predicting glucose concentrations [4], where
model performance was quantified by computing prediction
time lags and RMSEs, as well as by performing Clarke EGA.
The RMSE is defined as the square root of the mean of the
squared differences between the predicted signal ¢; and the fil-
tered observed signal y;, i =1,2,...,N

N
1
M — § 0. — 171.)2

and the prediction time lag is calculated based on the cross-
correlation between the filtered and predicted signals. The lag,
characterized by the peak of the cross-correlation function, pro-
vides an accurate estimate of the delay in the predictions [14].

C. Validation Scenarios

To test the hypothesis that we can develop one model, based
on one subject’s signals, and universally apply this model to
other diabetic subjects, we examined three scenarios using 34
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Fig. 1. Coefficients of the AR models for (a) the nine iSense subjects, (b) the
18 Guardian RT subjects, (c) the seven DexCom subjects, and (d) the combined
34 subjects for all three studies.

subjects from the three studies. We used the first 2000 min of the
filtered signals of each subject to train the AR models (training
dataset) and the next 2000 min to test the predictions (testing
dataset). The three scenarios were created to allow for the com-
parison of model performance on the same testing datasets by
applying distinct models derived from different training datasets
as follows.

1) Scenario I [Same-subject model (same subject, same CGM
device)]: For each of the 34 subjects, a model was trained
on each subject’s training dataset, resulting in 34 differ-
ent models. Each model was tested on that subject’s test-
ing dataset. For example, the Guardian RT training data
for subject 5 were used to derive a model for that sub-
ject, which was subsequently used to predict that subject’s
testing data.

Scenario I [ Cross-subject model (different subjects, same
CGM device)]: For each subject within a given study, the
models developed in scenario I for the remaining subjects
of that same study were applied to the testing dataset of
the subject. For example, the models developed for the
remaining 17 subjects in the Guardian RT study were
applied to the testing dataset of subject 5 of the same
Guardian RT study.

Scenario III [Cross-study model (different subjects, dif-
ferent CGM devices)]: Similarly, for each subject within
a given study, the models developed in scenario I for the
subjects in the other two studies were applied to the testing
dataset of the subject. For example, the models developed
for the nine subjects in the iSense study and the seven
subjects in the DexCom study were applied to the testing
dataset of subject 5 of the Guardian RT study.

2

~

3

~

III. RESULTS

Fig. 1 shows the AR model coefficients b;, i = 1, 2, ..., 30,
for nine iSense subjects (a), 18 Guardian RT subjects (b), seven
DexCom subjects (c), and the combined 34 subjects for all three
studies (d). Fig. 1(d) shows that the coefficients b;, and hence
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TABLE I
MEAN AND STANDARD DEVIATION (SD) OF THE 30 AR MODEL COEFFICIENTS
FOR EACH OF THE THREE STUDIES

AR
Coeff. iSense Guardian DexCom
b; Mean  (SD) Mean  (SD) Mean  (SD)
1 0.8123 (0.0246) 0.8271 (0.0314) 0.8039 (0.0342)
2 0.5135 (0.0069) 0.5176 (0.0086) 0.5103 (0.0100)
3 0.2375 (0.0101) 0.2324 (0.0118) 0.2387 (0.0109)
4 0.0108 (0.0194) | -0.0003 (0.0235) | 0.0148 (0.0245)
5 -0.1470 (0.0216) [ -0.1602 (0.0263) | -0.1421 (0.0291)
6 -0.2289 (0.0173) [ -0.2402 (0.0209) | -0.2247 (0.0250)
7 -0.2401 (0.0093) [ -0.2465 (0.0106) | -0.2377 (0.0144)
8 -0.1960 (0.0075) [ -0.1960 (0.0072) | -0.1956 (0.0024)
9 -0.1178 (0.0153) [ -0.1115 (0.0168) | -0.1190 (0.0132)
10 -0.0283 (0.0212) [ -0.0171 (0.0236) | -0.0302 (0.0231)
11 0.0526 (0.0226) 0.0663 (0.0248) 0.0510 (0.0277)
12 0.1104 (0.0193) 0.1237 (0.0207) 0.1099 (0.0263)
13 0.1375 (0.0129) | 0.1479 (0.0131) [ 0.1383 (0.0198)
14 0.1335 (0.0074) 0.1389 (0.0072) 0.1355 (0.0099)
15 0.1039 (0.0106) 0.1035 (0.0115) 0.1063 (0.0037)
16 0.0582 (0.0165) 0.0522 (0.0174) 0.0601 (0.0127)
17 0.0077 (0.0200) | -0.0026 (0.0202) | 0.0083 (0.0198)
18 -0.0369 (0.0200) [ -0.0494 (0.0190) | -0.0381 (0.0230)
19 -0.0674 (0.0168) [ -0.0798 (0.0148) | -0.0705 (0.0216)
20 -0.0795 (0.0116) [ -0.0894 (0.0098) | -0.0839 (0.0165)
21 -0.0729 (0.0073) [ -0.0786 (0.0077) | -0.0776 (0.0088)
22 -0.0515 (0.0085) [ -0.0520 (0.0100) | -0.0552 (0.0029)
23 -0.0216 (0.0123) [ -0.0171 (0.0123) | -0.0233 (0.0091)
24 0.0089 (0.0148) 0.0172 (0.0130) 0.0098 (0.0146)
25 0.0325 (0.0150) 0.0427 (0.0121) 0.0360 (0.0170)
26 0.0439 (0.0128) 0.0534 (0.0102) 0.0488 (0.0155)
27 0.0404 (0.0085) 0.0471 (0.0075) 0.0452 (0.0105)
28 0.0231 (0.0037) 0.0250 (0.0047) 0.0260 (0.0027)
29 -0.0039 (0.0077) [ -0.0082 (0.0066) | -0.0047 (0.0074)
30 -0.0354 (0.0161) [ -0.0463 (0.0130) | -0.0406 (0.0179)

the glucose models, did not vary significantly from subject to
subject and from study to study, i.e., they were independent of a
subject’s age, diabetes type, and CGM device used to measure
the glucose concentration. The figure also validated our hy-
pothesis that our methodology yields portable glucose models.
Table II provides additional information to assess the similarity
of the AR coefficients b; across the three studies. The columns
in the table show the mean values (and standard deviations) of
each of the 30 AR coefficients for each study, which were ob-
tained by averaging each coefficient b; across the models in each
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Fig. 2. (a) Raw and filtered data for Guardian RT subject 5, and (b) corre-
sponding 30-min-ahead glucose predictions for this subject based on scenario I:
same-subject predictions (RMSE = 0.20 mmol/L, no time lag), scenario II:
cross-subject predictions based on a model trained on Guardian RT subject 13’s
data (RMSE = 0.21 mmol/L, no time lag), and scenario III: cross-study model
trained on iSense subject 8’s data (RMSE = 0.22 mmol/L, no time lag), as well
as on a model trained on DexCom subject 4’s data (RMSE = 0.24 mmol/L, no
time lag).

study. The table indicates that the coefficients, in particular, the
ones with relatively large values (>0.05), were indeed similar
across the studies and that their differences were, in general,
within one standard deviation. This suggests that a universal
model could be obtained from one subject’s data and used to
predict another subject’s glucose levels across a short prediction
horizon, completely bypassing the need to develop and fine tune
the model for that subject. However, because the coefficients b;
describe the correlations in the time-series signal, their absolute
values are a function of the sampling frequency of the data used
to develop the model. Thus, models developed on glucose data
sampled at different frequencies are expected to yield slightly
different coefficients.

For demonstration purposes, we randomly chose a subject,
Guardian RT subject 5, and used models developed from this and
other subjects’ data to predict this subject’s glucose concentra-
tions (in the testing dataset). Fig. 2(a) shows the raw and filtered
glucose signals, and Fig. 2(b) shows the 30-min-ahead predic-
tions for four different models, which exemplify the models’
portability in the three scenarios. Fig. 2(a) shows the difference
between the raw and the filtered data, indicating how the filtering
algorithm smoothed the sharp excursions in the raw signal. On
average, the filtering process removed about 7% of the signal’s
energy, which constitutes an acceptable loss [15]. In practice,
the optimal amount of filtering poses a tradeoff between missed
and false alarms for hypo- and hyperglycemic episodes. More
filtering produces smoother signals and increases the frequency
of missed alarms. Conversely, less filtering retains the sharp ex-
cursions of the raw signals, increasing the frequency of false
alarms. The results in Fig. 2(b) indicate that the predictions of
the Guardian RT subject 5 based on four different models were
nearly indistinguishable from one another.
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Fig. 3. Clarke EGA plot of paired predicted and raw glucose signals for the

Guardian RT subject 5 corresponding to the four models in Fig. 2(b). For the
1600 data points of the four 30-min-ahead model predictions, 99.25% and 0.75%
of the data lay in the clinically acceptable zones A and B, respectively.

The predictions based on Guardian RT subject 13’s model
illustrated model portability across different subjects within the
same study (scenario II). Similarly, the predictions based on
iSense subject 8’s model and DexCom subject 4’s model demon-
strated portability across different studies and across different
types of diabetes (scenario III). The same-subject predictions
(Guardian RT subject 5) in scenario I served as a reference for
comparison among the different models.

To assess the utility of the predictions using clinically ac-
ceptable metrics, we performed Clarke EGA [16], which maps
pairs of sensor-predicted glucose concentrations into five zones,
A-E, of varying degrees of accuracy and inaccuracy of glucose
estimation. Values in zones A and B are clinically acceptable,
values in zone C may result in unnecessary corrections, values
in zone D could lead to incorrect treatments and detections, and
values in zone E represent erroneous treatment. Fig. 3 shows
the composite EGA scatter plot for the Guardian RT subject 5
corresponding to the four model predictions in Fig. 2(b). Each
of the 1600 predictions, i.e., 400 predictions for each model,
was paired with the corresponding raw glucose concentration
in Fig. 2(a). Of the 1600 data points, 1588 (or 99.25%) lay
in zone A and 12 (or 0.75%) in zone B. For the 12 points in
zone B, each of the four models contributed three points, and
these points corresponded to predictions at two time instances,
2150 and 2660 min, where the deviations between the raw and
the filtered signals were the largest [see Fig. 2(a)]. These results
further demonstrated the equivalent predictive power obtained
with the same-subject model, the cross-subject model, and the
cross-study model.

We also performed Clarke EGA for each of the three studies
using the same-subject model predictions (scenario I), where
the composite results of each analysis were plotted on separate
graphs (not shown). Of the 3600 entries (400 data points x 9
subjects) for the iSense study, 3564 (99.0%) lay in zone A, 35
in zone B, and 1 in zone D. Of the 7200 entries (400 x 18) for

the Guardian study, 7150 (99.3%), 32, and 18 lay in zones A,
B, and D, respectively. Similarly, of the 2800 entries (400 x 7)
for the DexCom study, 2787 (99.5%), 12, and 1 lay in zones A,
B, and D, respectively. These results demonstrated the clinical
utility of our predictive models.

To summarize the performance of the models, we tabulated
the results of the 30-min-ahead predictions for the three studies
involving the three scenarios. Table III shows the RMSEs and
prediction time lags for the nine iSense subjects tested using
different models from the three scenarios. In scenarios II and
I, the reported RMSEs and time lags were averaged values.
For example, for iSense subject 1, the scenario II RMSE of
0.13 mmol/L and time lag of 1.3 min represent averaged val-
ues of the predictions over the other eight iSense subjects (not
including iSense subject 1). Similarly, for iSense subject 1, the
scenario III RMSE of 0.12 mmol/L and time lag of 1.2 min rep-
resent averaged values of the predictions over the 18 Guardian
RT subjects and the seven DexCom subjects. Equivalent tab-
ulations are shown in Tables IV and V for the 18 Guardian
RT subjects and the seven DexCom subjects, respectively. The
results in Tables III-V show not only that the glucose mod-
els derived using our methodology did not vary significantly
[as shown in Fig. 1(d)], but that they also yielded very accu-
rate forecasts (negligible average RMSEs and prediction time
lags).

Finally, to verify that the employed datasets did not only rep-
resent well-treated diabetic patients with glucose levels within
the euglycemic range and that the filtering procedure did not
oversmooth the raw data, we calculated the total number of
hypo- and hyperglycemic episodes in the raw, filtered, and pre-
dicted data. Because there is no consensus on what constitutes
a hypo- or hyperglycemic episode [17], we adopted a lower
threshold for hypoglycemia of 3.9 mmol/L (70 mg/dL) and an
upper threshold for hyperglycemia of 10 mmol/L (180 mg/dL),
required an interepisode separation of at least 30 min, and a
minimum of 30 min (seven consecutive data points) outside of
the euglycemic range to count the excursion as an episode.
Table VI lists the cumulative number of hypo- and hyper-
glycemic episodes, and related statistics (averaged over the cor-
responding subjects) for the raw, filtered, and predicted data for
each of the three studies. The results confirmed that the sub-
jects did exhibit glucose excursions and that the filtering did not
significantly smoothed them out. Overall, the model correctly
predicted 89 out of 93 hyperglycemic episodes and 20 out of 23
hypoglycemic episodes.

We also performed sensitivity analysis by considering 20 min
(five consecutive data points), instead of 30 min, outside of the
euglycemic range for counting the excursion as an episode.
This more conservative definition yielded a slight decrease in
prediction accuracy, with the model correctly predicting 90 out
of 97 hyperglycemic episodes and 20 out of 27 hypoglycemic
episodes (entries inside the parenthesis in the last two columns
in Table VI).

IV. DISCUSSION

The portability properties demonstrated by our models can
be attributed to two factors: the conserved nature of the
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TABLE III
MODEL PERFORMANCE FOR THE NINE iSense SUBJECTS
30-min-ahead Predictions Using Models Trained on
iSense iSense Guardian RT & DexCom
Testing Same-Subject (Scenario I) Cross-Subject (Scenario II) Cross-Study (Scenario IIT)
Subject RMSE Lag RMSE (SD) Lag (SD) RMSE (SD) Lag (SD)
# (mmol/L) (minutes) (mmol/L) (minutes) (mmol/L) (minutes)
1 0.14 5.0 0.13  (0.01) 1.3 (23) 0.12 (0.01) 12 22
2 0.15 0.0 0.19 (0.03) 0.0 (0.0) 0.18 (0.02) 0.0 (0.0)
3 0.20 0.0 021 (0.02) 0.0 (0.0) 0.20 (0.02) 0.0 (0.0)
4 0.17 0.0 0.18 (0.02) 1.3 (23) 0.17  (0.02) 26 (2.5
5 0.20 0.0 0.23  (0.01) 0.0 (0.0) 0.22 (0.01) 0.0 (0.0)
6 0.19 0.0 0.21 (0.02) 0.0 (0.0) 0.20 (0.02) 0.0 (0.0)
7 0.16 0.0 0.17 (0.01) 0.0 (0.0) 0.16 (0.01) 0.0 (0.0)
8 0.19 0.0 0.18 (0.01) 0.0 (0.0) 0.18 (0.01) 0.0 (0.0)
9 0.17 0.0 0.14 (0.01) 0.0 (0.0) 0.14 (0.01) 0.0 (0.0)
Average (SD) | 0.17 (0.02) 0.6(1.7) | 0.18 (0.03) 03 (12 0.17  (0.03) 04 (1.4
TABLE IV
MODEL PERFORMANCE FOR THE 18 GUARDIAN RT SUBJECTS
30-min-ahead Predictions Using Models Trained on
Guardian RT Guardian RT iSense & DexCom
Testing Same-Subject (Scenario I) Cross-Subject (Scenario II) Cross-Study (Scenario IIT)
Subject RMSE Lag RMSE (SD) Lag (SD) RMSE (SD) Lag (SD)
# (mmol/L) (minutes) (mmol/L) (minutes) (mmol/L) (minutes)
1 0.14 0.0 0.14 (0.01) 0.0 (0.0 0.14 (0.01) 0.0 (0.0
2 0.30 0.0 0.35 (0.02) 0.0 (0.0 0.36 (0.02) 0.0 (0.0
3 0.31 0.0 0.32 (0.02) 0.0 (0.0 0.33  (0.03) 0.0 (0.0
4 0.21 0.0 0.17 (0.02) 0.0 (0.0 0.18 (0.02) 0.0 (0.0
5 0.20 0.0 0.21 (0.01) 0.0 (0.0 0.22 (0.01) 0.0 (0.0
6 0.24 0.0 0.26 (0.02) 0.0 (0.0 0.26 (0.02) 0.0 (0.0
7 0.25 0.0 0.24 (0.02) 0.0 (0.0 0.25 (0.02) 0.0 (0.0
8 0.25 0.0 0.25 (0.02) 0.0 (0.0 0.26 (0.02) 0.0 (0.0
9 0.09 0.0 0.09 (0.01) 0.0 (0.0) 0.09 (0.01) 0.0 (0.0
10 0.17 0.0 0.19 (0.03) 0.0 (0.0) 0.20 (0.03) 0.0 (0.0
11 0.11 0.0 0.11 (0.01) 0.6 (1.7) 0.12 (0.01) 0.6 (1.7)
12 0.11 0.0 0.09 (0.01) 0.0 (0.0) 0.09 (0.01) 0.0 (0.0
13 0.21 0.0 0.21 (0.02) 0.6 (1.7) 0.22 (0.02) 0.0 (0.0
14 0.27 0.0 0.25 (0.02) 1.5 (23) 0.26 (0.02) 3.1 (@25)
15 0.18 0.0 0.17 (0.01) 0.0 (0.0) 0.18 (0.02) 0.0 (0.0
16 0.22 0.0 0.24 (0.02) 0.0 (0.0 0.24 (0.02) 0.0 (0.0
17 0.25 0.0 0.27 (0.04) 0.0 (0.0) 0.29 (0.04) 0.0 (0.0
18 0.27 0.0 0.24 (0.02) 0.0 (0.0) 0.25 (0.02) 0.0 (0.0
Average (SD) | 0.21 (0.06) 0.0 (0.0) 0.21 (0.07) 0.1 (0.8) 0.22 (0.08) 02 (1.0

frequency content in the glucose signal of diabetic patients and
the properties of our modeling approach.

A recent study by Rahaghi et al. [18] shows that the dynamics
in the blood glucose time-series signal of diabetic patients can be
characterized by four distinct frequency ranges. These different
frequency ranges characterize different physiologic mechanisms
and are best described by the periodicity of their oscillations. The
highest frequency range, with periods between 5 and 15 min, is

generated by pulsatile secretion of insulin. The second highest,
ultradian glucose oscillations, corresponds to periods between
60 and 120 min. Exogenous inputs, such as meals and insulin,
generate oscillations with periods between 150 and 500 min,
and finally, circadian oscillations are responsible for the low-
frequency range, with periods longer than 700 min.

Analysis of the time-series glucose signals of all subjects in
the three studies confirmed these findings and, more importantly,
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TABLE V
MODEL PERFORMANCE FOR THE SEVEN DEXCOM SUBJECTS
30-min-ahead Predictions Using Models Trained on
DexCom DexCom iSense & Guardian RT
Testing Same-Subject (Scenario I) Cross-Subject (Scenario II) Cross-Study (Scenario III)
Subject RMSE Lag RMSE (SD) Lag (SD) RMSE (SD) Lag (SD)
# (mmol/L) (minutes) (mmol/L) (minutes) (mmol/L) (minutes)
1 0.18 0.0 0.19 (0.02) 0.0 (0.0 | 019 (0.02) | 0.0 (0.0)
2 0.13 0.0 0.13 (0.01) 0.0 (0.0) | 0.14 (0.01) | 0.0 (0.0)
3 0.14 0.0 0.17 (0.02) 0.0 (0.0) | 0.17 (0.01) | 0.0 (0.0)
4 0.19 0.0 0.17 (0.02) 0.0 (0.0) | 017 (0.01) | 0.0 (0.0)
5 0.19 0.0 0.19 (0.02) 0.0 (0.0) | 0.19 (0.02) | 0.0 (0.0)
6 0.15 0.0 0.17 (0.02) 0.0 (0.0) | 018 (0.02) | 0.0 (0.0)
7 0.13 0.0 0.13 (0.01) 0.0 (0.0) | 0.12 (0.01) | 0.0 (0.0)
Average (SD) | 0.16 (0.03) 0.0 (0.0) 0.16  (0.03) 0.0 (0.0) | 0.17 (0.03) | 0.0 (0.0)
TABLE VI

CUMULATIVE NUMBER OF HYPO- AND HYPERGLYCEMIC EPISODES AND RELATED STATISTICS FOR THE RAW, FILTERED, AND PREDICTED DATA
FOR EACH OF THE THREE STUDIES

Min (avg.) Max (avg.) Mean (avg.) SD (avg.) Total # Hyperglycemic Total # Hypoglycemic
(mmol/L) (mmol/L) (mmol/L) (mmol/L) Episodes Episodes
iSense (9 subjects)
Raw 3.95 15.81 8.72 2.61 25 (26) 44
Filtered 4.38 14.70 8.72 2.52 24 (24) 3(3)
Predicted 4.28 14.87 8.69 2.55 24 (25) 3(3)
Guardian RT (18 Subjects)
Raw 3.41 16.75 8.99 3.45 49 (51) 17 21)
Filtered 3.92 16.30 8.99 3.38 48 (48) 15 (15)
Predicted 3.77 16.40 8.96 3.41 49 (49) 15 (15)
DexCom (7 subjects)

Raw 4.66 14.00 8.48 1.97 19 (20) 2()
Filtered 5.21 12.61 8.48 1.87 16 (16) 2(2)
Predicted 5.09 12.59 8.46 1.90 16 (16) 2(2)

The entries inside the parenthesis indicate the cases when we used a minimum of 20 consecutive minutes, instead of 30 min, outside of the euglycemic range for counting the excursion as an episode.
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Fig. 4. Power spectrum density profiles for each of the three studies, averaged
over the subjects in each study. The abscissa axis is plotted as periods (i.e., the
reciprocal of frequencies) of oscillations.

1 1
20 25 30

15
Period (hour)

showed that the frequency content in the signals is conserved
across subjects. Fig. 4 shows the power spectrum density profiles
for each of the three studies, averaged over the subjects in each

study. Note that while the amplitude of the profiles is different
for each of the studies, the periodicity (i.e., the location of the
peaks on the x-axis) is conserved across the studies. Perhaps
this finding should not be too surprising as the conservation of
biological rhythms, such as the circadian rhythm, across species,
or even kingdoms, is a well-known phenomenon [19].

This similarity in the frequency content of the glucose sig-
nals was exploited by the AR models. Periodic signals like
glucose concentration can be fully characterized by three pa-
rameters: amplitude, frequency, and phase of the underlying
oscillations. However, a unique property of AR models is their
invariance with respect to a signal’s amplitude and phase, and
sole dependency on its frequency [14]. In fact, a sequence of
AR coefficients captures and represents the frequency content
of a time-series signal. Therefore, the development of AR mod-
els from signals with similar frequency content inevitability
produced similar (or portable) models, regardless that different
time-series signals recorded from different subjects had differ-
ent amplitudes and initial phases. It is this invariance of the
AR coefficients to the glucose signal’s amplitude and phase
that affords model portability across subjects with type 1 and
type 2 diabetes. Type 1 diabetes patients usually have larger
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glucose-level variations than type 2 patients. However, as long
as these variations contain the same frequency information, AR
models shall remain portable across them. Moreover, because of
the frequency-dependent nature of the AR coefficients, informa-
tion concerning exogenous inputs, such as meals and exercise,
is automatically incorporated into the models as long as this
information is present in the training data.

We expect, however, if some of the subjects were nondiabetic
and fasting, that the models’ portability could be jeopardized be-
cause the glucose dynamics would be different in this case. This
would be particularly relevant for the highest frequency compo-
nent of the glucose time-series signal, i.e., the shortest periods
spanning between 5 and 15 min, because while these periods
are prominent in nondiabetic, fasting individuals [18], they are
drastically attenuated in diabetic patients, in particular, in type 1
patients. In diabetic patients, insulin-generating cells responsi-
ble for pulsatile secretion of insulin, and the corresponding 5- to
15-min periods, are severely handicapped, essentially eliminat-
ing these periods in the glucose signals [9], [20]. Moreover, the
blood-to-interstitial transport acts as a low-pass filter, reducing
the high-frequency dynamics in the CGM signals [21], which
are further attenuated by our filtering procedure.

Filtering of the high-frequency signal, required to yield con-
sistent AR coefficients and robust models [4], could have the
unintended consequence of smoothing out hypo- and hyper-
glycemic episodes in the glucose data. Our filtering procedure,
however, did not significantly impact the ability to capture these
episodes and, hence, the clinical usefulness of our approach.
Table VI shows that our models correctly predicted 96% of the
hyperglycemic episodes and 87% of the hypoglycemic episodes
present in the three studies. Sensitivity analysis using a more
conservative definition of hypo- and hyperglycemic episodes
(i.e., 20 instead of 30 consecutive minutes outside of the eug-
lycemic range) only slightly decreased the prediction accuracy
of these cases.

Another contributing property for the AR model portability
relates to the limits imposed on the model coefficients by the
constrained least-squares method. Besides fitting the AR model
to the data, the employed constrained least-squares method also
limits the curvature (i.e., the norm of the second derivative) of
the AR coefficients [4]. This is illustrated in Fig. 1, where the
shape of the coefficients can be loosely described as a dampened
sine wave that reflects the periodic nature of the glucose signal,
and where the values of the coefficients gradually decrease as
the time lag (or coefficient number) increases. This behavior
of the AR coefficients is intuitively correct, as we expect the
glucose data to gradually lose intersample correlations as the
time lag between samples increases. However, had we used the
standard least-squares method (instead of the constrained one)
to obtain the AR-model coefficients, the resulting coefficients
would have exhibited unphysiologic behavior, with their values
not gradually decreasing, which would incorrectly indicate that
intersample correlations do not decrease as a function of time
[4].

Analysis of Fig. 2 is revealing in terms of the models’ pre-
dictive capabilities, as it shows that predictions produced by
different models are virtually indistinguishable with practically

identical prediction errors. For example, the same-subject pre-
dictions (Guardian RT subject 5 model, scenario I) resulted
in a RMSE of 0.20 mmol/L, while the cross-subject predictions
(Guardian RT subject 13 model, scenario II) resulted in a RMSE
of 0.21 mmol/L. The two cross-study predictions in scenario III,
iSense subject 8 model, and DexCom subject 4 model resulted
in RMSEs of 0.22 and 0.24 mmol/L, respectively. These ob-
servations were corroborated by Clarke EGA, where more than
99.0% of the paired sensor-predicted glucose concentrations lay
in the clinically relevant zone A (see Fig. 3).

Table IV shows that although the models were portable,
their performance, in terms of RMSE, may vary from subject
to subject. For example, the RMSE for subject 9 in scenario
I was 0.09 mmol/L, whereas for subject 2, the RMSE was
0.30 mmol/L. This difference in prediction error for specific
subjects was due to the different amounts of noise present in dif-
ferent subjects’ data. However, as can be seen from Tables I1I-V,
for a given subject, the models’ performance is practically
identical.

Analysis of Tables III and IV also reveals that sometimes
a small time lag was introduced in the cross-subject and the
cross-study scenarios. This small time lag was, most likely,
due to small differences in glucose dynamics across different
individuals. AR models would exhibit prediction lags if they
failed to account for some frequency component present in the
test signal. Such small differences in frequency components
do exist in our datasets and could be the reason for the small
prediction time lags. The introduction of a 5-min lag for iSense
subject 1 in scenario I (see Table III) was, most likely, due to
small frequency differences between this subject’s training and
testing data.

We note that our results on model portability are only valid
for AR-type models, and we do not claim the nonexistence of in-
terindividual variability in glucose dynamics. As was discussed
previously, AR models capture the signal’s frequency informa-
tion, and are invariant to the signal’s phase and amplitude. The
latter property is not shared by other modeling approaches, such
as those based on ordinary differential equations or harmonic
regression, which prevents their portability.

V. CONCLUSION

In conclusion, we have shown that it is possible to develop
stable, universal glucose models that capture the correlations
in glucose time-series signals of diabetic patients. Given con-
tinuous glucose signals from a patient, such universal models
could be readily used to make near-future glucose concentra-
tion predictions for other patients without any need for model
customization. This finding has significant practical and clinical
implications, as it opens the door for integration of CGM devices
and predictive algorithms for model-based, proactive therapy of
diabetic patients. With this proof-of-concept established, future
work shall concentrate on prospective, real-time applications.
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