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Predicting Subcutaneous Glucose Concentration
in Humans: Data-Driven Glucose Modeling

Adiwinata Gani, Andrei V. Gribok, Srinivasan Rajaraman, W. Kenneth Ward, and Jaques Reifman∗

Abstract—The combination of predictive data-driven models
with frequent glucose measurements may provide for an early
warning of impending glucose excursions and proactive regula-
tory interventions for diabetes patients. However, from a mod-
eling perspective, before the benefits of such a strategy can be
attained, we must first be able to quantitatively characterize the
behavior of the model coefficients as well as the model predictions
as a function of prediction horizon. We need to determine if the
model coefficients reflect viable physiologic dependencies of the in-
dividual glycemic measurements and whether the model is stable
with respect to small changes in noise levels, leading to accurate
near-future predictions with negligible time lag. We assessed the
behavior of linear autoregressive data-driven models developed
under three possible modeling scenarios, using continuous glucose
measurements of nine subjects collected on a minute-by-minute
basis for approximately 5 days. Simulation results indicated that
stable and accurate models for near-future glycemic predictions
(<60 min) with clinically acceptable time lags are attained only
when the raw glucose measurements are smoothed and the model
coefficients are regularized. This study provides a starting point
for further needed investigations before real-time deployment can
be considered.

Index Terms—Diabetes, glucose regulation, inverse prob-
lems, mathematical model, prediction, regularization, system
identification.

I. INTRODUCTION

R ECENT developments in continuous glucose monitoring
(CGM) devices open new opportunities for glycemia man-

agement of diabetes patients. Modern CGM devices provide a
minimally invasive mechanism to measure and record a patient’s
current glycemic state as frequently as every minute. Although
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such devices measure glucose concentrations in the subcuta-
neous tissue, instead of in the blood, the frequent measure-
ments are clinically useful, as they provide information about
a patient’s temporal glucose variability [1]. This benefit is in
contrast to the current and commonly used fingerstick blood
glucose meter in which only limited intermittent daily mea-
surements are performed. CGM devices, however, only mon-
itor current glucose concentrations, providing alerts when a
blood glucose excursion is already underway (i.e., the glucose
concentration may already be at an unacceptable high or low
level) rather than regulating glucose interventions in a proactive
manner.

The idea, originally suggested by Bremer and Gough [2], is to
use CGM time-series signals and data-driven models to predict
near-future glucose concentrations from past signals and inte-
grate this predictive capability with CGM devices to anticipate
glucose excursions and adjust therapy before concentrations
drift from the desired range. Data-driven models represent a
class of modeling techniques where the relationships between
input and output process variables that characterize the underly-
ing phenomenon being modeled are learned, during the training
phase, from existing input–output data. Once the relationships
have been learned, given new, unseen input process data, the
models can accurately predict, up to a certain prediction hori-
zon, the corresponding output as long as these data are within
the envelope of relationships learned in the training phase.

A few data-driven techniques that employ glucose measure-
ments to derive a model or to adjust a model’s coefficients have
been proposed to predict and control glucose concentrations in
humans. For example, Trajanoski [3] proposes a radial-basis-
function neural network model to predict and control subcu-
taneous glucose concentrations, and Dua et al. [4] employ a
Kalman filter to adjust the parameters of a first-principles model
for the prediction and control of blood glucose. The performance
of these techniques, however, was only tested on simulated data
and their performance on real data is unknown. Moreover, the
training of neural networks requires the solution of a nonconvex
optimization and the resulting network weights, or model co-
efficients, lack interpretability. Conversely, Kalman filters pose
different implementation challenges. They require the availabil-
ity of a high-fidelity first-principles model capable of accounting
for meals and physical activity, which, given the complexity of
the underlying physiology of glucose regulation coupled with
the nonlinear dynamics of insulin action and glucose kinetics,
has been elusive and remains an active area of research [5]–[7].

In contrast, data-driven autoregressive (AR) models are sim-
pler and possess a number of advantages over the aforemen-
tioned techniques. AR models are linear, which allows for an
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explicit analysis of their stability and guarantees that the training
process involves the solution of a convex optimization problem
with a unique minimum. The simplicity of AR models is also
reflected in the interpretability of the model coefficients, which,
akin to the coefficients of an autocorrelation function (ACF),
describe the dependencies present in the time-series data. More-
over, if trained with sufficient and representative data, AR mod-
els can learn and generalize across the daily variations of an
individual’s glucose concentration.

Despite their potential benefits, to date, only Cobelli’s [8], [9]
and our group [10] have proposed AR models for predicting
individual-specific glucose concentrations. In [8], Sparacino
et al. use a first-order AR model, AR(1), in which the model’s
coefficient is dynamically computed at each time step through a
weighted least squares. They preprocess (smooth) the raw CGM
data to remove high-frequency noise with a low-pass first-order
Butterworth filter and find AR models with order larger than one
to be unstable and AR(1) models with fixed coefficients to yield
unacceptable prediction lags with delays equal to the predic-
tion horizon. To assess the quality of the predictions, Sparacino
et al. use the mean-squared prediction error (MSPE) and the time
lag between the predicted and the smoothed signals as metrics.
For a 30-min prediction horizon with weight (or forgetting fac-
tor) equal to 0.8, they report a median MSPE of 1.3 mmol2/l2

(413 mg2/dl2) and an average lag of 3.79 min (SD = 18.01)
on nadir-to-peak trends and an average lag of 5.29 min
(SD = 12.63) on peak-to-nadir trends. They report lags at only
peaks and nadirs because prediction delays are longest at these
points. However, these lags are computed at 75% of peak-to-
nadir and nadir-to-peak distances, in effect masking and reduc-
ing the true time lags. Moreover, they do not report if additional
lags (between the smoothed and the raw signals) are introduced
by the Butterworth filter, which could further increase the un-
derestimation of the true time lags.

In our previous study [10], we use a tenth-order AR model,
AR(10), with (fixed) coefficients determined by regularized least
squares using the raw (unsmoothed) CGM time-series data. We
employ the root- mean-squared error (RMSE) as a metric to
assess the quality of the predictions, where the RMSE is de-
fined as the square root of the mean-squared distance between
the predicted and the raw signals. We report small prediction
errors, with an average RMSE of 1.24 mmol/l (22.3 mg/dl) for
a 30-min prediction horizon. However, we do not provide an
assessment of the resulting prediction time lags, which we later
observed to be approximately equal to the prediction horizon.
These relatively large time lags reduce (or eliminate) the clinical
benefits of the predictions.

In this paper, we propose a method to solve this problem
and predict near-future glucose concentrations with acceptable
time lags. We compared and contrasted three possible scenar-
ios for near-future prediction of glucose concentrations with AR
models: scenario I, which used raw glucose data to obtain unreg-
ularized AR coefficients; scenario II, which employed smoothed
glucose data to compute unregularized AR coefficients; and sce-
nario III, which used smoothed data to generate regularized AR
coefficients. We showed that the first two scenarios generated
models with unphysiologic coefficients, leading to models that

either possessed undesirable accuracy and large time lags or
were unstable. In contrast, the method described by scenario
III generated AR models with coefficients that reflected vi-
able physiologic dependencies, leading to accurate near-future
glucose concentration predictions with acceptable time lags.
For a 30-min-ahead prediction, such models yielded negligible
RMSEs (average of 0.1 mmol/l over nine subjects) and pre-
diction time lags (average of 0.2 min), and clinically accept-
able predictions for up to 60 min ahead with average RMSE of
0.7 mmol/l and average lag of 12.3 min.

II. METHODS

A. AR Modeling

In AR modeling, a predicted signal ŷn at time n (n = m +
1, . . . , N , where N denotes the total number of data samples
available for modeling) is inferred as a linear combination of
previously observed signals yn−i

ŷn =
m∑

i=1

biyn−i (1)

where b denotes the vector of AR coefficients to be determined,
and m denotes the order of the model (i.e., the number of pre-
viously observed glucose concentrations yn−i used to predict
a future glucose concentration ŷn ). Accordingly, each AR co-
efficient bi reflects the degree of dependency between the cor-
responding previous sample yn−i and the predicted signal ŷn ,
providing a measure of the physiologic association of the time-
series glucose data.

Training of an AR model consists of finding the coefficients
b that best describe the dependencies in the entire time-series
y. The coefficients are generally obtained by the ordinary least
squares (OLS) method [11] in which b is estimated so that the
functional ‖y − Ub‖2 is minimized, where U denotes the design
matrix representing delayed values of y.

For glucose concentrations to be predictable with AR mod-
els, the CGM data must possess “detectable structure” and the
dynamics of the time series data should, ideally, be station-
ary [2], [12]. By definition, a process is considered stationary
when the sample mean and variance of the process measure-
ments are constant with respect to time and the ACF is inde-
pendent of absolute time [2], [12]. Indication of the stationary
nature of the underlying process is therefore sought before ap-
plying AR models.

Fig. 1 shows three possible scenarios of how an AR model
can be used to predict future glucose concentrations. In
scenario I, AR models were obtained directly from the raw
CGM time-series y. However, noise in the raw signal can make
it difficult to compute AR coefficients that reflect viable phys-
iologic dependencies. In scenario II, this problem was solved
by smoothing the raw data to remove high-frequency noise be-
fore computing the AR coefficients. The additional correlations
imposed on the data due to smoothing, however, can lead to se-
vere ill-conditioning of the design matrix U . To overcome this
problem, we proposed a third alternative, scenario III, where
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Fig. 1. Three different scenarios of how AR models can be used to predict
glucose concentrations. Scenario I: OLS on the raw data; scenario II: OLS on
the smoothed data; and scenario III: regularized least squares on the smoothed
data.

we computed the AR coefficients through regularized least
squares.

B. Smoothing the Raw CGM Data

There exists a number of smoothing techniques for filtering
high-frequency noise [13]. In this paper, we used the Tikhonov
regularization approach [14], which yields smoothed signals ỹ
by computing ỹ = Udw, where Ud denotes the integral operator
and w denotes estimates of the glucose signals’ first derivatives.
This approach was chosen because the derivatives’ estimates
yield excellent data smoothing and do not introduce lag on the
smoothed signal relative to the original raw signal. Through this
approach, we chose the first derivative or the rate of change
of glucose with time to impose smoothness constraints in the
glucose signal [15]. In other words, we required the smoothed
glucose signal ỹ to vary minimally from one value to another,
thereby ensuring regularity in the underlying signal that we
wished to estimate.

To estimate the signal’s derivatives w, we minimized the
functional f(w), given by

f(w) = ‖y − Udw‖2 + λ2
d ‖Ldw‖2 (2)

where y denotes the N × 1 vector of the raw CGM time-series
signal, Ud denotes the N × N integral operator, w represents
the N × 1 vector of first-order differences (the rate of change
of glucose with time), λd represents the data regularization pa-
rameter, and Ld denotes a well-conditioned matrix chosen to
impose smoothness constraints on the derivative of the glucose
signal.

For a chosen Ld , the quality of smoothing in the aforesaid
formulation is determined solely by the regularization parameter
λd . When λd = 0, no regularization is performed, resulting in
the original raw CGM data y. As λd increases, the solution w
(and hence ỹ) increasingly satisfies the imposed smoothness
constraint, resulting, at the same time, in larger deviations from
the raw data.

C. Model Regularization

To construct stable AR models, we obtained AR coefficients
through regularization. For a stationary process, the sequence
of autocorrelation coefficients representing the ACF describes
statistical dependencies between two measurements separated
by fixed time intervals throughout the recorded observations
[2]. To force the AR coefficients to follow the same statistical
dependencies of the ACF, a smoothness constraint was imposed
on the OLS solution of the coefficients in (1), resulting in the
regularized least squares functional g(b), given by

g(b) = ‖ỹ − Um b‖2 + λ2
m ‖Lm b‖2 (3)

where ỹ denotes the (N − m) × 1 vector of smoothed data, Um

denotes the (N –m) × m design matrix, b represents the m × 1
vector of regularized AR coefficients, λm represents the model
regularization parameter, and Lm denotes a well-conditioned
matrix chosen to impose smoothness on the AR coefficients.
Accordingly, the minimization of (3) resulted in regularized co-
efficients b. Although (2) and (3) have the same Tikhonov reg-
ularization form, they solve two different problems for two dif-
ferent purposes, i.e., data regularization/smoothing and model
regularization, respectively.

Similar to the smoothing of the raw data, for a chosen Lm ,
the stability of the AR model in the aforesaid formulation is
determined solely by the regularization parameter λm . When
λm = 0, no regularization is performed, resulting in an OLS
solution of (1). As λm increases, the coefficients are constrained,
resulting in more stable, regularized AR coefficients.

D. Metrics

To assess the quality of predictions, we used two metrics:
RMSE and time lag. When calculating the RMSE in scenario
I, we computed the difference between the predicted signal and
the raw signal. In scenarios II and III, the RMSE was com-
puted as the difference between the predicted signal and the
smoothed signal. The time lag was calculated as the cross cor-
relation between the smoothed signal and its predictions. The
lag corresponding to the peak of the cross-correlation function
provides an accurate estimate of the prediction time lag [12],
provided the length of the time series being compared is longer
than one 24-h period of the human circadian rhythm [16].

E. Parameter Selection

There are a number of methods [17] for estimating the op-
timal values of the regularization parameters, λd and λm , and
the order m of the AR model. In this paper, we found the
optimum value of λd by minimizing the sum of the RMSE
of the smoothed signal (i.e., the RMSE between the raw and
the smoothed signal) and the RMSE of the prediction (i.e., the
RMSE between the smoothed signal and its predictions). The
RMSE of the smoothed signal is a monotonically increasing
function of λd because the smoother the signal, the more it
deviates from the original raw data. Conversely, the RMSE of
the prediction is a monotonically decreasing function of λd be-
cause the smoother the signal, the more predictable it becomes.
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Therefore, by obtaining λd that minimized the sum of these
two RMSEs, we were effectively imposing a tradeoff between
smoothness and predictability, resulting in signals with good
predictability without oversmoothing them. We selected λm em-
pirically and m through cross validation [11].

F. Subject Selection and CGM Measurements

Deidentified data for this investigation were obtained from a
previous independent study of nine subjects with type 1 diabetes
collected over a 5-day period. Subjects gave their voluntary and
written informed consent to participate in the study, which had
received approval by the appropriate Institutional Review Board.
Subjects were included if they were 18 ≤ years ≤ 70, had been
diagnosed with type 1 diabetes and treated with insulin for at
least 12 months, had body mass index < 35.0 kg/m2 , and had
glycated hemoglobin (HbA1c) >6.1%. Subjects were excluded
if they had acute and severe illness apart from diabetes mellitus,
clinically significant abnormal electrocardiogram, hematology
or biochemistry screening tests, or any disease requiring use of
anticoagulants. In addition, subjects were excluded if they were
pregnant or lactating. The nine subjects ate standard weight
maintenance meals (three per day) designed to avoid gaining or
losing weight, and performed usual daily living activities. Also,
each subject received a bolus of regular or ultrarapid insulin
immediately before each meal either by subcutaneous injection
or via the subcutaneous catheter of the insulin pump. Additional
information about this independent study can be found in [10].

Subcutaneous glucose measurements were collected on a
minute-by-minute basis for each of the nine subjects for ap-
proximately 5 days with the iSense CGM system [18]. We used
only the first 4000 min (i.e., the first 4000 data points) of the
available data for each subject, in which the first 2000 min were
used for training the AR model (training dataset) and the next
2000 min were used for testing the prediction (testing dataset).
For illustration purposes, for the different simulations described
herein, we show prediction results for the same representative
diabetic patient (subject #7). However, to demonstrate consis-
tency of the proposed approach across different subjects, we
also show one set of results for the other eight subjects.

III. RESULTS AND DISCUSSION

A. Stationarity of the Time-Series Data

To assess the stationarity of the glucose time series data, we
examined the temporal behavior of three statistics of the signal.
Each of the three metrics indicated that the glucose data were
stationary. We found the mean and variance of both the raw
CGM signal and the smoothed signal to be time invariant. We
also found the estimates of the ACF of the raw signal to be
independent of absolute time for time lags that far exceeded the
near-future prediction horizon for which the AR models were
used. Fig. 2 shows estimates of three ACFs for subject #7 based
on three arbitrarily selected segments of the data, 0–4000, 1000–
4000, and 2100–4000 min, each starting at a different time. The
ACFs seem practically indistinguishable for time lags up to
about 120 min, implying that the signal was stationary for our

Fig. 2. Autocorrelation function of subcutaneous glucose measurements for
iSence subject #7 calculated for three different starting times, 0, 1000, and
2100 min, corresponding to three overlapping segments, 0–4000, 1000–4000,
and 2100–4000 min, respectively, of the time-series signal. The autocorrelation
function is represented as a sequence of normalized autocorrelation coefficients.

Fig. 3. Rate of change of the smoothed glucose data for subject #7.

modeling purposes. This also suggested that, for a fixed time
lag, the dependency between any two series of glucose signals
collected less than 120 min apart was the same, allowing for the
construction of AR models with fixed coefficients and applicable
to any time of the day. Fig. 2 also shows that the absolute values
of the ACF became negligible and started to diverge for time
lags larger than 200 min, indicating, as one might expect, that the
glucose signal retained little, if any, interdependency between
samples collected that far apart.

B. Smoothing of the Raw Data

We used Tikhonov regularization for smoothing the entire
4000 min of raw time-series data. We selected λd in (2) as the
average of the optimum λd over the nine iSense subjects (λd =
3000), the integral operator Ud as described by Rajaraman
et al. [19], and Ld to be a second-derivative operator [17]. Fig. 3
shows the estimated rate of change of glucose w in (2) as a
function of time after imposing the smoothness constraint.

We noted that the smoothing yielded w values that lie
within the expected limits of −0.2 mmol l−1 min−1 ≤
w ≤ 0.2 mmol l−1 min−1 (−4.0 mg dl−1 min−1 ≤ w ≤
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4.0 mg dl−1 min−1) reported by Kovatchev et al. [20],
whereas the raw CGM signal produced w in the range of
−1.7 mmol l−1 min−1 ≤ w ≤ 1.7 mmol l−1 min−1 (result not
shown). For some situations, a scenario can be envisioned where
glucose levels exhibit larger variations than the ones reported
in [20]. In such cases, we expect the smoothing algorithm to
oversmooth the glucose signal and the resulting predictions to
underestimate the true glucose values. However, such cases are
uncommon.

C. Selection of the AR Model Order m

We applied the cross-validation technique to select the order
m of the AR model in (1). We could, therefore, select an optimal
m for each of the nine subjects in each of the three scenarios.
However, to ensure consistency in the comparisons of the sim-
ulation results across the different scenarios, we computed the
optimal order of the AR model for scenario I and used this
value throughout all simulations. Because the models in scenar-
ios II and III were based on smoothed data, it is likely that such
selection overestimated the order of the models for these two
scenarios, potentially leading to overfitted models. Our results,
however, indicated that the models generalized well, yielding
small prediction errors, which suggested that the patterns in the
testing data were similar to those in the training data. Further-
more, if λm in (3) is optimally selected, the imposed constraint
prevents the regularized model in scenario III from overfitting.

The optimal model order for the nine subjects in scenario I
ranged from 25 to 35. Because the differences in model perfor-
mance for 25 ≤ m ≤ 35 were negligible, we fixed the order
of the AR models to a quasioptimal value of m = 30 for all
simulations.

D. Scenario I: OLS AR Model Using Raw Data

We obtained the AR coefficients b by solving (1) with the
OLS method using the training dataset consisting of raw sig-
nals. Fig. 4(a) shows that the coefficients of the 30th-order AR
model, AR(30), obtained in this scenario are unphysiologic.
Scenario I resulted in a random-walk model in which, incor-
rectly, the only significant coefficient was the first one and the
glucose signal was predicted trivially by using only the current
value as a predictor for future values.

We then investigated the predictive power of this AR(30)
model on the testing dataset by determining the accuracy of
the glucose concentration predictions—in this case, the RMSE
between the predictions and the raw data—as a function of
prediction horizon. The solid line in Fig. 5(a) shows the
30-min-ahead predictions (RMSE = 1.3 mmol/l and time
lag = 30 min), where, for example, the first prediction at
2001 min was performed at 1971 min. We also checked
the stability of the AR model by adding white Gaussian
noise of zero mean and an arbitrarily small variance [5.6 ×
10−13 mmol/l(10−11 mg/dl)] to the raw signal and verified that
the model was stable (not shown).

Fig. 4. Coefficients of a 30th-order AR model, AR(30), for iSense subject #7
obtained through: (a) scenario I, (b) scenario II, and (c) scenario III.

E. Scenario II: OLS AR Model Using Smoothed Data

After smoothing the glucose data, we retrained the AR(30)
model using the same training dataset but now consisting of
smoothed signals. Fig. 4(b) illustrates the coefficients of the
AR(30) model, which show an oscillatory, unphysiologic be-
havior. When we added the same white noise of zero mean
and 5.6 × 10−13 mmol/l variance to the smoothed data, we ob-
served that the predictions became unstable. For 30-min-ahead
predictions, illustrated by the light gray line in Fig. 5(b), the
predictions became erratic and unbounded for small additions
of white noise.

The instability in AR models of order higher than one is
also reported by Sparacino et al. [8]. In contrast, the noise-free
predictions [solid line in Fig. 5(b)] were very accurate (RMSE =
0.02 mmol/l). This demonstrated that models obtained through
scenario II, albeit accurate in terms of predictions, were sensitive
to small variations in the test data.

F. Scenario III: Regularized Least-Squares AR Model Using
Smoothed Data

To obtain smooth-varying coefficients for the AR (30) model,
we regularized the AR coefficients by empirically selecting
λm = 0.28 in (3) and choosing the a priori constraint Lm to
be a second-derivative operator similar to Ld in (2). Fig. 4(c)
shows the coefficients of the resulting AR(30) model captured
from the training dataset. These coefficients seem to reflect vi-
able physiological dependencies in the glucose signal.

We used this regularized AR(30) model and investigated
its predictive power on the smoothed testing dataset. The
solid line in Fig. 5(c) shows that the 30-min-ahead pre-
dictions for the testing dataset of subject #7 were accurate
(RMSE = 0.1 mmol/l) and had no time lag. We also checked
the stability of the AR model by adding the same white noise
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Fig. 5. Glucose concentration predictions using an AR(30) model for iSense
subject #7 for (a) 30-min-ahead predictions obtained through scenario I
(RMSE = 1.3 mmol/l and time lag = 30 min), (b) 30-min-ahead predic-
tions obtained through scenario II without (solid line) and with (light gray
line) added white noise of zero mean and 5.6 × 10−13 mmol/l variance to
the smoothed data, (c) 30-min-ahead predictions obtained through scenario
III (RMSE = 0.1 mmol/l and no time lag) with and without added noise,
(d) 60-min-ahead predictions using scenario III (RMSE = 0.8 mmol/l and
time lag = 12 min), and (e) 90-min prediction horizon using scenario III
(RMSE = 1.6 mmol/l and time lag = 38 min).

of zero mean and 5.6 × 10−13 mmol/l variance to the smoothed
data and verified that the predictions were stable [predictions
with and without noise are superimposed in Fig. 5(c)].

We applied the same AR(30) model to make 60- and 90-min-
ahead predictions. The solid line in Fig. 5(d) shows that the
60-min-ahead predictions were accurate (RMSE = 0.8 mmol/l)
and had a clinically acceptable prediction time lag (12 min).
The solid line in Fig. 5(e) shows that the 90-min-ahead predic-
tions were less accurate (RMSE = 1.6 mmol/l) and had a larger
prediction time lag (38 min). The time lag in the predictions
reduced the effective prediction horizon by the corresponding
number of minutes.

Fig. 6 illustrates 30-min-ahead predictions for the testing
dataset of each of the remaining eight subjects using scenario III.
The predictions for each subject demonstrated the same accu-
racy and consistency as the predictions for subject #7 shown in
Fig. 5(c).

Table I tabulates the performance for 30-, 60-, and 90-min-
ahead predictions for each of the nine iSense subjects. We
employed the training dataset of each subject to develop an

Fig. 6. Thirty-minute-ahead glucose concentration predictions for the remain-
ing eight iSense subjects obtained with scenario III.

AR(30) model for that subject and tested the model perfor-
mance on the corresponding testing dataset. The 30-min-ahead
glucose concentration predictions were very accurate (average
RMSE = 0.1 mmol/l), resulting in almost no prediction time
lag (average of 0.2 min). The 60-min-ahead predictions had
good accuracy (average RMSE = 0.7 mmol/l) and a clinically
acceptable prediction time lag (average of 12.3 min).

IV. DISCUSSION

This paper attempts to address the question Bremer and
Gough [2] posed nearly a decade ago: whether near-future glu-
cose concentrations can be predicted from past glucose history.
We showed that accurate 30-min-ahead predictions of subcu-
taneous glucose concentrations were achievable by smoothing
raw CGM glucose data using Tikhonov regularization and de-
riving stable AR models of order 30 by applying the regularized
least-squares technique on the smoothed data.
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TABLE I
INDIVIDUALLY TUNED MODEL PERFORMANCE FOR NINE SUBJECTS

These 30-min-ahead predictions with no time lag provide
ample time for proactive intervention and adjustment of ther-
apy before glucose concentrations drift from desired ranges,
hence, potentially avoiding possible hypo- and hyperglycemic
episodes.

We discussed three possible scenarios (Fig. 1) of how an AR
model can be used to predict future glucose concentrations. De-
riving AR models directly from raw CGM data as in scenario I
resulted in unphysiologic AR coefficients [Fig. 4(a)], where the
first coefficient (i = 1) incorrectly reflected the entire depen-
dency of the glucose signal. That is, future glucose signals were
dependent only on the current glucose value. This behavior is
caused by the high-frequency noise in the raw CGM data, which
made it difficult to infer any but the first AR coefficient and
yielded stable predictions with time lag equal to the prediction
horizon (unobservable in Fig. 5(a) due to the scale of the figure).
To remove the high-frequency noise, in scenario II, we applied
Tikhonov regularization, which placed regularity constraints on
the noisy signal. Retraining the AR models using the obtained
smoothed data resulted in unphysiologic AR coefficients with
alternating positive and negative correlations [Fig. 4(b)] and
highly unstable predictions [Fig. 5(b)]. Fig. 4(b) also indicates
that the third and fifth coefficients were larger than the first co-
efficient, incorrectly implying that future glucose values were
more dependent on previous, further away values than on closer
ones. If some high-frequency noise were retained, resulting in
an undersmoothed signal, unstable AR models similar to the
one observed in scenario I might be obtained. We speculate that
this is the case in the study presented by Sparacino et al. [8]
and Zanderigo et al. [9], where the Butterworth filter is used to
preprocess the raw signals. If the raw signals were sufficiently
smoothed, implying scenario II, the resulting AR model, albeit

unstable and containing unphysiologic coefficients, could yield
very accurate predictions with almost no prediction time lag.

To achieve stable models and physiologically plausible AR
coefficients, in scenario III, we regularized the AR coefficients.
Deriving AR models through regularized least squares resulted
in AR coefficients that reflected viable physiological dependen-
cies in the glucose signal [Fig. 4(c)] and stable, accurate predic-
tions with the prediction accuracy decreasing with increasing
prediction horizon [Fig. 5(c)–(e)].

Several comments regarding the physiologic interpretation of
the AR model coefficients are in order. Equation (1) shows that
the predicted values of a glucose signal are obtained as a linear
combination of antecedent glucose samples y multiplied by the
AR coefficients b. Accordingly, each AR coefficient bi reflects
the degree of dependency between the corresponding previous
sample yn−i and the predicted value ŷn . Because this degree of
dependency between samples separated by i observations apart
is also reflected in the coefficients of the ACF used to compute
bi , the physiologic interpretation of the AR coefficients bi can
be gleaned from the analysis of the ACF. Fig. 2 shows the tem-
poral dependency of the ACF coefficients as a function of time
delay, or time lag, between glucose samples for subject #7. As
the figure indicates, for up to about 500 min, the value of the
ACF coefficients gradually decreases as a function of time lag,
reflecting a graduated decrease in the dependency between sam-
ples as a function of time lag between them. Another important
observation is that the values of the ACF coefficients are close
to the maximum value of one for time lags fewer than 30 min,
reflecting that there is a strong dependency between glucose
samples that are 30 or fewer minutes apart.

Analysis of the AR coefficients in Fig. 4(a) revealed that
scenario I produced coefficients that drop to zero too fast, ef-
fectively implying that only the most immediate predecessor
sample affects future glucose values. This observation is not
supported by the ACF of the signal, which shows that a strong
dependency between samples is retained well after 1 min. This
supports the conclusion that coefficients obtained under scenario
I are unphysiologic. Conversely, scenario II produced coeffi-
cients that imply that samples 2–5 min apart from the predicted
value influence the predicted value more than an immediate pre-
decessor sample [Fig. 4(b)]. This observation is contradicted by
Fig. 2, which suggests a monotonically decreasing dependency
of the coefficients as a function of time lag up to 120 min.
Furthermore, from a physiologic point of view, it would be dif-
ficult to justify why samples collected farther apart should have
stronger interdependencies than closer ones. Finally, scenario
III produced coefficients [Fig. 4(c)] that, in general, reflect the
temporal behavior of the ACF, implying that AR models with
such coefficients correctly describe the underlying dependencies
in the glucose time-series signal.

In smoothing the raw signal, we found that a range of pa-
rameter values for λd , spanning from 2000 to 5000, did not
significantly affect the smoothness of the data. However, when
λd was too small, the raw data became undersmoothed, resulting
in models with behavior similar to those in scenario I. When λd

was too large, the raw data became oversmoothed and resulted
in signals that had lost some, if not all, of the major peaks and
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nadirs of the original time-series data. Similarly, in regulariz-
ing the AR model, we found that a range of parameter values
for λm , spanning from 0.06 to 2.8, did not significantly affect
the accuracy of the predictions. Similar observations regarding
these regularization parameters are also noted by Freeland and
Bonnecaze [21].

Due to the robust nature of our algorithm with respect to both
λd and λm , we hypothesize that the approach proposed here fol-
lowing scenario III may yield “universal,” or “portable,” models
for glucose concentration predictions. Such universal models,
developed based on data from just one individual and applicable
to all other individuals, would considerably reduce the burden
associated with model tuning and data collection for model de-
velopment. Our preliminary results support the feasibility of
such universal model hypothesis, as the AR model coefficients
seem to be indistinguishable among the nine individuals studied
here. This hypothesis, however, assumes that we have accurate
measurements of glucose concentration (in mmol/l, for exam-
ple), with the appropriate calibration and mapping from the raw
CGM subcutaneous measurements (in nanoamperes, for exam-
ple) for each individual.

The real-time implementation of the proposed method is an
important issue and needs to be investigated. In this paper, we
smoothed the entire glucose time series signals (4000 min) at
once and then used the smoothed signal to obtain the AR co-
efficients and make predictions. Such a “global” smoothing did
not duplicate real-time conditions, where future glucose values
are unknown and cannot be used to generate improved smooth-
ing. Hence, for real-time predictions, the smoothing algorithm
needs to be modified to use data up to the current time and not
the entire dataset. The choice of an asymmetric (purely causal)
or a symmetric (noncausal) smoothing algorithm also needs to
be investigated. If an asymmetric algorithm is used, it is likely
to yield end-effect problems because smoothing is calculated
only up to the current time [12]. A symmetric smoothing algo-
rithm, however, could be used to offset the end-effect problem
by “borrowing” some future data for smoothing purposes. The
net effect of this borrowing is a reduction of the true prediction
horizon, which needs to be properly quantified to determine
whether it still provides ample time for proactive interventions.

The continuous measurement of glucose concentration via
CGM devices together with data-driven AR models provides
a potential, practically useful combination of technologies for
accurate near-future prediction of glucose concentrations. With
improvements in CGM sensor technology to extend duration of
use and future research to address model universality and real-
time implementation, near-future predictions can give diabetes
patients adequate time to intervene and adjust therapy before
glucose concentrations drift from the desired range and avoid
hypo- and hyperglycemia episodes.
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