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Abstract

Improvements in the diagnosis and treatment of cancer have revealed long-term side effects

of chemotherapeutics, particularly cardiotoxicity. Here, we present paired transcriptomics

and metabolomics data characterizing in vitro cardiotoxicity to three compounds: 5-fluoro-

uracil, acetaminophen, and doxorubicin. Standard gene enrichment and metabolomics

approaches identify some commonly affected pathways and metabolites but are not able to

readily identify metabolic adaptations in response to cardiotoxicity. The paired data was

integrated with a genome-scale metabolic network reconstruction of the heart to identify

shifted metabolic functions, unique metabolic reactions, and changes in flux in metabolic

reactions in response to these compounds. Using this approach, we confirm previously

seen changes in the p53 pathway by doxorubicin and RNA synthesis by 5-fluorouracil, we

find evidence for an increase in phospholipid metabolism in response to acetaminophen,

and we see a shift in central carbon metabolism suggesting an increase in metabolic

demand after treatment with doxorubicin and 5-fluorouracil.

Author summary

Improvements in the diagnosis and treatment of cancer have revealed long-term side

effects of chemotherapeutics, particularly cardiotoxicity. Here, we compare the cardio-

toxic effects of 3 drugs, 5-fluorouracil, acetaminophen, and doxorubicin, using
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transcriptomic and metabolomic data. By integrating these data into a genome-scale met-

abolic network reconstruction of the heart, we were able to identify metabolic adaptations

in response to cardiotoxicity that avoided detection in traditional gene enrichment and

metabolomic techniques. Using this approach, we confirm known mechanisms of doxo-

rubicin-induced cardiotoxicity and provide hypotheses and potential mechanisms for

metabolic adaptations in cardiotoxicity for 5-fluorouracil, doxorubicin, and acetamino-

phen. We hope future work using our novel paired transcriptomic and metabolic charac-

terization of in vitro cardiotoxicity can help improve the current network heart model and

further characterize the role of chemotherapeutics in cardiotoxicity.

Introduction

Multiple chemotherapeutics have been identified as increasing the incidence of cardiovascular

events, both in the short- and long-term following treatment, now termed cardiotoxicity [1]. It

is now well-established that multiple chemotherapeutics are associated with adverse cardiovas-

cular events, such as left ventricular dysfunction and chronic heart failure [1]. However, mech-

anisms of cardiotoxicity are not well understood. Recently, changes in glucose uptake have

been noted to precede clinical measures of heart dysfunction in both spontaneously hyperten-

sive rats [2] and in patients undergoing chemotherapy with known cardiotoxic drugs [3–4],

suggesting that broad metabolic adaptations to drug treatment may yield insight into mecha-

nisms of cardiotoxicity.

Genome-scale metabolic network reconstructions (GENREs) provide an opportunity to

mechanistically connect changes in metabolites with changes in transcriptomics, identify-

ing potential mechanisms for the production of metabolites. GENREs provide a mechanis-

tic representation of cellular metabolism, including the stoichiometric coefficients for

metabolic reactions and the connectivity between genes and the individual reactions they

govern. Previous studies have used transcriptomics data with metabolic network recon-

structions to study metabolic adaptations in hepatotoxicity [5–7] and nephrotoxicity [8–9],

though the study of cardiotoxicity using metabolic network reconstructions is currently

unexplored.

In the current study, we integrate paired transcriptomics and metabolomics data with a

novel heart-specific genome-scale metabolic network (GENRE) [10] to predict metabolic

adaptations in cardiotoxicity. Paired transcriptomics and metabolomics data were collected

for primary rat neonatal cardiomyocytes exposed to three compounds: 5-fluorouracil

(5FU), acetaminophen (Ace), and doxorubicin (Dox). Both Dox and 5FU were selected

based on their established cardiotoxicity [11–12] while Ace was chosen based on previous

studies exploring hepatotoxicity and nephrotoxicity [5,8]. Furthermore, Dox has multiple

hypothesized mechanisms of toxicity [11] whereas 5FU does not have established hypothe-

ses for mechanisms of cardiotoxicity [12]. Integrating multiple forms of omics data with

functional models of metabolism yields unique insight into potential metabolic adaptations

in cardiotoxicity. Through this integrated approach, we (a) recapitulate published metabolic

adaptations in 5FU and Dox cardiotoxicity, (b) propose new metabolic adaptations in Ace

cardiotoxicity, and (c) propose the role of shifts in key metabolic reactions as representative

of increased metabolic demand in 5FU and Dox in response to the primary chemotherapeu-

tic mechanisms of action.
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Results

Optimizing concentrations of compounds to characterize in vitro

cardiotoxicity

Given that most toxicity studies have limited rationale for their chosen drug concentrations,

we aimed to deliberately choose cardiotoxic concentrations of 5-fluorouracil (5FU), acetamin-

ophen (Ace), and doxorubicin (Dox) for our in vitro studies. For the purposes of this study,

cardiotoxic concentrations were defined as the concentration that elicited a significant

decrease in cell viability without a significant increase in cell death compared to the control at

24 hours (Fig 1). 10 mM 5FU and 2.5 mM Ace elicited a significant decrease in cell viability at

24 hours without a significant increase in cell death. 1.25 μM Dox induced a significant

decrease in cell viability but also a significant increase in cell death at 24 hours (Fig 1).

As with previous studies [5,8], paired transcriptomics and metabolomics data were col-

lected at both 6 (S1 Fig) and 24 hours (Fig 1) after drug exposure to capture early and late tox-

icity. There was no significant increase in cell death for any compounds for our chosen

concentrations at 6 hours. There was a significant decrease in cell viability for the chosen con-

centration of Ace at 6 hours, indicating that Ace has an early but sustained effect on cell metab-

olism in cardiomyocytes (S1 Fig).

Unsupervised machine learning of transcriptomics and metabolomics data

highlights underlying drug-induced shifts in cellular activity

In order to identify the largest sources of variability between the conditions, individual samples

for either transcriptomics (transcript counts) or metabolomics (metabolite abundances) data

Fig 1. Choosing cardiotoxic drug concentrations that elicited a change in metabolism without a significant increase in

cell death. (A) Percent cell viability with respect to controls was measured for a range of concentrations for the chosen

compounds. The shapes represent different biological replicates. Black dots indicate a statistically significant change from the

control condition, determined using Dunnett’s test with a p-value< 0.05. Boxes indicate the concentrations chosen for the

experimental studies. (B) Percent cell death calculated using a PI/Hoescht stain. The shapes represent different biological

replicates. The black dots indicate a statistically significant change from the control condition, calculated using Dunnett’s test

with p-value< 0.05.

https://doi.org/10.1371/journal.pcbi.1011919.g001
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were clustered in an unsupervised fashion using Principal Component Analysis (PCA) (Fig 2).

For reference, the 5FU condition is paired with the DMSO1 control (1% DMSO) and the Ace

and Dox conditions are paired with the DMSO2 control (0.25%) (Methods). For the transcrip-

tomics data, within each time point, the control conditions (DMSO1 and DMSO2) separate

from the treatment groups (5FU, Dox, and Ace) (PERMANOVA for treatment vs control, p-

value < 0.001 for both 6 and 24 hour timepoints) (S2A Fig). The first principal component

separates by the Dox treatment and the second principal component separates samples by

time, 6 versus 24 hours. A gene enrichment analysis of the top 100 genes in the first principal

component using the Hallmark pathways from the Molecular Signatures Database (MsigDb)

[13–14] identified the p53 pathway as the only significantly enriched pathway, suggesting that

Dox induces a unique response through the p53 pathway compared to the other compounds.

The main function of the p53 pathway is to monitor cell division, including DNA replication

[15]. Two of the proposed chemotherapeutic mechanisms of action of Dox are intercalation

with DNA and the inhibition of topoisomerase II [16]; both mechanisms would therefore elicit

a response from the p53 pathway. The second principal component separates between the

6-hour and 24-hour samples, including the control samples, suggesting a potential adaptation

to culture conditions. A gene enrichment analysis for the top 100 genes in the second principal

component identifies Myc targets as uniquely enriched, where consistent decreased expression

of the Myc pathways is consistent with a transition from the fetal gene program [17] and

increased expression consistent with a response to cardiomyocyte stress [18–19].

A PCA of log-scaled and median-centered metabolite abundances separates in the first

principal component by time and in the second principal component by the 5FU treatment

(Fig 2B). As with the transcriptomics data, the clear separation by time point suggests a poten-

tial adaptation of the primary cells to in vitro culture conditions. A bi-plot (S2B Fig) of the top

10 metabolites responsible for the PCA separation identifies erythritol, a derivative of glucose

Fig 2. PCA of transcript counts (A), PCA of scaled metabolite abundances (B), and table of protein-coding DEGs

(C) for the three compounds and two DMSO concentrations at 6 and 24 hours. (A) PCA of transcript counts

separate by time and treatment condition, specifically the Dox treatment. (B) PCA of scaled metabolite abundances

separate by time and treatment condition, specifically the 5FU treatment. (C) Quantification of the number of

differentially expressed genes and differentially changed metabolites for each condition including between DMSO1

and DMSO2. DEGs were genes with an FDR< 0.01 and differential metabolites were metabolites with an FDR< 0.1.

https://doi.org/10.1371/journal.pcbi.1011919.g002
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metabolism [20], and ethylmalonate, a branched chain fatty acid, for primary separation in the

first principal component, suggesting a change in glucose and fatty acid metabolism over time,

though it is unclear in which direction this change occurs. The second principal component is

separated by the 5FU treatment. Given that the chemotherapeutic mechanism of action of

5FU is acting as an analogue for uracil and interfering with RNA synthesis [21], it is not sur-

prising to see clear separation in the metabolomics data for cells treated with 5FU. A bi-plot

(S2B Fig) of the top 10 metabolites responsible for the separation identifies uracil, phosphate,

and 2-deoxyuridine as primarily driving separation in the second principal component, indi-

cating changes in uracil synthesis and general metabolism as separating 5FU from the other

conditions. However, in contrast to the transcriptomics results, there is no clear separation

among any conditions, except for 5FU treatment. This lack of separation could result from the

number and type of metabolites that were profiled or could suggest a more nuanced change

between the Dox and Ace conditions and their respective controls. Finally, the number of dif-

ferentially expressed genes (DEGs) and differentially changed metabolites were quantified for

each treatment and time point (Fig 2C, S1 Table). We see the least amount of DEGs in the

DMSO concentration comparison, but it does appear to have a short-term effect on transcrip-

tion at 6-hours. As was expected from the PCAs, the Dox condition has the largest number of

DEGs at both 6 and 24-hours while the 5FU condition has the largest number of differentially

changed metabolites at the 6 and 24-hour conditions.

Gene enrichment and metabolomics data identify common signatures of

toxicity but cannot readily identify mechanisms of cardiotoxicity

The large number of DEGs for each condition necessitates an enrichment approach to identify

changed pathways that are shared across conditions and time points and could therefore be

suggestive of a common mechanism of cardiotoxicity. Pathway enrichment analysis was per-

formed using the 50 Hallmark gene sets defined in the MsigDB [13] (Fig 3A). Given the large

number of DEGs, it was necessary to use both a lower FDR cutoff to define differential expres-

sion and a higher p-value cutoff for enriched gene sets; genes were considered differentially

expressed with an FDR < 0.01 and gene sets were enriched with a BH-adjusted p-value < 0.1.

Consistent with their known mechanisms of chemotherapeutic efficacy, the 5FU and Dox con-

ditions are enriched for genes related to DNA repair at both the 6 and 24-hour timepoint. As

with the PCA data, the p53 pathway is enriched for the Dox condition at both 6 and 24 hours

as well as enrichment in at least one timepoint for the other two conditions. Finally, genes

related to oxidative phosphorylation are enriched, particularly at 6 hours, for both 5FU and

Dox, consistent with changes in cellular metabolism. Two pathways are enriched across all

conditions at 6 hours, the E2F targets and G2M checkpoint, both of which are pathways

involved in the cell cycle. Only one pathway is enriched across all three conditions at 24 hours,

the epithelial to mesenchymal transition (EMT) pathway.

Next, metabolites were identified that were significantly changed across all conditions

within a timepoint (Fig 3B). We see increased production of free phosphate for all three com-

pounds, suggesting a significant change in metabolism for the chosen concentrations, consis-

tent with the measured decrease in metabolic activity at the chosen concentrations (Fig 1). The

24-hour 5FU and Dox treatments show an increase in 2’-deoxyinosine production, a behavior

previously seen in the presence of reactive oxygen species (ROS) stress [22]. In these groups,

increased 2’-deoxyuridine is also observed, suggesting changes in DNA damage and uracil

metabolism [23–24]. Metabolites were both (a) differentially consumed between conditions

when compared to blank media controls (S3A Fig) and (b) produced or consumed between

conditions when compared to blank media controls (S3B Fig). Of note is uracil; in the 5FU
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treatment condition at both timepoints, uracil was consumed more in the treatment compared

to the control condition but in the Dox, Ace, and control conditions at 24 hours, uracil was

produced. A metabolite that had a measured change in production between treatment and

control (Fig 3B) can serve as a potential biomarker of in vitro cardiotoxicity; however, a spe-

cific mechanism for the change in production, and its relationship to changes in consumption,

is difficult to assess. Further, there are no available methods for connecting the DEGs and dif-

ferentially changed metabolites to identify metabolic adaptations during cardiotoxicity and

potential genes driving those adaptations. Metabolic network reconstructions provide an

opportunity to connect the measured changes in the transcriptome with the measured changes

in the metabolome to identify these potential metabolic adaptations during cardiotoxicity.

Reconstruction of a rat-specific heart GENRE from an existing human-

specific heart GENRE

Paired GENREs of human (iHsa) and rat (iRno) metabolism have been published, which cap-

ture species-specific metabolic functions and species-specific gene-protein-reaction (GPR)

rules [25]. However, integrating the data collected here requires a rat, heart-specific metabolic

network reconstruction, which has not been published to date. A human-specific heart

GENRE, iCardio [10], was recently published that was built from the paired human and rat

GENREs, iHsa and iRno. iCardio was built by integrating tissue-specific protein expression

data available in the Human Protein Atlas (HPA) (v18.proteinstlas.org; [26]) with the iHsa
model followed by manual curation using pre-defined metabolic tasks. Given that iHsa and

iRno were generated in parallel, the reactions included in the human-specific heart model,

iCardio, directly map to a rat-specific heart model using the common reaction identifiers.

Fig 3. Identifying biomarkers of toxicity from the transcriptomics and metabolomics data sets. (A) Enrichment analysis for genes with an FDR< 0.01

using the Hallmark gene sets from the Molecular Signatures database. A red box indicates enrichment with a p-value< 0.1. Only gene sets that were enriched

in at least condition are displayed here. (B) Metabolites that were identified to be significantly changed in production between the treatment and control

(Mann-Whitney, FDR< 0.1). The color represents the mean difference in normalized metabolites between the treatment and control, where a negative value

indicates decreased production and a positive value indicates increased production.

https://doi.org/10.1371/journal.pcbi.1011919.g003
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After including these reactions, 13 rat-specific reactions were added from the general rat

model, iRno, that had literature evidence for expression in the heart or were necessary for met-

abolic functions (S1 File).

Next, the metabolomics data was used to identify metabolites that were measured in the col-

lected dataset and included in the metabolic model. 121 metabolites mapped between the

metabolomics dataset and metabolites in the model with many of these metabolites showing

significantly differential abundance after drug treatment (S5A Fig). 75 of these metabolites had

associated exchange reactions in the general rat model, indicating that the metabolite could be

either consumed or produced in the model. From these exchange reactions, 37 were added to

the rat-specific heart model from the general model to ensure that constraints could be placed

for either production or consumption. Manual curation is often a time-intensive process and

here we demonstrate the value of metabolomics data in identifying new potential reactions

that should be added to tissue-specific models of metabolism.

Before integrating the transcriptomics with the model, we first identified the number of

DEGs and differentially changed metabolites that the new rat-specific heart model captures

(S4A Fig). The model captures ~10% of the DEGs across all treatments and time points and

between 40–65% of the differentially changed metabolites such as pyruvate and glucose. Next,

in order to confirm that the metabolic genes captured in the model are still capturing the

underlying variability in the data (Fig 2A), PCA was used to identify the largest sources of vari-

ability in the metabolic genes represented in the model (S4B Fig). As with the previous PCA

(Fig 2), there is a similar spread in the data. Using a similar enrichment approach as before,

both the glycolysis and hypoxia Hallmark pathways, among others, were enriched in the top

100 genes separating the first principal component, suggesting that a change in glycolysis may

have a unique role in doxorubicin toxicity. For the second principal component, the Hallmark

pathways of cholesterol homeostasis, glycolysis, oxidative phosphorylation, and fatty acid

metabolism, among others, were enriched. Again, this result suggests a difference in how these

cells use glycolysis and fatty acid metabolism to produce ATP, supporting our previous data as

well (S2B Fig). However, as with the previous results, it is unclear from the enrichment analysis

alone what is the direction of change, i.e., from the fetal gene program, as is seen in maturing

cardiomyocytes, or towards the fetal gene program, as has been noted in heart failure [27].

Nonetheless, the model captures metabolic adaptations in response to drug treatment. How-

ever, as with the previous analysis, general pathway-level changes do not yield insight into

potential mechanisms of cardiotoxicity.

Integrating transcriptomics data with a rat-specific, heart GENRE predicts

novel metabolic functions altered in in vitro cardiotoxicity

Gene enrichment analyses can be helpful in identifying broad changes in a data set. However,

as noted above, it can be difficult to understand the relationship between DEGs and metabolic

shifts, even with measured metabolomics data. Here, the Tasks Inferred by Differential Expres-

sion (TIDEs) approach [10] was used to identify metabolic functions that are associated with a

significant change in gene expression using the rat-specific heart model (Fig 4). The TIDEs

approach uses complex GPR rules which describe the relationship between proteins in a reac-

tion, such as isozymes (OR relationship) and protein complex subunits (AND relationship).

We use these rules with a metabolic model to assign weights based on the log fold change of

DEGs to individual reactions necessary to complete a metabolic task, such as production of

ATP from glucose. Metabolic tasks were identified that are significantly associated with either

increased or decreased gene expression in each drug condition. Statistical significance is calcu-

lated by randomizing log fold change values to create a distribution of metabolic task scores to
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assign significance to the original score. Using this approach, metabolic functions that are sig-

nificantly associated with changes in gene expression are used to identify metabolic adapta-

tions that are a potential cause or result of cardiotoxicity.

The log fold change of metabolic genes with an FDR < 0.01 were overlayed onto the rat-

specific heart GENRE (Methods). Metabolic tasks with a p-value< 0.1 were identified as dif-

ferentially changed. All metabolic tasks related to DNA/RNA synthesis and nucleotide metab-

olism are increased in the Dox condition at 6 hours (Fig 4A). In contrast, 5FU has metabolic

tasks related to production of nucleotides and nucleoside triphosphates (NTPs) increased at

both 6 and 24 hours, except for anaerobic phosphorylation of NTPs at 6 hours. Together,

changes in both NTPs and dNTPs metabolism suggest that both 5FU and Dox have an effect

on both RNA and DNA synthesis, which were expected in Dox due its enrichment of

p53-related genes. These effects on nucleotide metabolism could serve as a potential metabolic

stress on the cell. Additionally, we see several uracil-related tasks to be increased as well includ-

ing UTP de novo synthesis and aerobic rephosphorylation of UTP, supporting our finding

that uracil is differentially utilized in response to 5FU and Dox treatment (Figs 3B, S3 and S4).

Next, given that the Hallmark pathway of oxidative phosphorylation was enriched from the

Hallmark gene set (Fig 3A), we examined changes in metabolic tasks related to central carbon

metabolism (Fig 4B). A significant number of tasks were changed for the 5FU condition at

both timepoints, indicating an overall strong metabolic shift in response to 5FU. The decrease

of the metabolic task for the pentose phosphate pathway suggests that metabolic intermediates

may be diverted to serve the increased metabolic demands induced by the 5FU treatment. As

with the previous set of metabolic tasks, Dox is associated with significant changes in central

carbon metabolism at 6 hours but no significant changes at 24 hours.

Given that Ace is not a known cardiotoxic compound, we next identified that metabolic

tasks related to lipid membrane synthesis were uniquely increased in the Ace condition at 6

hours (Fig 4C). Particularly, metabolic tasks were upregulated for a variety of phospholipids,

Fig 4. TIDEs analysis reveals distinct changes in metabolic function in response to compounds. A red

box indicates significantly higher associated gene expression and a blue box indicates significantly lower associated

gene expression. (A) Metabolic tasks related to DNA and RNA synthesis or nucleotide metabolism. (B) Metabolic tasks

related to central carbon metabolism. (C) Metabolic tasks related to lipid membrane synthesis. (D) Metabolic tasks

related to signaling metabolism.

https://doi.org/10.1371/journal.pcbi.1011919.g004
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suggesting a unique metabolic adaptation in response to Ace treatment. Of particular interest,

the metabolic task for cardiolipin synthesis, a key component of the mitochondrial metabo-

lism, is significantly increased. One mechanism of Ace hepatotoxicity is associated with signifi-

cant lipid peroxidation in response to increased oxidative stress [28], suggesting a potential

shared mechanism between hepatotoxicity and cardiotoxicity.

Finally, metabolic tasks that were significantly changed in signaling metabolism were iden-

tified (Fig 4D). Here, we find the synthesis of nitric oxide from arginine was decreased for

three of the six conditions, and we observe differences in ROS detoxification between 5FU and

Ace. Given the known role of Ace ROS production in Ace hepatotoxicity [28], it is interesting

to see decreased gene expression for the metabolic task of ROS detoxification and the pentose

phosphate pathway. Decreased synthesis of NO has been noted in heart failure [10,29–30], sug-

gesting a shared metabolic marker of heart dysfunction.

Across all conditions and time points, the fewest significantly changed metabolic tasks were

seen in the Dox 24-hour condition, which had the largest number of DEGs. For the metabolic

task of arginine to nitric oxide and ROS detoxification, the underlying distribution of random-

ized task scores used to determine statistical significance was examined (S5 Fig). From these

data, the Dox condition has a higher overall task score, indicating a higher overall average

gene expression across reactions, but also has a wider spread for the underlying distribution of

randomized task scores as a result of the large number of DEGs.

Combined omics datasets predict novel metabolic adaptations in toxicity

through integrated network-based analysis

Pathway-level analysis provides one point of view for interpreting changes in gene expression.

However, pathways do not work independently, but rather, act in a coordinated effort to main-

tain cell function. GENREs are able to capture this relationship by determining flux through

reactions in a model while meeting an objective function that represents a hypothesis for cell

function. Here, the transcriptomics data was integrated with the rat-specific heart model using

the RIPTiDe algorithm [31] to determine the reactions and fluxes that met the constraints pro-

vided by our objective function. A single objective function for non-proliferative cells is hard

to define; here, the objective function of ATP hydrolysis, representing the ATP generated for

cardiomyocyte contraction, as well as requiring minimal synthesis of DNA and RNA, was

used (Methods).

Using the condition-specific transcriptomics data, condition-specific models were gener-

ated for each condition, both treatment and control groups. Details for the condition-specific

models are in S2 Table. Non-metric multidimensional scaling (NMDS) was used to visually

display the 50 flux samples for each condition in an unsupervised fashion (S6 Fig). For this

approach, fluxes were plotted for the 87 reactions that are shared amongst all conditions. The

NMDS plots would suggest that, as was suggested in earlier PCA plots, the DMSO controls

each elicit a different metabolic response.

Supervised machine learning with random forest feature selection was used to identify the

reactions that most distinguish the active metabolism of treatment from the respective control

conditions. This analysis highlighted that every treatment and time point contained at least

one reaction involved in central metabolism as highly distinguishing, suggesting unique diver-

gent pathways for ATP production between treatment and control conditions. Second, when

aggregating treatment conditions versus the control conditions, reactions were identified that

were uniquely associated with changes in the treatment conditions. Flux samples for one of the

reactions identified as highly distinguishing (Fig 5) demonstrates a difference in pyrimidine

metabolism across treatment groups. In the case of 5FU and Dox, decreased flux is predicted
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in the production of UDP from UMP (Fig 5), where ATP is used to facilitate this reaction. The

predicted flux for the change in RNA-related metabolism in the presence of these drugs again

highlights their primary chemotherapeutic mechanism of DNA/RNA damage. It is important

to note that the same constraints were placed on the overall network structure in this case (i.e.,

the same level of production of DNA and RNA). However, the transcript data imposed

another constraint which, in this case, identified this reaction as different in all three treatment

conditions.

Discussion

Here, we present paired transcriptomics and metabolomics data characterizing in vitro cardio-

toxicity for three compounds: 5-fluorouracil, acetaminophen, and doxorubicin. Here, cardio-

toxic concentrations were defined as concentrations that induce a change in metabolism

without a significant change in cell death for all three compounds. These concentrations were

also found to be at or above previously measured serum concentrations for these drugs [32–

34], indicating that they are physiologically relevant, but more work needs to be done to

describe the role of pharmacokinetics and other factors to determine relevant concentrations

to assess in cardiotoxicity studies. The data provides the first, to our knowledge, paired tran-

scriptomic and metabolic characterization of in vitro cardiotoxicity. For the transcriptomic

data, the compound Dox elicits the strongest transcriptomic response. Response was also

strongly influenced by time. The time dependency could be time from primary isolation or

time of drug exposure, an open question yet to be resolved. For the metabolomics data, time

elicits the strongest metabolic response, followed by the 5FU condition. As with the

Fig 5. Condition-specific models integrating the metabolomics and transcriptomics 24 hour data identify unique

reaction common across treatment groups that are driven by changes in transcription. Distribution of predicted

fluxes through one reaction that were predicted to most strongly predict the difference between the treatment and

control conditions.

https://doi.org/10.1371/journal.pcbi.1011919.g005
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transcriptomics data, the influence of time could be time from primary isolation or time of

drug exposure. In the metabolomics data, in contrast to the transcriptomic data, no difference

in conditions outside the 5FU treatment was observed, indicating either a lack of sufficient

coverage to identify metabolic differences or more nuanced changes in Dox and Ace and their

respective controls. This result suggests that treatment may elicit significant changes in gene

expression, while these transcriptomic effects may not result in direct changes to metabolism.

The treatment was confirmed using enrichment analysis, demonstrating significant enrich-

ment for DNA repair in both 5FU and Dox, where both chemotherapeutic mechanisms of

action target DNA or RNA synthesis. Additionally, metabolic changes were seen through

enrichment in oxidative phosphorylation and increased release of phosphate measured in the

metabolomics data across all conditions. The only Hallmark pathway that was enriched across

all conditions at 24 hours was the EMT pathway. EMT is an important regulator in the devel-

opment of the heart and, more recently, has been shown to have a role in the development of

cardiac fibrosis [35]. Here, enrichment in genes in the EMT pathway could suggest a role for

EMT in cardiotoxicity. While pathway level and metabolite changes are helpful, there are few

methods currently available that use known mechanisms to model changes at the gene level to

propose potential metabolic adaptations in response to treatment.

While standard differential gene expression analyses and differential metabolite analyses

are useful, computational models of metabolism, such as those derived from GENREs, provide

an opportunity to give mechanistic insight into the relationship between changes in expression

and metabolism. These approaches provide a two-fold perspective by first (a) reducing the set

of DEGs and reactions down to key metabolic reactions, and (b) providing a direct relationship

between a prediction (e.g., a metabolic task or flux) and gene expression. Here, a key driver of

the separation seen in the gene expression data (Fig 1) is metabolically related genes (S6B Fig),

which was not identified in standard enrichment analyses. Second, we identify a metabolic reac-

tion that serves as distinguishing between treatment and control conditions (Fig 5).

Consistent with the enrichment analysis, integration of DEGs with the TIDEs approach

specifically identified changes in metabolic tasks related to DNA/RNA synthesis but also spe-

cifically identified the role of all nucleotides in both Dox and 5FU. In the case of Ace, the

TIDEs approach identified increased synthesis of multiple phospholipids as metabolic adapta-

tions during cardiotoxicity. Lipid peroxidation of membrane phospholipids is one proposed

mechanism of acetaminophen-induced hepatoxicity [28] but has not been proposed in cardio-

myocytes. Nitric oxide synthesis and ROS detoxification were identified as common metabolic

functions altered across conditions. Nitric oxide synthesis is a proposed mechanism of doxoru-

bicin-induced cardiotoxicity [36] but has not yet been identified for 5FU cardiotoxicity. Here,

decreased NO synthesis and changes in ROS detoxification were identified as early and shared

markers of in vitro cardiotoxicity. Finally, it is important to note the difference in number of

TIDEs identified between conditions, where the Dox 24-hour condition has the lowest number

of TIDEs. Given that there are the largest number of DEGs in the Dox condition, most genes

that were included in the TIDEs analysis for the Dox 24-hour condition were differentially

expressed, meaning that a metabolic function had to have a large gene expression signature to

be identified as significant (S6 Fig). This is one weakness of the current approach. Efforts to

develop future approaches should work towards being independent of the number of DEGs

and could instead rely on transcript counts in the treatment and control conditions to deter-

mine shifts in metabolic functions.

Although enrichment analyses are helpful in determining broad metabolic changes, it is

important to view these changes in the context of the entire metabolic network. The RIPTiDe

analysis pipeline results in predictions of reaction flux distributions that satisfy the given objec-

tive function and transcriptomics constraints. In this way, RIPTiDe also provides additional
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resolution at the reaction-level that may not be accessible in subsystem-level analyses. It is

important to highlight that the chosen objective function, synthesis of ATP, DNA, and RNA,

utilizes only central and key metabolic reactions. More complex objective functions provide

the opportunity to explore additional, peripheral metabolic pathways. However, it is difficult

to define appropriate objective functions for human metabolism. Therefore, for this study, we

chose to focus on the core metabolic functions of ATP synthesis, representing energetic

demands for cardiac contraction, and baseline DNA and RNA synthesis.

Random forest analysis identified reactions that were shared among individual conditions

but whose flux separated between conditions. These reactions represent changes in flux that

are necessary either for ATP production, metabolite production, or DNA/RNA synthesis that

differ between conditions, indicating divergent pathways of flux. Across all three treatment

groups, reactions for central metabolism were identified as significantly different between con-

ditions, indicating a baseline divergent flux for ATP production. When comparing all treat-

ment conditions to the control conditions, reactions related to the creation of UDP from UMP

using ATP were significantly more predictive when using random forest analysis, particularly

for the 5FU and Dox conditions, suggesting these chemotherapeutics may be altering baseline

pyrimidine metabolism.

Together, the paired transcriptomics and metabolomics data taken with predictions made

using the rat-specific model of metabolism provide mechanistic insight that was not clear from

either set of data on its own. For Dox, we identified shifts in metabolic tasks related to nucleo-

tide metabolism, ROS detoxification, and NO synthesis, consistent with previously published

hypotheses for mechanisms of toxicity [37–38], as well as shifts in nucleotide metabolism as a

potential additional metabolic stress contributing to cardiotoxicity. For 5FU, we identified

shifts in metabolic tasks related to nucleotide metabolism, ROS detoxification, and NO synthe-

sis, and, as with Dox, shifts in nucleotide metabolism suggesting increased metabolic stress

from the chemotherapeutic mechanism of action of 5FU. Finally, for Ace, we identified shifts

in metabolic tasks related to lipid synthesis.

There are several important limitations to these analyses. DMSO has been shown to

decrease the ATP production of treated cells [39] which may have impacted which concentra-

tions are chosen for our analysis. DMSO has also been shown to alter the methylome of cells

[40], and we see transcriptomic differences between the two DMSO concentration, particularly

at the 6-hour timepoint. These effects may interfere with the analyses performed here, and

these conclusions could differ when studied in vivo. Additionally, by only including DEGs that

are directly related to metabolism in our analysis, we ignore the contribution of a large propor-

tion of the DEGs to the toxicological response. There are certainly additional important mech-

anisms that will need to be considered in future work. We also recognize that our methods for

combining these data are not the only possible approaches, and additional analyses with tools

like IMPaLA [41] could provide additional insights that we do not have here. For our meta-

bolic modeling analysis, we use synthesis of ATP, DNA, and RNA as the objective function.

Since this is not the sole biological objective of a cardiomyocyte, this analysis could miss mech-

anisms that impact other cellular tasks such as biomass growth.

Future work is necessary to trace pathway fluxes to determine how fluxes through these

individual reactions influence other parts of metabolism. The collected metabolomics data also

serve as an additional set of constraints to place when integrating the transcriptomics data

with GENREs. However, more work needs to be done in developing methods to identify the

relationship between a metabolic constraint and a change in predicted flux. In addition, the

provided paired transcriptomics and metabolomics data provide a starting point for improve-

ments to the present metabolic network reconstruction. A number of metabolites were mea-

sured as produced but could not be produced with the individual condition-specific models,
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either because of missing internal reactions or missing constraints. Finally, future work can

explore the use of additional objective functions that replicate proposed mechanisms of toxic-

ity, such as increased ROS production or synthesis of key cellular proteins, which may provide

further explanation for the measured changes in the metabolomics data. We hope that the

novel data and results in this study provide the foundation for these additional investigations

and can allow for the further research of mechanisms of cardiotoxicity.

Methods

In vitro culture conditions

Primary neonatal rat cardiomyocytes were isolated and cultured according to previously pub-

lished protocols [42]. After the initial plating, cells were maintained for ~36 hours in plating

media containing low glucose DMEM and M199 supplemented with L-glutamine, Penicillin-

Streptomycin, 10% horse serum and 5% FBS. Cells were serum starved overnight (~12 hours)

before running experiments in serum free, ITSS-supplemented plating media. Cells were

observed to beat spontaneously within 24–48 hours after isolation, confirming metabolic activ-

ity and functionality.

For experiments to determine optimal drug concentrations, cells were seeded in 96-well

plates at a density of 100k cell/well. The initial range of concentrations used for 5FU, Dox, and

Ace (Tocris) were selected based on previous studies for Dox [43], 5-FU [43–44], and Ace

[45]. Drug stocks were prepared according to manufacturer’s instructions using sterile DMSO

and were diluted in plating media before treatment. Concentrations that induced cardiotoxi-

city were determined using parallel measures of cell death and cell reducing potential, referred

to as cell viability in this manuscript (10 mM 5FU, 2.5 mM Ace, 1.25 μM Dox). Cell death was

determined as the number of propidium iodide (PI) positive cells divided by the total number

of Hoescht positive cells. Fluorescence data from treated cells was background corrected using

blank wells before using CellProfiler [46] to segment nuclei and measure fluorescence intensity

for both PI and Hoescht. In the case of doxorubicin, which is fluorescent at overlapping wave-

lengths with PI, wells containing the respective concentrations of doxorubicin were used for

background subtraction. Measures were aggregated from four fields of view for each drug con-

centration. Cell viability, which measures cell reducing potential and thus cell metabolism, was

measured using the RealTime-Glo MT Cell Viability kit (Promega, Catalog #G9711) which has

been done successfully in the past [47]. This kit uses a substrate that can permeate into the cell,

and when reduced, it fluoresces, allowing us to quantitively measure the capacity of the cell to

metabolically reduce metabolites. Both measures were repeated for three separate wells, repre-

senting three technical replicates for each condition, as well as on three separate days using dif-

ferent primary cell isolations, representing three biological replicates for each condition.

Statistical significance was calculated using Dunnet’s t-test [48] which accounts for the dose-

dependent nature of the data. A p-value < 0.05 was considered statistically significant.

RNA isolation, sequencing, and analysis

For the paired transcriptomics and metabolomics data, hearts were harvested in parallel from

three litters of rats on the same day. After parallel digestion, cells were mixed from all isola-

tions before plating in 12-well plates at a density of 1.2 million cells/well. For reference, two

separate DMSO controls were run (DMSO1 at 1% DMSO for the 5FU condition; DMSO2 at

0.25% DMSO for the Ace and Dox conditions). Primary rat neonatal cardiomyocytes were

exposed to the chemicals mentioned above at the chosen concentrations for either 6 or 24

hours. After exposure, as has been done in previous studies [5,8], the cells were lysed with Tri-

zol to begin RNA extraction. Cell lysates were mixed with chloroform and spun in phase-lock
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gel tubes inside a cold room and the upper phase was then decanted into new tubes. Isopropa-

nol and glycogen were added to the mixture, incubated overnight at -20C and spun again

resulting in an RNA pellet, which was washed with 75% ethanol twice. DNA was removed

using the TURBO DNA-free kit (Invitrogen, #AM1907) and then RNA was quantified using

the QuBit RNA Broad Range detection kit (Invitrogen, #Q10210). RNA was sent to GeneWiz

(https://www.genewiz.com/en) for PolyA selection, library construction, and sequencing.

RNA was sequenced using 2x150bp paired-end (PE) readings and fastq files were generated.

Kallisto v 0.46.0 [49] was used to pseudo-align raw fastq files under default settings to the Rat-
tus norvegicus Ensembl v96 transcriptome. Transcript abundances were then aggregated to the

Entrez gene level in R v. 3.6.3 with the package tximport [50]. Genes with consistently low

counts (< 10) across all samples were removed. Variance stabilization was performed with the

vst() function from the limma package [51], and reads were normalized to library size using

estimateSizeFactors from DESeq2 [52]. Differentially expressed genes (DEGs) were deter-

mined using DESeq2 [52] with a significance threshold of FDR< 0.1.

Principal component analysis (PCA) was performed using the variance stabilized gene

counts [52] with the prcomp function in R. Statistical significance for the separation between

treatment and control groups was calculated using adonis2 function in the Vegan package in R

[53].

Following identification of DEGs, two approaches were used to identify pathways signifi-

cantly changed in the data: enrichment using Hallmark gene sets from the Molecular Signa-

tures Database [13] and Tasks Inferred from Differential Expression (TIDEs) for identifying

differentially changed metabolic functions [10]. For the enrichment analysis, the enricher

function from the clusterProfiler package was used with the top 100 genes in PC1 and PC2 as

done previously [14]. Due to the large number of DEGs, enrichment was determined using

genes with an FDR< 0.01 and pathways were defined as statistically significant with a p-

value< 0.1 following Benjamini-Hochberg (BH) correction. For the TIDEs analysis, the subset

of genes that mapped to the rat model and that had an FDR< 0.01 were used; pathways with a

p-value < 0.1 when compared to randomly shuffled DEGs were defined as statistically

significant.

Collecting and analyzing metabolomics data

As described above, primary rat neonatal cardiomyocytes were exposed to the compounds at

the chosen concentrations. Before lysing the cells with Trizol, the cell supernatant was

removed and sent to Metabolon for analysis (https://www.metabolon.com/). Raw area counts

were obtained for 181 named metabolites. Metabolites that had greater than 60% missing val-

ues (13 named metabolites) were removed from the data set. Next, missing values were

imputed as half of the minimum raw area count within a metabolite. Values were then log-

scaled and mean-centered within a metabolite. The Mann-Whitney U-test was used to deter-

mine if a metabolite was produced or consumed relative to the blank media samples (n = 3) as

well as differences between treatment and control conditions. Metabolites were considered to

be significantly changed if the p-value < 0.1 following Benjamini-Hochberg correction.

Building a rat cardiomyocyte-specific metabolic model from the human

cardiomyocyte-specific metabolic model, iCardio

The previously published human heart metabolic model, iCardio [10], was used to build a rat-

specific heart metabolic model to contextualize changes in metabolites and DEGs. All reactions

that were included in the human model were included in the rat model. The 6 updates that

were made in the human model [10] were also made to the general rat model. Since each
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model contains species-specific reactions, each of the 23 rat-specific reactions were manually

curated to determine if they should be included in the heart; 13 were included based on litera-

ture evidence (S1 File).

Further curation was necessary based on metabolites that were measured to be either pro-

duced or consumed in the metabolomics data. Metabolites were mapped between the metabo-

lomics data and the metabolic model using compound identifiers from the KEGG database.

Exchange reactions, which are reactions in the model that transport a metabolite into or from

the extracellular compartment, were added from the general rat model to the heart model if a

metabolite was measured to be either consumed or produced relative to blank media in the

metabolomics data. These reactions were necessary in order for a metabolite to be modeled as

either produced or consumed. Reactions added back to the heart model from the general rat

metabolic network are summarized in S1 File.

To identify shifted metabolic functions with the TIDEs approach, the developed rat-specific

heart model was used with the previously published list of metabolic tasks [10]. Only genes

that mapped to the metabolic model were included in the analysis. For each metabolic gene, a

weight was assigned based on the FDR where a gene with an FDR< 0.01 was assigned its log

fold change as a weight and 0 otherwise. As with the previous publication, reaction weights

were determined based on the weights for individual genes in the complex gene-protein-reac-

tion (GPR) rules. Task scores for individual tasks were calculated as the average weight across

reactions in that metabolic task. To establish statistical significance, the weights for each meta-

bolic gene were randomly shuffled 1000 times and significance was determined by comparing

the original metabolic task score to random data.

Predicting reaction metabolic flux using the RIPTiDe algorithm

The RIPTiDe algorithm [31] was used to integrate the transcriptomics data to identify the

most likely flux distributions in the rat-specific heart model network for each of the 10 condi-

tions, including both treatment and control groups at both time points. RIPTiDe identifies

possible optimal flux distributions in a metabolic network given the cellular investments indi-

cated by the transcriptomic abundance data. The media composition and metabolomics data

were used to place constraints on metabolite consumption for each condition-specific model.

Here, the cellular objective function was defined to be ATP hydrolysis, with an upper bound of

100 units of flux, and production of 1 unit of RNA and DNA, representing general cell mainte-

nance. The exchange reactions for consumed metabolites were given a lower bound of -10,

representing a theoretical overabundance of each metabolite for the given objective. These

constraints allow for metabolites to be consumed at a relatively high flux. Finally, the upper

bound of internal reactions was set as 106 to ensure that internal fluxes were not constraining

the solution space.

After applying these condition-specific constraints, condition-specific models were gener-

ated by integrating the median transcripts per million (TPM) for each gene within a condition

using the RIPTiDe algorithm [31]. The RIPTiDe algorithm was run with a minimum fraction

of 90% of the objective to ensure that differences in ATP flux were not the main determinants

of differences between the condition-specific models. Each condition-specific model was flux-

sampled 50 times to obtain a range of possible flux distributions that satisfied the pFBA

assumption.

Following RIPTiDe analysis, flux samples for each condition were analyzed to identify both

unique reactions for each condition and reactions whose flux separated between conditions

[31]. Non-metric multidimensional scaling (NMDS) ordination of Bray-Curtis distances

between flux samples, calculated using the Vegan package in R [53], was used to visualize
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differences for reactions that were shared between all conditions. Finally, random forest fea-

ture selection [54] was used to determine the reactions whose fluxes most separated between

each treatment and control group.

Supporting information

S1 Fig. Cell viability and cell death measures following 6 hours of exposure to compounds.

Shapes indicate different cell isolations. Black dots indicate a statistically significant change

from the control condition (p-value< 0.05) calculated using Dunntt’s test. Black boxes indi-

cate the chosen concentrations for cardiotoxicity characterization. (A) Percent cell viability for

a range of concentrations of treatment following 6 hours of exposure. (B) Percent cell death

measured using a Hoescht/PI stain.

(TIF)

S2 Fig. Additional PCA plots demonstrate (A) separation of treatment vs control groups

and (B) the top 10 metabolites separating the PCA of the scaled metabolite abundances.

(A) PCA with the Dox samples removed demonstrates separation between treated and control

samples at both 6 and 24 hours. (B) The top 10 metabolites show separation in both the first

and second principal component. For the first principal component, ethylmalonate and ery-

thritol have a strong influence, suggesting a phenotypic switch between fatty acid and glucose

utilization over time, although the direction is unclear. For the second principal component,

phosphate and uracil separate the 5FU condition.

(TIF)

S3 Fig. Metabolomics data shows differential consumption and production of metabolites

between blank media and control/treated samples. (A) Metabolites that were measured to

only be consumed across both drug treated and control conditions when compared to blank

media. Here, red indicates a metabolite that was consumed more in the treatment condition

than the control condition, blue indicates a metabolite that was consumed more in the control

condition than the treatment condition, white indicates a metabolite that was consumed in

either/both the treatment and control conditions but there was no difference in consumption

and grey indicates a metabolite that was not consumed in either the treatment or control con-

dition when compared to blank media. An example is shown for a metabolite that was more

consumed between treated and control conditions (adenine) and a metabolite (hepatonate)

that was consumed in a treated/control condition but there was no difference between the

treated/control conditions. Black dots indicate a condition where there was a significant

change in the metabolite when compared with blank media (Mann Whitney U-test,

FDR< 0.1). P-values are shown for comparisons that were significant between a treatment

and its respective control. (B) Metabolites that were measured to be both produced and con-

sumed across conditions. Here, the red line indicates the mean value for the blank media sam-

ples. Black dots indicate conditions where there was a significant change when compared to

blank media (Mann Whitney U-test, FDR< 0.1). A black dot above the red line indicates that

a metabolite was produced whereas a black dot below the black line indicates a metabolite that

was consumed. (C) Metabolites that were not significantly changed from blank media samples

but were measured to change between treatment and control samples. Here, red indicates that

a metabolite was present at a higher level in the treated group compared to the control group

whereas blue indicates a metabolite that present at a lower level compared to the treated

group. Given that there is no significant change with respect to the blank media, directionality

of change (i.e. consumption or production) cannot be determined.

(TIF)
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S4 Fig. The rat-specific heart model captures changes in DEGs and metabolomics. (A) The

number of DEGs (FDR< 0.1) and differentially changed metabolites (FDR < 0.1) that map to

the rat-specific metabolic mode. (B) A PCA of the normalized gene counts that map back to

the rat-specific heart model demonstrate clear separation, similar to the PCA of all gene counts

(Fig 2), confirming that metabolism has a large determinant in separating conditions.

(TIF)

S5 Fig. Distribution of random task scores for the metabolic tasks for arginine to nitric

oxide and ROS detoxification demonstrate the underlying distribution of DEGs. A red

background indicates a metabolic task associated with a significant increase in gene expression

and a blue background indicates a metabolic task associated with a significant decrease in gene

expression (p-value < 0.1). The red dashed line indicates the task score for the actual gene

expression data whereas the black bars indicate the calculated task scores when the gene

expression data is randomized. In this case, the distribution for the Dox data is significantly

wider (i.e. larger range on the x-axis), indicating a larger overall absolute change in gene

expression requiring a higher overall average gene expression for ROS production to be

deemed significant and a lower overall average gene expression for arginine to nitric oxide to

be deemed significant.

(TIF)

S6 Fig. RIPTiDe models after integration with metabolomics and transcriptomics data.

NMDS of the 50 flux samples for each condition at (a) 6 hours and (b) 24 hours. For each flux

sample, fluxes were only taken for the 112 reactions that are shared between all conditions.

(TIF)

S1 Table. Differential expressed genes separated by treatment, time point, and direction of

change. This table clarifies which DEGs in Fig 2C are up-regulated and down-regulated.

(XLSX)

S2 Table. RIPTiDe models after integration with metabolomics and transcriptomics data.

The number of reactions included in each model and the p-value for the Spearman correlation

between reaction flux and transcript abundance.

(XLSX)

S1 File. Rat-specific metabolic reactions mapped from the human iCardio model or manu-

ally added from iRno to ensure metabolic function.

(XLSX)

S1 Text. All supplementary information included in one document including figures,

tables, and descriptions.

(DOCX)
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