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ABSTRACT

In vitro selection of RNA aptamers that bind to a
specific ligand usually begins with a random pool
of RNA sequences. We propose a computational
approach for designing a starting pool of RNA
sequences for the selection of RNA aptamers for
specific analyte binding. Our approach consists of
three steps: (i) selection of RNA sequences based
on their secondary structure, (ii) generating a library
of three-dimensional (3D) structures of RNA mole-
cules and (iii) high-throughput virtual screening of
this library to select aptamers with binding affinity
to a desired small molecule. We developed a set of
criteria that allows one to select a sequence with
potential binding affinity from a pool of random
sequences and developed a protocol for RNA 3D
structure prediction. As verification, we tested the
performance of in silico selection on a set of six
known aptamer-ligand complexes. The structures
of the native sequences for the ligands in the testing
set were among the top 5% of the selected struc-
tures. The proposed approach reduces the RNA
sequences search space by four to five orders of
magnitude —significantly accelerating the experi-
mental screening and selection of high-affinity
aptamers.

INTRODUCTION

Aptamers are single-stranded DNA or RNA molecules
that bind to a specific ligand with high affinity and speci-
ficity. They have been extensively explored for sensing and
diagnostic applications and for the regulation of gene
expression via synthetic riboswitches (1). Aptamers can
be selected in vitro from a random pool of DNA or
RNA molecules (typically 10'*-10"° different sequences)
using an iterative process called systematic evolution of
ligands by exponential enrichment (SELEX) (2,3). The
SELEX process consists of multiple cycles of selection

and amplification: (i) a pool of RNA molecules is screened
and aptamers with a binding affinity to a target molecule
are separated from non-aptamers and (ii) retained apta-
mers are amplified by the polymerase chain reaction
(PCR) to create a pool of sequences for the next round
of enrichment. The entire selection process typically
requires up to 15 rounds of selection and can take from
a few days to a few months to complete (4).

In recent years, RNA microarrays have emerged as
a new approach for high-throughput aptamer selection
(5-7). Current technology allows rapid preparation of a
large custom microarray with tens of thousands of probes
(Agilent Technologies, CombiMatrix). For example,
DNA microarrays have been used recently to explore
the relationship between the aptamer sequences and bind-
ing properties of immunoglobulin E (IgE)-binding apta-
mers (7,8). The application of high density microarray
chips to the aptamer selection process has the potential
to speed up the generation of aptamers with high affinity
and specificity.

One of the main problems in the application of micro-
array technology to the selection of RNA aptamers
is the design of the initial pool of RNA molecules for
screening. This requires one to pre-select 10°-10° RNA
sequences for the microarray chip from a set of
10"°-10"* possible sequences. In this article we propose
an in silico approach to create a list of RNA sequences
with potential binding affinity to a desired small molecule.
Our approach consists of three steps:

(1) Step 1 Selection of RNA sequences based on their sec-
ondary structure. The analysis of randomly generated
RNA pools shows that the majority of sequences have
simple stem-loop or slightly branched structures, while
the more complex structures are very rare (9—11).
Furthermore, high-affinity aptamers are thermody-
namically different from the random sequences. It
was found that the free energies of the secondary struc-
ture formation of GTP aptamers are significantly
lower than the same-length random sequences (12).
Based on these findings, we developed a set of criteria
that limited the presence of sequences with abundant
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simple structural motifs and maximized the presence of
stable low-energy structures. These criteria selected
approximately one RNA sequence from about 2500
random sequences. Only the sequences that passed
the selection criteria were forwarded to the next step.

(2) Step 2 Generation of 3D structures. Computational
prediction of RNA tertiary structure is a very inten-
sive field of research. For example, during the past
year, three different approaches for ab initio RNA
structure prediction have been proposed (13-15).
We used the Rosetta package (13) developed by the
Baker group at the University of Washington to pre-
dict three-dimensional (3D) structures of selected
sequences. The fragment assembly of RNA molecule
in Rosetta is based on the simplified energy function
that takes into account the backbone conformational
and side-chain interaction preferences observed in the
experimental RNA structures (13). We developed a
protocol that includes minimization of Rosetta-
generated structures using the AMBER force field
(16) and generalized Born implicit solvent (17). It
is widely accepted that ligand binding can drastically
alter the receptor’s conformation (18). To account
for such conformational flexibility, the five lowest
energy structures for each sequence were placed
into a library of RNA molecules to perform ensem-
ble docking.

(3) Step 3 Screening the library of RNA molecules.
Computational docking is a common tool used to
identify small-molecule ligands that bind to proteins
(19). While most docking methods have been devel-
oped for proteins, recent evaluation of AutoDock
and DOCK programs has demonstrated their ability
to dock compounds to RNA molecules (20). Docking
tools are usually used to screen a library of small mole-
cules in order to find a ligand that binds to a specific
protein or RNA receptor. In our approach, we
screened the library of RNA molecules to find recep-
tors with the highest binding affinity to a desired small
molecule. We used a modified version of the DOVIS
package (21) for high-throughput virtual screening
of the entire RNA library. DOVIS uses AutoDock4
software (22) as the docking engine and runs in parallel
on Linux clusters. The original version of DOVIS
divides the library of small molecules between multiple
processors. We modified the parallelization scheme by
dividing the library of receptors (RNA molecules in
our case) between the multiple processors for parallel
receptor-ligand screening.

In the proposed in silico approach, RNA sequences are
screened at two levels (Figure 1). At the first level, selec-
tion of RNA sequences is based on analysis of secondary
structure of the generated sequences. At this screening
level, the selected sequences are not target specific. At
the second screening level, we used computational docking
to identify RNA molecules that bind to a specific target
ligand. At this point, the selected RNA molecules are spe-
cific to the desired target molecule and they are placed into
a pool of sequences for experimental verification and
selection of high-affinity aptamers. The developed
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Figure 1. Reduction in size of the RNA sequence space for experimen-
tal screening and selection of RNA aptamers by in silico approach. The
secondary structure of more than 2.5 x 105 RNA sequences was ana-
lyzed to select 100000 sequences for the RNA 3D structure library. The
high-throughput virtual screening of the developed library selected
10°-10* sequences suitable for the experimental screening and
verification.

computational approach allows one to pre-select
sequences from the initial pool of RNA molecules and
effectively leads to a reduction in sequence search space
by four to five orders of magnitude.

MATERIALS AND METHODS

Random RNA sequences of a given length were generated
by randomly selecting one of the four RNA bases for
every position. The lowest energy secondary structure of
a generated sequence was evaluated by the Vienna RNA
package (23) using a default set of parameters and prohi-
biting isolated base pairs by setting noLonelyPairs=1.
The isolated base pairs are usually unstable with
respect to thermodynamic perturbations and can lead to
significant conformational changes upon ligand binding.
Since the folding algorithm implemented in Vienna RNA
package cannot predict the formation of structures with
pseudoknots, such structures were excluded from the
consideration.

For each sequence length, we calculated a mean value
of the free energy (E) and a standard deviation (SD) using
a set of 10000 random sequences. To compare the free
energy of an aptamer (£, with the mean free energy of
the same-length random sequences, we calculated Z-score
using a standard equation (24): Z = (Eup — E)/SD.

The pool of 27-mer sequences with a randomized region
of 21 nucleotides was generated by applying the following
constraints: (i) in the lowest energy conformation bases
1-2-3 form pairs with bases 27-26-25; (ii) the free energy
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of secondary structure formation is lower than —5.7 kcal/
mol corresponding to Z-score equal —1.0; (iii) there are at
least 11 bases that do not form Watson—Crick base pairs,
i.e., they form a loop or bulge and (iv) the number of the
same structural motifs (e.g. stem-loop structure with a
stem containing eight base pairs) is limited to 150. More
than 2.5 x 10® sequences were screened to generate a pool
of 100 000 sequences that satisfied criteria (i-iv). The gen-
eration of random RNA sequences and analysis of their
secondary structure are the least computationally inten-
sive part of the approach. It took around 4h on a single
Intel P4 3.06 GHz CPU to screen >10® sequences and to
generate a library.

For each of the sequences in the pool, two files were
created: a sequence file in FASTA format and a pairing
file that contained information about the Watson—Crick
base pairing. These two files were used as input files by the
Rosetta package (13) for tertiary structure generation. The
generated structures were minimized using the AMBER10
package (http://www.ambermd.org).

The automated 3D structure prediction for each
sequence in the pool involved the following steps:

(1) Generate 500 decoys using the Rosetta++ —prna
function with the FASTA-type sequence file and a
file with Watson—Crick base pairing as input.

(2) Score generated decoys using Rosetta energy func-
tions and select 100 best decoys.

(3) Create all-atoms files in PDB format for the selected
decoys using Rosetta++ —extract function.

(4) Prepare AMBERI0 input files for each of the PDB
files using tleap program.

(5) Run energy minimization using the sander program
and AMBERY99 force field for 1000 steps in implicit
solvent using generalized Born model (igh = 1) with
a cut-off value of 16.0 A.

(6) Rank minimized structures based on the final value
of their energy.

(7) Convert five of the best structures into PDB format
using ambpdb program.

(8) Use the OpenBabel program (http://www.openbabel.
org) to convert PDB format file into Mol2 file format
with the molecule centre at (0,0,0) and to assign
Gasteiger atomic charges.

(9) Put five Mol2 files for each sequence into a library of
RNA structures.

The generation of a library of tertiary structures
demands significant computational resources. It takes
about 4h to generate 3D structures for a single sequence
or 400000 CPU hours for a library of 100000 sequences.
We used computational resources at the Air Force
Research Laboratory DoD Supercomputing Resource
Center. By using 200-300 processors on HP XC Opteron
supercomputer, we completed the generation of a library
of RNA structures in 4 months.

We performed a validation of our computational
approach on a set of six known aptamer—ligand com-
plexes. The 3D structures for these aptamers were gener-
ated as described above and placed into a library together
with randomly generated 27-mer structures to bring the
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library size up to 5000 RNA structures. The commercial
software SYBYL 7.0 (Tripos Inc., St. Louis, MO) was
used to create ligand molecules. For three molecules (theo-
phylline, gentamicin and flavin mononucleotide), coordi-
nates were taken from the experimental PDB files (1IEHT,
I1BYJ and 1FMN), and Gasteiger charges were added by
SYBYL. For the three other molecules (codeine, guanine
and isoleucine), coordinates were generated by SYBYL’s
Concord tool using the SMILES description of the mole-
cule and then optimized by running energy minimization
for 1000 steps with the Tripos force field and Gasteiger
atomic charges.

The modified version of the DOVIS 2.0 package
(25) was used to screen the generated library of RNA
structures for RNA-ligand binding. DOVIS 2.0 uses
the recently released docking package AutoDock 4.0
(http://www.autodock.scripps.edu) as the docking
engine and runs in parallel on Linux clusters. The original
version of DOVIS divides the library of small molecules
between multiple processors. We modified the paralleliza-
tion scheme to divide the library of RNA structures
between the multiple processors for parallel RNA-ligand
screening. The receptor and ligand files were prepared
for docking using Python scripts of AutoDockTools
(http://www.autodock.scripps.edu/resources/adt/
index.html). The non-polar hydrogen atoms on RNA
molecules were merged before the docking and Gasteiger
charges were assigned by OpenBabel. The grid box was
centred at (0,0,0) with 60 points in each dimension and
the default value of 0.375 A for spacing between the grid
points. For each of the RNA-ligand complexes, 20 dock-
ing experiments were performed using the Lamarckian
genetic algorithm conformational search, with the popu-
lation size of 150, one million energy evaluations, and a
maximum of 27000 generations per run. The docking
results were scored with AutoDock 4.0 scoring function.
Thus, screening a library of RNA structures for RNA-
ligand binding is not as computationally demanding as
generating a library. It required around 8000 CPU hours
to screen 500000 RNA structures to select aptamers to a
desired small molecule. Computational docking was per-
formed using 50-100 processors on Linux Networx
Evolocity II supercomputer at the US Army Research
Laboratory DoD Supercomputing Resource Center.

RESULTS

For our study, we selected 27-mer RNA molecules
5-GGC-N21-GUC-3’ with a central random region of
21 nucleotides. The constant sequences at the 5-end and
3’-end correspond to sequences in the well-known theo-
phylline aptamer (26). The 21-nt randomized region
potentially contains 4°! or about 4 x 10'? different
sequences. It is impossible to span the entire space of all
the possible sequences; furthermore, the vast majority of
sequences do not possess the potential ability for high-
affinity binding. Therefore, our aim is to select sequences
that have the potential to bind ligands with high affinity
and selectivity.



e87 Nucleic Acids Research, 2009, Vol. 37, No. 12

PAGE4 0F9

Table 1. The free energy of secondary structure formation for RNA aptamers that bind different ligands comparing with the mean free energy of the

same-length random sequences

Ligand (reference) Aptamer Mean free energy SD (kcal/mol) Aptamer free Aptamer
length (bases) (kcal/mol) energy (kcal/mol) Z-score
ATP (31) 40 —6.54 3.23 -17.7 -3.5
Codeine (32) 34 —4.96 2.90 —7.60 —0.9
Flavin (33) 35 —5.27 3.00 —18.0 —4.2
Gentamicin (34) 27 —3.18 2.47 —13.9 —4.3
Guanine (35) 32 —4.39 2.78 —13.7 —34
Isoleucine (36) 27 —3.18 2.47 —17.30 —1.7
Neomycin® (37) 23 -2.17 2.10 —11.0 —4.2
Neomycin® (27) 31 —4.23 2.70 —7.50 -1.2
Theophylline (26) 33 —4.73 2.80 —11.6 -2.5
Tobramycin (28) 26 —2.90 2.35 —8.70 -2.5

“Non-functional neomycin aptamer.

°Neomycin aptamer that can be integrated into riboswitch to regulate gene expression.

Thermodynamics of RNA secondary structure

Analysis of experimentally selected GTP aptamers shows
a significant correlation between the dissociation constant
K4 and the free energy of secondary structure formation
(12). It was found that the free energy of aptamers is sig-
nificantly lower than the median same-length random
sequence value. We applied a similar analysis to a set of
10 aptamers specific to different small molecules by calcu-
lating Z-score (Table 1). To calculate the mean value of
free energy and SD for the same-length random sequences,
we generated 10000 random sequences. Results presented
in Table 1 show that aptamers have Z-score values in the
range of —0.9 to —4.3. Based on these results, we chose a
free-energy cut-off value of —5.7kcal/mol corresponding
to Z = —1 of random 27-mer sequences used in our study.
Although, in several cases, aptamer sequence free energy
has Z-score of about —4, we based our choice on the
results for neomycin aptamers. The neomycin aptamer
(a) with 23 bases (see Table 1) has a free energy of sec-
ondary structure of —11kcal/mol corresponding to

= —4.2. However, no in vivo gene regulatory activity
was observed using this aptamer (27). The second neo-
mycin aptamer (b) with 31 bases has a free energy of
secondary structure of —7.5kcal/mol and Z = —1.24.
Interestingly, the binding of ligand changes the conforma-
tion of this aptamer and aptamer (b) has a gene regulatory
activity in the presence of neomycin (27). We speculate
that the possible difference in the regulatory activity of
these two aptamers is caused by the secondary structure
of aptamer (a), with the extremely low free energy
‘locking” the aptamer in the low energy configuration
and preventing it from changing conformation upon
ligand binding. Since we are interested in functional
RNA aptamers, we selected a higher free energy cut-off
value.

Watson—Crick base pairs and ligand binding

Detailed analysis of experimental 3D structures for a
number of aptamer-ligand complexes provides important
information about the molecular recognition and inter-
action of nucleic acids with ligands (28). We analyzed
molecular recognition for several aptamer—ligand

complexes (Figure 2). The aptamer nucleotide bases that
form a ligand-binding pocket are blue-circled in Figure 2
while the bases that directly participate in ligand recogni-
tion by forming hydrogen bonds with the ligand are
red-circled. It can be clearly seen that RNA bases involved
in molecular recognition do not form Watson—Crick pairs
with other bases. A similar conclusion can be drawn from
Figure 1 in paper by Carothers et al. (29) that shows sec-
ondary structures for 11 classes of GTP aptamers. The
bases with high informational content, which is important
for the high-affinity binding, are always unpaired and
located in loops or bulges. There are two possible reasons
for this: firstly, unpaired RNA bases are more flexible, so
they can easily change their conformation to form a bind-
ing pocket and accommodate a ligand, and secondly;
unpaired bases have available donor or acceptor atoms
for potential formation of hydrogen bonds with the
ligand. Therefore, we set a constraint that the secondary
structure of our sequences with 27 bases should have at
least 11 unpaired bases. This number seems optimal for us,
since the higher number of unpaired bases will signifi-
cantly reduce the presence of sequences with high free
energy of the secondary structure while the lower
number will increase the presence of sequences with low
binding affinity.

Distribution of RNA structural motifs

Initially, we started with ~5.8 x 10° 27-mer sequences, and
these sequences were screened to select 10° sequences that
met the constraints defined above. These sequences folded
into 725 different secondary structures. The frequency dis-
tribution of structural motifs is extremely heterogeneous
(Figure 3). The stem-loop structure with 8 base pair stem
was observed more than 6700 times; 4 structures were
present more than 2000 times, while 18 other structural
motifs were observed more than 1000 times. On the other
hand, almost 140 secondary structures were presented
only once or twice.

To increase the diversity of the generated pool
of sequences, we imposed an additional constraint by lim-
iting to 150 the number of times each structural motif
appeared in the pool. Now, to generate the same
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Figure 3. Distribution of structural motifs in 10° random RNA
sequences. The solid blue line represents sequences with two con-
straints: the free energy of secondary structure less than —5.7kcal/
mol and the number of unpaired bases is at least 11. The sequences
are folded into 725 different secondary structures. The dashed red line
shows a distribution when the number of the same structural motifs
is limited to 150. In this case, the pool of 100000 sequences contains
997 different structural motifs.

number of 10° sequences, we screened more than 2.5 x 10
random sequences. The newly generated pool contained
997 different structural motifs, corresponding to a more
than 35% increase compared with the previous case

(Figure 3). In the new pool of sequences, almost 560
motifs appeared 150 times, covering 84% of all sequences.
These 100 000 sequences were selected to be included in
the library of 3D RNA structures. Setting the number of
structural motifs repeats to a lower value, e.g. to 100, will
require a significantly higher number of available different
structural motifs. On the other hand, the number of pos-
sible structural motifs for the sequences with 21 random-
ized bases and constraints (i—ii) is limited. For that reason,
we were not able to generate 100 000 sequences by limiting
the number of abundant structures to 100.

RNA 3D structure prediction

The tertiary structure of RNA molecules was predicted
using the Rosetta package (13). One of the main problems
in the 3D structure prediction is to select a native-like
structure from hundreds or thousands of models gener-
ated by Rosetta. The Rosetta’s simplified energy function
takes into account backbone conformational and side-
chain interaction preferences, but does not always cor-
rectly predict the native-like structure (13). We developed
a protocol that includes energy minimization of Rosetta-
generated structures using AMBER99 force field (16) and
generalized Born implicit solvent (17) (see ‘Materials and
Methods’ for details). To validate the proposed protocol,
we compared the predicted 3D structures with a native
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Table 2. The average backbone RMSD of the five lowest energy-
predicted structures from the native structure

PDB Npases Rosetta Score® Minimiza}ionb
RMSD (A) RMSD (A)
1BYJ 27 5.2 (1.2) 3.8 (1.3)
1EHT 33 7.4 (0.9) 6.9 (0.6)
IESY 19 5.6 (0.3) 49 (0.6)
IKKA 17 6.9 (1.1) 6.2 (0.7)
1Q9A 27 6.5 (0.4) 6.2 (0.4)
1QWA 21 7.3 (0.7) 6.1 (0.8)
28SP 28 4.2 (0.9) 3.7 (0.6)
2F88 34 6.4 (0.6) 5.8 (0.4)
2TOB 20 5.7 (0.6) 5.1 (0.5)

For NMR models, the first model was designated as the reference
structure. Values in parentheses are standard deviations.

“Predicted structures were ranked using Rosetta scoring function (13).
°Predicted structures were minimized using AMBER force field and
ranked based on their final energy.

structure for nine single-chain RNA molecules for which
detailed structural information exists (Table 2). For every
experimental RNA structure, we generated 500 candidate
structures and ranked them using the Rosetta-scoring
function. The 100 highest ranking structures were selected
for energy minimization, and they were ranked based on
the final energy value. The backbone root mean square
deviation (RMSD) was calculated for the five lowest
energy structures predicted by the Rosetta scoring func-
tion and for the five lowest energy structures predicted
by the energy minimization technique. For all the tested
structures, energy minimization improves the accuracy of
the predicted models by reducing RMSD 10-20%.
Furthermore, it was found that energy minimization also
refined the Rosetta-generated structures by fixing some
bond lengths that appeared to be too long. In four cases
(1Q9A, IQWA, 28SP and 2F88), the same model (one out
of five) was selected by both Rosetta-scoring function and
energy minimization.

The developed protocol that included energy minimiza-
tion was used to create a library of RNA structures for
100000 of the 27-mer-generated sequences. The final
structured library contained ~500 000 RNA 3D structures
with five structures per sequence. By including five 3D
structures for every sequence, we were able to perform
ensemble docking and, thus, to account for conforma-
tional flexibility of the RNA molecules. This library was
used for virtual high-throughput screening to select apta-
mers with binding affinity to a specified small molecule.

Validation via docking known RNA aptamer sequences
to their ligands

To test the performance of our computational approach
for selection of RNA aptamers, a small pool of 1000
sequences was created. This pool contained six sequences
of known aptamers that bind to small molecule ligands in
addition to the 994 randomly generated 27-mer sequences.
For each of the 1000 sequences, we generated 3D
structures using the above protocol and placed five
of the lowest-energy structures into the library. In
total, our library of RNA molecules contained 5000
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Table 3. Ranking and binding energy of the native RNA-ligand
complex from a pool of 5000 generated 3D structures based on
docking procedure

Ligand Native Predicted AG, Expt. AGy, Expt. Ky
rank (kcal/mol) (kcal/mol) (uM)
Codeine 216 —9.64 —7.62 2.56
FMN 116 —7.67 —8.59 0.50
Gentamicin 127 —11.4 —-10.9 0.01
Guanine 131 —7.87 —7.83 1.80
Isoleucine 57 —4.24 —3.98 1200
Theophylline 102 —4.91 —8.72 0.40

The RNA structures were ranked based on the binding affinity to a
small molecule ligand. The native aptamer structure typically is ranked
among the top 5% of the best structures.

generated structures. We used the modified version of
DOVIS to screen this library of RNA molecules against
each of the ligands in the test set. The results of database
docking are summarized in Table 3. Ideally, the structure
of the native sequence should be ranked among the struc-
tures with the highest binding affinity. It was found that
for all the tested 3D RNA-ligand complexes, the native
aptamer structure ranked among the top 5% of the best
structures. For the five tested ligands, the predicted bind-
ing energy for the native structure was within 30% of the
experimental value. However, for one small molecule,
theophylline, the predicted binding energy is almost two
times lower than the experimental value. The possible
reason for such disagreement can be the changing of apta-
mer conformation upon ligand binding. Experimental
measurements on the structure of the aptamer—theophyl-
line complex using nuclear magnetic resonance (NMR)
spectroscopy revealed significant rearrangements of resi-
dues in the internal loop of the aptamer induced by bind-
ing of theophylline (26). Furthermore, the high-affinity
theophylline binding was observed only in the presence
of divalent metal ions (Mn*", Co®" or Mg>"). In the
absence of metals ions, binding affinity of this aptamer
was reduced by ~10* (30). In our docking experiments,
RNA molecules were considered as rigid and no metal
ions were added to the system; these two factors can
significantly reduce the binding energy for theophylline
binding. However, since the computational database
docking is complemented by experimental high-through-
put screening, it implies that prioritizing of selected
sequences is more important than the accuracy of pre-
dicted binding energy.

As an example of the performance of developed in silico
approach, we presented in Figure 4 some details of apta-
mer selection for gentamicin molecule. To test the perfor-
mance of the Autodock4 package, we initially performed
docking of gentamicin to the experimental NMR struc-
ture of gentamicin-binding aptamer (PDB code 1byj).
Figure 4a shows a superposition of the experimental
(red) and the best docking ligand pose (yellow). The
RMSD between the docked and experimental configura-
tion of ligand was 1.27 A. The predicted free energy of
binding was —9.46 kcal/mol, which is in a good agreement
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(b)

Figure 4. Comparison of predicted docking structures with the experi-
mental results for gentamicin-binding aptamer. (a) The predicted dock-
ing pose with the highest score of gentamicin (yellow), and the
experimental pose (red) inside the experimental NMR structure of
RNA aptamer. The first NMR model was taken as the reference struc-
ture. (b) The predicted docking pose of gentamicin (blue) and the
experimental configuration (red) inside the predicted structure of
RNA aptamer. The predicted RNA structure was aligned with the
experimental using backbone atoms. The experimental pose of genta-
micin molecule was fixed in the same position as in the experimental
aptamer.

with the experimental value of —10.91kcal/mol. In the
next step, we analyzed the gentamicin-docking conforma-
tions from the database-docking experiments described
above where the computer-generated structures of apta-
mers were used. In Figure 4b, we show the best pose of
gentamicin molecule (blue) inside the predicted structure
of gentamicin-binding aptamer. The predicted 3D struc-
ture of RNA aptamer was aligned with the experimental
structure using the backbone atoms. We also presented
in Figure 4b the experimental configuration of gentamicin
(red) inside the experimental-binding pocket. Clearly,
the docking pose of ligand is in close proximity to the
experimental ligand position and the deviation of the pre-
dicted ligand configuration from the experimental was
3.6 A. The free energy of binding to the predicted RNA
structure was —11.43 kcal/mol that is also in a good agree-
ment with the experimental value. We found these results
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very encouraging taking into account that aptamer’s 3D
configuration was generated computationally.

CONCLUSIONS

Development of microarray technology for RNA
aptamer selection requires one to pre-select 10*-10°
RNA sequences for the microarray chip from a set of
~10'? possible sequences. We have developed a computa-
tional approach to reduce the search space of RNA mole-
cules and to create a pool of sequences with potential
binding affinity to a desired target ligand. This pool of
sequences can be used for experimental screening and
selection of high-affinity aptamers using microarrays or
other techniques.

The RNA sequences were screened at two levels. In the
first level, we analyzed the secondary structure of the gen-
erated sequences. On the basis of the secondary structure
analysis of known RNA-ligand complexes, we developed
a set of criteria that allowed us to select sequences with the
potential to bind ligands with high affinity from a pool
of random sequences. These criteria were: (i) the free
energy of secondary structure formation has Z-score
lower than —1; (ii) there are at least 11 bases that do
not form Watson—Crick pairs and (iii) the number of
abundant structures is limited to 150 to increase the diver-
sity of structural motifs in the pool. The applied criteria
selected approximately one RNA sequence in 2500
random sequences.

For sequences that passed our selection criteria, we
generated 3D structures. We developed a protocol to auto-
mate the generation of 3D structures that includes the
generation of decoys using the Rosetta package and min-
imization of low-energy structures using the AMBER
force field. The five lowest energy structures for each
sequence were placed into a library of RNA molecules,
thus allowing us to perform ensemble docking and to
account for conformational flexibility in the RNA mole-
cules. At this screening level, the selected sequences were
not target specific.

In the second screening level, we used computational
docking to identify RNA molecules that bind to a specific
target ligand. The high-throughput screening of the devel-
oped RNA structure library was performed using the
modified version of the DOVIS package. At this point,
the selected RNA molecules were specific to the desired
target molecule and they were placed into a pool of
sequences for experimental screening and selection of
high-affinity aptamers.

We validated the proposed computational approach
using a set of six known aptamer—ligand complexes.
The small library containing 3D structures for six aptamer
sequences and 994 randomly generated 27-mer sequences
was screened against the ligands from the testing set, and
structures were ranked based on their binding affinity.
It was found that the structures of the known native
aptamer sequences were in the top 5% of the best struc-
tures demonstrating the remarkable performance of our
method in the selection of potential receptors to small
molecule ligands.
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The question may be raised concerning the sensitivity of
the results of selection on the set of RNA sequences placed
into the screening library. Although, we have screened
more than 2.5 x 10> RNA sequences to generate a pool
of 100000 of the 27-mer sequences, that number is still
four orders of magnitude lower than ~10'> possible
sequences. The set of sequences selected to the pool also
depends on the applied selection criteria. Furthermore,
sincc RNA sequences are randomly generated, even for
the same set of selection parameter we can get a different
set of sequences in the library. However, the experimental
screening of aptamers typically uses several round of
selection with mutated sequences at each round. Since
the RNA sequences placed into a microarray chip are
known, it is possible to develop a sequence-fitness land-
scape and to design aptamers with desired binding affinity
(38). Therefore, the high-affinity aptamers can be picked-
up during the next rounds of experimental selections
even if they were not present in the initial pool of
sequences. We developed a computational approach that
allows experimentalists to design the initial set of RNA
sequences with potential binding affinity to a desired
target ligand.

In conclusion, our proposed approach reduces the
search space of RNA sequences by four to five orders of
magnitude. We anticipate that our approach could be used
to create the initial pool of RNA sequences for experimen-
tal selection of high-affinity aptamers, greatly accelerating
the process of finding the desired aptamer sequence.
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