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Liangyou Chen,* Andrew T. Reisner,*' Andrei Gribok,*
Thomas M. McKenna,* and Jaques Reifman*

*Bioinformatics Cell, Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical
Research and Materiel Command, Fort Detrick, Maryland; and TMassachusetts General Hospital
Department of Emergency Medicine, Boston, Massachusetts

Received 22 Sept 2008; first review completed 10 Oct 2008; accepted in final form 13 Oct 2008

ABSTRACT—Respiratory rate (RR) is a basic vital sign, measured and monitored throughout a wide spectrum of health
care settings, although RR is historically difficult to measure in a reliable fashion. We explore an automated method that
computes RR only during intervals of clean, regular, and consistent respiration and investigate its diagnostic use in a
retrospective analysis of prehospital trauma casualties. At least 5 s of basic vital signs, including heart rate, RR, and
systolic, diastolic, and mean arterial blood pressures, were continuously collected from 326 spontaneously breathing
trauma casualties during helicopter transport to a level | trauma center. “Reliable” RR data were identified retrospectively
using automated algorithms. The diagnostic performances of reliable versus standard RR were evaluated by calculation
of the receiver operating characteristic curves using the maximume-likelihood method and comparison of the summary
areas under the receiver operating characteristic curves (AUCs). Respiratory rate shows significant data-reliability
differences. For identifying prehospital casualties who subsequently receive a respiratory intervention (hospital intubation
or tube thoracotomy), standard RR yields an AUC of 0.59 (95% confidence interval, 0.48 — 0.69), whereas reliable RR
yields an AUC of 0.67 (0.57 — 0.77), P < 0.05. For identifying casualties subsequently diagnosed with a major hemorrhagic
injury and requiring blood transfusion, standard RR yields an AUC of 0.60 (0.49 — 0.70), whereas reliable RR yields 0.77
(0.67 — 0.85), P<0.001. Reliable RR, as determined by an automated algorithm, is a useful parameter for the diagnosis of
respiratory pathology and major hemorrhage in a trauma population. It may be a useful input to a wide variety of clinical

scores and automated decision-support algorithms.
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INTRODUCTION

Background

The respiratory rate (RR) is a classic vital sign, measured
and monitored throughout a wide spectrum of health care
settings. However, clinical measurements are frequently
inaccurate because of poor technique and natural ambiguities
inherent in this measurement (1-7). Therefore, a superior
method of computing RR might be useful, with potential
application to a wide range of medical conditions, spanning
respiratory, infectious, neurological, and metabolic patholo-
gies. Given the fundamental importance of RR, an improved
measurement method might enhance disease diagnosis, prog-
nosis (i.e., clinical scores), triage, and monitoring (i.e.,
vigilant detection of unexpected deterioration).

Importance

In this investigation, we explored an automated RR mea-
surement method in a population of prehospital trauma ca-
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sualties. We investigated the method’s capability to identify
patients with major respiratory and circulatory pathologies,
which is a primary focus of early trauma care (the “ABCs”).
Trauma is the leading cause of death for Americans aged 1 to
44 years (8). Superior physiological information related to
respiratory and circulatory pathologies would be useful for
triage (i.e., prioritization of casualties based on injury severity
and determination of whether to send the casualty to a
specialized trauma center or a local medical facility), resource
mobilization (e.g., activation of trauma teams and operating
rooms at a receiving trauma center), and therapeutic decision
making.

Goals of this investigation

The new method is an automated algorithm that identifies
consistent, rthythmic, and clean respiratory patterns, and com-
putes RR exclusively from those intervals. We performed a
retrospective analysis of archived Propaq (Protocol Systems;
Beaverton, Ore) monitor data, where the RR is measured by
impedance pneumography derived from a standard electro-
cardiogram (ECG). We compared the diagnostic value of
standard Propaq RR measurements versus “reliable” RR data
(determined by the automated method), as discriminators of
which casualties required major respiratory inventions and
major hemorrhage. We hypothesized that the automated
method would be diagnostically superior to the conventional
method, because there is less ambiguity in the measurement of
RR during these intervals. If true, this finding would suggest
that we could improve the automated monitoring of a
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key physiological parameter. The general principle—focusing
on clear, regular, consistent breathing intervals—might be
applicable to a range of respiration monitoring modalities, for
example, capnometry, nasal thermometry, extensometry, and
so on.

MATERIALS AND METHODS
Study design and settings

This is a retrospective study based on physiological time-series data col-
lected from 898 trauma-injured patients during transport by medical helicopter
from the scene of injury to the level I unit at the Memorial Hermann Hospital
in Houston, Tex (9). Additional attribute data were collected retrospectively
via chart review (Table 1). The time-series variables were measured by
Propaq 206EL vital-sign monitors (Protocol Systems) during transport,
downloaded to an attached personal digital assistant, and ultimately stored
in our database (10). The physiological data included the ECG (measured at
182 Hz) and the corresponding monitor-computed heart rate (HR); a respira-
tory waveform (an impedance pneumogram, derived using the ECG leads and
recorded at 23 Hz) and the corresponding monitor-computed RR; and
noninvasive measurements of systolic blood pressure (SBP), mean arterial
blood pressure (MAP), and diastolic blood pressure (DBP) (using a standard
oscillometric device) collected intermittently at multiminute intervals. The
patient attribute data included demographics, injury descriptions, prehospital
interventions, and hospital treatments. There are 100 attribute parameters for
each patient, and these data have undergone prior analysis (11-14). Data were
collected and analyzed with approval of the local human-subjects institutional
review board.

Data processing

Recent reports described a computer algorithm that evaluated the reliability
of RR measurements made by a Propaq transport monitor (which uses imped-
ance pneumography via the ECG leads) (15). The investigational algorithm
identifies rhythmic and clean waveform segments both by evaluating the
waveform itself and by computing an independent RR that is compared with
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the Propaq’s RR output. Ultimately, this algorithm rates the RR with an in-
teger, from least (“0”) to most (“3”) reliable. In this investigation, we treat
any RR rated by the algorithm 2 or greater as “reliable.” The functionality of
the RR reliability algorithm is demonstrated with examples from our database,
shown in Figure 1.

Selection of participants

From the overall database, we included patients with at least 5 s of con-
secutive reliable RR data and excluded patients with prehospital intubation.
We also excluded patients who did not have at least 5 s of reliable HR, SBP,
and DBP data (13, 16). Reliable RR for each casualty was calculated as the
average of all segments of at least 5 s of consecutive reliable RR data re-
corded during patient transport. Standard RR was the average of all nonzero
RR Propaq data recorded during patient transport, without regard to their data
quality (which might have included a mixture of reliable and unreliable data
points and could be computed without any data reliability algorithm).

It is likely that RR patterns could be altered or confounded by injuries or
treatments that mechanically affect respiration, independent of any possible
hemorrhage. Therefore, we compared reliable RR versus standard RR in the
subset of patients that had injuries to the thorax identified by a search of
abbreviated injury-scale codes in our database. It is also likely that RR pat-
terns could be altered or confounded by altered mental status, but there were
few casualties with a reduced Glasgow (<14) who were spontaneously breath-
ing for any meaningful subset analysis (four with a major hospital respiratory
intervention, five with major hemorrhage).

Outcome measures

In terms of outcomes, major respiratory interventions were defined as pa-
tients who received emergency department intubation or subsequent tube tho-
racotomy. Patients who did not receive either of these interventions comprised
the control group for the major respiratory intervention population. Patients
with major hemorrhage were defined as those who received a blood trans-
fusion in the hospital and also had documented injuries that were consistent
with hemorrhage, as determined by chart review. These specific injuries were
one or more of the following: (a) laceration of solid organs, (b) thoracic or
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Fic. 1. Demonstration of reliable RRs selected by automated algorithms from four different patient records, shown in panels | to IV. Respiratory
waveform segments (impedance pneumograms from electrocardiography leads) were output from a Propag 206EL monitor. Also illustrated are the
corresponding RRs from the Propag monitor; reliable Propag RR data, as determined by the independent algorithm, are plotted in bold lines, whereas RR

measurements of questionable reliability are plotted in thin lines.
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abdominal hematomas, (c) explicit vascular injury and operative repair, or (d)
limb amputation. Because we are assessing the performance of vital signs, we
could not use vital-sign criteria in our actual definition of major hemorrhage.
Using documented injuries and therapies, “perfect” retrospective classifica-
tion is impossible, but these objective outcome definitions are clinically rea-
sonable and provided a very fair point of objective comparison for standard
versus reliable RRs. The remaining patients comprised the control cases for
the major hemorrhage population.

Methods of measurement

The diagnostic performances of reliable and standard vital signs were
evaluated by constructing receiver operating characteristic (ROC) curves and
calculating the areas under the curve (AUCs) for each ROC curve. We used
the ROCKIT freeware (University of Chicago) (17) for these analyses, which
automatically partitions each variable into at most 20 intervals for the ROC
curve construction (18). ROCKIT assumes a binormal ROC model, that is,
data for each of the decision outcomes (respiratory intervention or
hemorrhage versus their respective controls) are considered to be normally
distributed. Under this assumption, each ROC curve is transformed into a
straight line on the normal-deviate axes (18), whose ordinate intercept “a” and
slope “b” are estimated by the maximum-likelihood method. The AUC is
computed based on its mathematical relationship with @ and b (18, 19). The
ROC curves estimated from this method are smoother than empirically
evaluated ROC curves and can better represent the relationship between vital-
sign variables and the decision outcomes (18, 19). We performed univariate
ROC analyses on each of the vital signs and report the estimated AUC and
corresponding 95% confidence interval. Statistical tests of significance be-
tween ROC curves were performed within ROCKIT, which uses the z-score
test to compare the difference between the areas under two ROC curves (20).
All statistical differences were based on paired tests (standard versus reliable
RR), where we report the two-tailed P values. A significance level of 0.05 is
used in this study. Because all the statistical tests address the same underlying
hypothesis, that is, that reliable RR is more clinically useful than standard RR,
we did not make any explicit corrections for multiple comparisons.

Benchmark versus other vital signs

To explore how reliable RR might enable novel diagnostic applications, we
benchmarked the ROC AUC of other vital signs for the prehospital identi-
fication of patients with major hemorrhage. For each patient, HR, SBP, MAP,
and DBP were calculated as the average of reliable data recorded during pa-
tient transport, using previously reported reliability measures for those vital
signs (13, 16). (The HR reliability algorithm, which evaluates the ECG
waveform and considers if there is agreement between several different
methods of computing HR, was previously compared versus blinded human
experts for several hundred ECG waveform excerpt (16). When the HR
algorithm identified reliable data, in 97% of the cases, blinded human experts
concurred that the waveform was clean and, in 100% of those cases,
concurred with the monitor’s reported HR. The blood pressure reliability
algorithm compares the HR measured by an oscillometric noninvasive blood-
pressure cuff versus the ECG HR and also checks that the relationships
between SBP, MAP, and DBP are physiologic (13). Reliable SBP, as
determined by this algorithm, has been found to be statistically superior to
unreliable SBP, as a predictor of major hemorrhage.) In addition, we
computed three simple multivariate metrics, based on the combination of
vital signs, to explore the interaction of potentially independent variables. We
computed the AUC for (a) the shock index, defined as the ratio of HR and
SBP; (b) arterial pulse pressure (PP), defined as the difference between SBP
and DBP; and (c) the breath index, defined as the ratio of RR and PP. We used
shock index as a basis of comparison for the multivariate metrics because it
is arguably the best known multivariate discriminator for major hemorrhage
(21, 22). The PP was selected because, by report, it has value in the diagnosis
of hemorrhagic hypovolemia (9, 21). The breath index is a novel metric, not
previously reported, which scales the RR relative to the PP (analogous to the
shock index, which scales HR to SBP). These results provide general context
for interpreting the reliable RR versus standard RR results. Because our
sample size did not permit multiple comparisons between all vital signs and
vital-sign combinations, no formal hypothesis testing was conducted.

RESULTS

Characteristics of study subjects

Table 1 summarizes the attributes of the study population.
In general, patients with reliable vital signs distribute simi-
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larly as the total population in terms of sex, age, and injury
type. The study population shows a lower mortality rate after
exclusion of prehospital intubated patients (99 patients).

Main results

Table 2 compares reliable versus standard RR for the pre-
diction of in-hospital respiratory intervention and the iden-
tification of major hemorrhage. Overall, reliable RR is
statistically superior to standard RR for both outcomes.

Sensitivity analyses

Reliable RR trends toward superiority in one subgroup
(Table 2, identifying the need for in-hospital respiratory in-
terventions in patients with thoracic injuries), whereas it is
clearly statistically superior in the other three subgroups.

In Table 3, we illustrate the ROC AUCs of other basic vital
signs and vital-sign combinations, for the prehospital identi-
fication of major hemorrhage. The RR, HR, and SBP have
similar AUCs. Note that there is a trend toward higher AUC
when vital signs were used in combination, and incorporating
both the PP and the RR yielded the highest AUC.

Finally, as shown in Figure 2, we compared the distribution
of standard and reliable RR in patients of each outcome versus
their respective controls. Reliable RR demonstrates fewer ex-
treme cases (e.g., >60 breaths/min) and shows better separa-
tion than standard RR for the discrimination of both outcomes.

DISCUSSION

In this investigation, the underlying hypothesis was that
irregular patterns in the pneumogram waveform yield un-
reliable (i.e., nondiagnostic) measurements of RRs, whereas
regular, consistent, and clean waveforms produce reliable
(i.e., diagnostic) RRs. In practice, this approach should ex-
clude waveforms corrupted by measurement artifact, but also

TasLe 1. Demographics and population selection

Overall Patients with Study
Characteristics database reliable vital signs* population®
Population size, n 898 425 326
Male, n (%) 660* (73) 317 (75) 247 (76)
Female, n (%) 234% (26) 108 (25) 79 (24)
Mean (SD) age, yrs 37 (16) 38 (15) 38 (16)
Blunt injury, n (%) 778 (87) 371 (87) 284 (87)
Mortality, n (%) 94 (10) 38 (9) 8 (2)
Intubated, n (%) 201 (22) 99 (23) 0 (0)
Major respiratory 102 (11) 51 (12) 33 (10)

intervention,$ n (%)

Major hemorrhage,! n (%) 94 (10) 50 (12) 33 (10)

*Patients with at least 5 s of consecutive reliable RR, HR, and SBP,
DBP, and MAP vital signs.

TPatients with reliable vital signs and were spontaneously breathing (i.e.,
not intubated during transport).

*Four patients had no assigned sex in the total population.

SReceived major respiratory live-saving interventions, including in-
hospital intubation and chest tube.

IReceived blood transfusion in the emergency room and also had
documented injuries that were consistent with major hemorrhage.
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TaBLE 2. Comparison of standard versus reliable RRs for the prediction of major in-hospital respiratory intervention (Resp., A)
and the identification of major hemorrhage (Heme., B)

A. Respiratory intervention (Resp.)

Control (cases) Resp. (cases) Standard RR* (AUCT) Reliable RR¥ (AUC) pS
Population 293 33l 0.59 (Cl, 0.48 — 0.69) 0.67 (Cl, 0.57 — 0.77) 0.03
Thoracic injury 68 25 0.52 (Cl, 0.38 — 0.66) 0.63 (Cl, 0.51 - 0.75) n.s.
Nonthoracic 225 8 0.56 (Cl, 0.37 — 0.74) 0.73 (Cl, 0.49 — 0.89) 0.04
B. Major hemorrhage (Heme.)

Control (cases) Heme. (cases) Standard RR (AUC) Reliable RR (AUC) P
Population 293 33l 0.60 (CI, 0.49 — 0.70) 0.77 (Cl, 0.67 — 0.85) 0.0003
Thoracic injury 77 16 0.56 (Cl, 0.39 — 0.71) 0.76 (Cl, 0.61 — 0.87) 0.0020
Nonthoracic 216 17 0.60 (Cl, 0.45 - 0.73) 0.79 (Cl, 0.66 — 0.89) 0.0002

*Variables are computed as the mean of all nonzero RRs.
TArea under the ROC curve.
*Variables are computed as the mean of all good-quality RRs.

$p value of two-tailed paired comparison of AUCs between standard and reliable RR.
116 cases had both major in-hospital respiratory intervention and major hemorrhage.

Cl indicates confidence interval; n.s., not significant.

might exclude physiological breathing patterns that were truly
irregular. Our major finding was that RR computed from
the smooth, regular, and rhythmic breathing (as assessed by
our computer algorithm), which we termed reliable RR, was
significantly more diagnostic than RR from other noisy or
arrhythmic intervals, for diagnosing both respiratory and cir-
culatory pathologies. We conclude that these special breathing
segments are, on average, physiologically more informative
and provide superior clinical information.

This finding is particularly notable given historical issues
related to RR (6). It is a difficult vital sign to measure,
because partial breaths (which are common) must be either
counted or discounted, and breathing is often irregular (e.g.,
when speaking or swallowing). Also, breathing patterns are
volatile, altered by emotions, conscious control, or even the
patient’s awareness that RR is being measured. There is no
widely accepted electronic tool for measuring RR, and
caregivers’ measurements are often unreliable because of
poor technique. For these reasons, Lovett et al. (6). referred to
RR as the “vexatious vital.” Standard bedside monitors
electronically measure RR by impedance pneumography
derived from continuous electrocardiography. However, even
in a highly controlled intensive care unit setting in which
many patients are sedated or paralyzed, the RR reported by
bedside monitors is frequently inaccurate (7). This may be
because of the inherent ambiguities in measuring RR, or
perhaps because the ECG is vulnerable to serious artifact
caused by patient movement, imperfect ECG lead attachment,
and muscle activity (1, 23).

We speculate that this automated reliable RR method may
offer diagnostic and prognostic value in the evaluation of
numerous pathologies (e.g., respiratory disorders, metabolic
disorders, etc.). For example, RR is an input to the Pneumonia
Patient Outcomes Research Team (PORT) score (24) for the
prognosis of patients with pneumonia and to several prehos-
pital trauma severity indices, including the Trauma Score (25)
and the Prehospital Index (26). In a medical helicopter (the
setting of this investigation), caregivers cannot even hear

breath sounds (4), so an improved method of automati-
cally monitoring RR would be all the more valuable. Indeed,
because accurate RR measurements may be broadly useful, it
has been suggested that it is imperative to develop improved
electronic methods of measuring RR (6). The method used
in this investigation is advantageous in that no additional
hardware (besides a standard patient monitor, in this case a
Propaq monitor) is required, and its diagnostic capability
seems quite promising. A number of alternative options to
monitor RR are available, including capnometry, pneumo-
tachography, nasal thermometry, and extensometry (6). The
general strategy of seeking regular, rhythmic, and clean
breathing intervals might be clinically valid for these sen-
sor modalities as well.

RR and in-hospital respiratory interventions

Reliable RR was statistically superior to standard RR for this
outcome, which validates our hypothesis. It was interesting

TasLE 3. Performance evaluation of reliable vital signs for the
diagnosis of major hemorrhage in trauma casualties

AuCt

Reliable vital sign*

Breath index (RR/PP¥) 0.85 (Cl, 0.77 — 0.91)
PP 0.78 (Cl, 0.69 — 0.86)
Shock index (HR/SBP) 0.78 (Cl, 0.67 — 0.86)
RR 0.77 (Cl, 0.67 — 0.85)
HR 0.74 (Cl, 0.63 — 0.83)
SBP 0.71 (Cl, 0.61 — 0.80)
MAP 0.60 (Cl, 0.49 — 0.71)
DBP 0.55 (Cl, 0.43 — 0.67)

Vital-sign data were computed as the means of all good-quality data
collected during patient transport. The quality of the vital-sign data was
determined by computer algorithms.

*Variables were computed as the mean of all good-quality data during
transport.

TArea under the ROC curve.

*PP = SBP — DBP.
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hemorrhage outcome
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Fic. 2. Distribution of standard (upper panels) and reliable (lower panels) RRs in high acuity (i.e., with major in-hospital respiratory intervention
[left panels] and with major hemorrhage [right panels]) versus control patients.

to note that the ROC AUCs were mediocre, however. When
we excluded patients with chest trauma, reliable RR yielded a
trend toward better AUCs. When we examined the subpopula-
tion with documented thoracic injuries, the AUCs were the
lowest in our study. It may be that chest injury has an incon-
sistent effect on RR. We speculate that the respiratory impair-
ment of major chest injury would drive tachypnea, whereas the
pain associated with chest injury might retard tachypnea.
Although reliable RR seems superior to standard RR for
identifying this outcome, its clinical utility may be modest.

RR and major hemorrhage

One interesting finding of this report is the notable value of
reliable RR in the diagnosis of major hemorrhage with pre-
hospital physiological data. This finding is one example of
how a superior method of measuring RR might have wide clin-
ical utility, especially when combined with additional clinical
data. Specifically, in our univariate analysis, reliable RR was
diagnostically quite similar to HR and SBP in the diagnosis of
major hemorrhage, in terms of ROC AUCs. (By contrast, diag-
nosing hemorrhage using standard RR, which included noisy
or uneven breathing intervals, was barely better than flipping
a coin—AUC = 0.60.) Moreover, when scaled by PP, reliable
RR provided the highest AUC, as shown in Table 3, although
these exploratory findings were not subjected to formal
statistical testing and may represent, to some extent, random
variability. Future investigation is warranted.

It is not surprising that reliable RR was useful in diagnosing
hemorrhage, when one considers decades of prior physiolog-
ical laboratory research. Based on a feline model, it is known
that hemorrhage may induce tachypnea, via a reflex mediated
by the carotid body chemoreceptors. A reduction in blood
pressure or increase in peripheral vasoconstriction leads to a
pronounced reduction of blood flow and oxygen delivery to
the chemoreceptors, producing “stagnant hypoxia” within the
chemoreceptors (i.e., local tissue hypoxia caused by reduced
perfusion). The chemoreceptors then stimulate the medul-

lary respiratory center and trigger tachypnea. The carotid
body chemoreceptor serves as a “bellwether” of impaired
global circulation because it is exceptionally sensitive to any
reduction in perfusion, in terms of developing local tissue
hypoxia (27-31). The chemoreceptors may further be excit-
ed by metabolic acidosis (specifically, lactic acidosis caused
by circulatory shock and perhaps an increase in global
metabolic activity mediated by epinephrine) (32). Another
respiratory reflex, originating in the arterial baroreceptors,
stimulates respiration when blood pressures fall, although
this seems to be of secondary importance (27).

Limitations

Like any vital sign, RR must be interpreted in context, and
clinical judgment or additional clinical information inevitably
enhances its clinical utility. In the case of using RR to detect
major hemorrhage, it is possible that pain or fear, common in a
trauma population, could be sources of “false positives,”
because epinephrine and norepinephrine alone can stimulate
tachypnea (33). (However, catecholamines also raise blood
pressure, which preserves carotid body perfusion and sup-
presses chemorecepter discharge despite vasoconstriction (34).
In the laboratory, supplemental oxygen also suppresses the
tachypneic response caused by isolated catecholamines) (33).

Similarly, it is possible that casualties with thoracic injuries
would not mount as consistent a tachypneic response to
hemorrhage, nor would patients with altered mental status. In
our subpopulation analyses, examining those patients with
documented thoracic trauma, we found a slight trend toward
reduced ROC AUCs, which might mean that the association
between chest injury and tachypnea is less consistent (note
also that the confidence intervals for those AUCs are wider,
reflecting the reduced sample sizes of the subpopulations).
We were not able to quantitatively explore the effects of al-
tered sensorium on RR because there were few spontaneously
breathing casualties with reduced Glasgow Coma Scale
(yielding meaningless AUC confidence intervals that were
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greater than +0.25). In any case, when applied to our overall
study population, without any special consideration for
confounding factors, we found that reliable RR was statisti-
cally superior to standard RR for the diagnosis of respiratory
and circulatory pathological findings.

A major limitation to our method is that it is not “on-
demand.” Rather, the method requires passive observation
until the patient spontaneously evidences five or more consec-
utive seconds of clean, regular respiration. Given an average
26 minutes of prehospital data for each subject, we found
reliable RR data in only 57% of these cases. This paucity of
reliable RR data was primarily because of noise artifacts in
the pneumogram/ECG recorded during helicopter transport:
when we examined the ECG waveforms from this database
of prehospital Propaq records, we found that most of 7-s ECG
segments contained enough noise artifact to obscure one or
more QRS complexes (16). It is possible that in-hospital data
would have fewer artifacts and be more usable. In the future,
because the algorithm determines RR reliability automati-
cally, a monitor could certainly indicate whenever the mea-
sured RR was unreliable. If notified that the RR is unreliable,
the caregiver may be able to rectify the situation, for example,
keeping the patient still and silent for several seconds,
replacing loose ECG leads, and so on. Overall, this automated
method may be most applicable for applications that are not
time-sensitive (e.g., PORT scoring for pneumonia patients)
rather than applications that are time-sensitive (e.g., monitor-
ing for respiratory arrest, initial triage evaluations, etc.).
A hybrid solution may be valuable, in which reliable RR is
used whenever it is available, but if not, standard RR is
used instead.

The final limitation is the retrospective nature of this
analysis. Moreover, there is a technical barrier to implement-
ing these algorithms so that they function in real time as
part of prospective investigation and clinical dissemination.
We have started to develop a platform that can run, in real
time, our RR reliability algorithm, as well as a wide range
of additional advanced algorithms to interpret continual phy-
siological data. Also, governmental, corporate, and medical
groups are actively planning “plug-and-play” monitoring sys-
tem architectures (35), which will facilitate the dissemina-
tion of novel physiological algorithms (5, 36—41). Ultimately,
reliable RR might be indicative of circulatory, respiratory,
infectious, neurological, and metabolic pathologies and hence
valuable to a wide range of medical applications, including
triage, diagnosis, prognosis (i.e., clinical scores), and auto-
mated alarms.
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