
  

  

Abstract—Recent reports suggest that photoplethysmo- 

graphy (PPG), which is a component of routine pulse oximetry, 

may be useful for detecting hypovolemia. An essential step in 

extracting and analyzing common PPG features is the robust 

identification of onset and peak locations of the vascular beats, 

despite varying beat morphologies and major oscillations in the 

baseline. Some prior reports used manual analysis of the PPG 

waveform; however, for systematic widespread use, an 

automated method is required. In this paper, we report an 

algorithm that automatically detects beat onsets and peaks from 

noisy field-collected PPG waveforms. We validated the 

algorithm by clinician evaluation of 100 randomly selected PPG 

waveform samples. For 99% of the beats, the algorithm was able 

to credibly identify the onsets and peaks of vascular beats, 

although the precise locations were ambiguous, given the very 

noisy data from actual clinical operations. The algorithm 

appears promising, and future consideration of its diagnostic 

capabilities and limitations is warranted.  

I. INTRODUCTION 

ECENTLY, it has been suggested that photoplethys- 

mography (PPG), which is a component of routine pulse 

oximetry, may be useful for detecting hypovolemia [1-3]. 

This prospect is attractive because PPG is an entirely 

non-invasive measurement that is nearly ubiquitous 

throughout a wide spectrum of clinical arenas where routine 

vital signs are measured. What has been observed is that 

exaggerated PPG pulse variability (in terms of amplitude and 

baseline oscillation) due to respiration is associated with 

hypovolemic states [1, 2]. This effect is analogous to pulsus 

paradoxus, which is a similar variability of arterial blood 

pressure. 

However, despite the widespread use of PPG monitoring 

for hospitalized patients, published evidence supporting the 

clinical utility of PPG in hemorrhage detection is limited. One 

factor may be that, while these PPG measurements are 

relatively easy to obtain in a clinical arena, there are 
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insufficient data analysis tools for efficiently processing the 

biomedical data. For instance, in one report, Shamir et al. [2] 

relied on hand measurements of paper recordings of the PPG 

waveform. Golparvar et al. [3] videotaped the PPG waveform 

and then measured the investigational PPG features in units of 

pixels of a video display. The Masimo SET pulse oximeter [4] 

does automatically output its own “perfusion index,” defined 

as a ratio of the measured PPG pulsatile amplitude to its DC 

component, but this is essentially a “black-box” tool because, 

for an individual research subject, the actual data processing 

can be neither examined nor evaluated by the investigator. As 

a result, such a black-box tool may be suboptimal for some 

kinds of academic research in which a basic understanding of 

the underlying phenomenon is sought. 

In this paper, we report a non-proprietary method for 

PPG-waveform analysis. In some ways, this signal- 

processing problem is analogous to electrocardiogram beat 

detection, e.g., R-wave detection algorithms. However, the 

morphology of the PPG, in which each beat is more rounded 

and less distinct than a QRS complex, raises unique 

considerations. The PPG waveform also has a tendency to 

exhibit notable “random” baseline oscillation. Therefore, beat 

detection of the PPG waveform is also different from beat 

detection of a continuous arterial blood pressure waveform 

(e.g., Zong et al. [5]); the latter is typically measured only in 

intensive care units and thus is much less prone to such 

“random” baseline oscillation.  

II. METHODS 

A. Trauma dataset 

This study was based on vital-sign data collected from 898 

prehospital trauma patients, measured in the field by Propaq 

206EL transport monitors (Protocol Systems; Beaverton, 

OR), downloaded to an attached personal digital assistant, 

and ultimately stored in our database [6]. The PPG waveform 

was recorded at 91 Hz. We have previously developed 

algorithms to quantify the reliability of field-collected 

waveforms and vital signs [7, 8]. In this paper, we report an 

algorithm to locate beat onset and peak positions from the 

PPG waveforms.  

B. Onset and peak identification algorithm 

We identified beat onsets and peaks from PPG waveforms 

in four stages: (1) PPG preprocessing and outlier removal, 

which removed outlier and missing data points; (2) PPG 

waveform smoothing and baseline establishment, where we 

computed three auxiliary smoother waveforms; (3) peak 
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identification, where we detected true peaks; and (4) onset 

detection, where we identified beat onset locations. Fig. 1 

together with the following description details the algorithm. 

Stage 1. PPG preprocessing and outlier removal. We 

defined outliers of PPG waveforms as missing data points or 

data points with values >20 times the median waveform 

height. We linearly interpolated outlier data points that lasted 

for <0.2 s and used the resulting waveform, denoted as w0, as 

the starting signal for beat onset and peak detection. Fig. 1(a) 

illustrates an exemplary preprocessed PPG waveform w0 in 

our database. Since there are no outlier data points in this 

example, the original waveform is exactly the same as w0.  

Stage 2. PPG waveform smoothing and baseline 

establishment. In this stage, we estimated the frequency of the 

heartbeats and computed three auxiliary waveforms with 

increasing smoothness: (i) a mildly smoothed waveform w1, 

which removed minor noise and sharp spikes; (ii) a 

low-pass-filtered waveform w2, which removed ectopic 

peaks; and (iii) a moving-average estimate of the waveform 

baseline b for peak detection.  

We estimated the frequency of heartbeats in the input PPG 

waveform w0 by power spectrum analysis. Specifically, we 

linearly detrended w0 and computed its power spectrum 

density in the frequency domain using fast Fourier transform 

from MATLAB (Version 7.7). We estimated the frequency of 

the heartbeats as the frequency corresponding to the 

maximum power spectrum in the 0.8-3.0 Hz range 

(corresponding to normal heart rates from 50 to 180 

beats/min) and estimated the average beat-to-beat interval as 

its reciprocal value. In Fig. 1(b), the frequency of the 

heartbeats is estimated to be ~1.5 Hz, with a corresponding 

beat-to-beat interval of 0.67 s. Based on this estimate, we 

computed the following three smoother waveforms: 

i) Mildly smoothed waveform w1. We first smoothed the 

waveform w0 using a center median filter, with a window size 

set to one-fifth of the estimated beat-to-beat interval, 

followed by a center moving-average filter with the same 

window size. (The median filter was a robust filter but might 

introduce edge jitters. The moving-average filter reduced 

such edge jitters and enhanced the smoothness of the 

waveform signal.) The two filters removed noise and sharp 

spikes whose frequencies were more than five times that of 

the estimated heart-beat frequency. Fig. 1(c) illustrates that 

the smoothed waveform, denoted as w1, is smoother than w0 

and has slightly lower amplitude at the peak positions. 

ii) Filtered waveform w2. The smoothed waveform w1 

was passed through a third-order, low-pass Butterworth filter 

with a cutoff frequency of one-and-a-half times the estimated 

heart-beat frequency. This filter removed ectopic peaks 

whose frequencies were higher than 1.5 the estimated 

heart-beat frequency. This filtered waveform is denoted as w2. 

Fig. 1(c) illustrates that two potential peaks on w1 between 

517 and 518 s are filtered out, resulting in only one peak on w2 

in this time interval. 

iii) Baseline b. We estimated a baseline b of the PPG 

waveform by applying a center moving-average filter to 

waveform w2, with a window size set to 1.5 of the estimated 

beat-to-beat interval. This selection attempted to optimize the 

 
Fig. 1.  Illustration of the onset and peak detection algorithm on an exemplary PPG waveform. Panel (a) shows the preprocessed waveform w0, which, in 

this case, is identical to the original waveform. Panel (b) shows the power spectrum density of w0 and that the frequency of the heartbeats is ~1.5 Hz. Panel 

(c) shows three additional auxiliary waveforms derived from w0. Panel (d) shows the initial peaks and potential false peaks identified by the algorithm. 

Panel (e) shows the locations of true peaks. Finally, Panel (f) shows the locations of beat onsets identified by the algorithm.  
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detection of PPG peaks at the heart-beat frequency [7] as 

discussed below in the onset and peak detection stages. Fig. 

1(c) shows that baseline b is smoother than the filtered 

waveform w2 and reflects the baseline fluctuation of the PPG 

waveform.  

Stage 3. Peak identification. We identified PPG peaks in 

three steps: (i) the identification of initial peaks, where we 

selected a set of initial peaks; (ii) the detection of potential 

false peaks, where we assessed the validity of each initial 

peak by analyzing the height of each peak and the 

peak-to-peak interval (to its preceding peak); and (iii) the 

relocation of potential missed peaks.  

i) Identification of initial peaks. We identified an initial 

set of peaks on w0 by finding a local maximum in each time 

interval where the filtered waveform w2 is above the baseline 

b [Fig. 1(d)]. 

ii) Detection of potential false peaks. We detected 

potential false peaks from the initial set by imposing certain 

requirements on the peak’s height and peak-to-peak interval. 

First, we sorted all peaks on w0 by height in increasing order 

and selected the height value at the 2/3 length position. Next, 

we required that each initial peak had a height greater than 

half of the selected height value. Then, we computed the 

median absolute deviation (MAD) of the peak-to-peak 

intervals t, with MAD = median[|t-median(t)|], and required 

that each interval not deviate from the median interval by 

more than two times MAD. We marked the PPG peaks not 

satisfying these two conditions as potential false peaks and 

the remaining as true peaks [Fig. 1(d)]. 

iii)  Relocation of missed peaks. For intervals between 

true PPG peaks on w0 where potential false peaks were 

detected, we attempted to relocate putative false peaks and 

identify the locations of true ones. Specifically, starting from 

the left-boundary position of each interval, we advanced 

median(t) seconds and marked this point as the expected 

position of the next peak. Next, we searched around the 

expected position to identify a local maximum on the 

smoothed waveform w1 within a window size of length set to 

MAD. If the local maximum was located at either end of the 

window, we increased the window size by MAD seconds and 

repeated the process until the maximum was located inside 

the window. Then, we identified the equivalent maximum on 

w0 and labeled it as the next peak. Starting from this newly 

discovered peak position, we repeated the procedure above 

until we reached the end of the interval and by doing so 

recovered multiple consecutive missed peaks. We did not 

impose the peak height and peak-to-peak interval conditions 

described in the previous step on these newly discovered 

peaks and deemed them to be true peaks. Fig. 1(e) illustrates 

that a missed peak was recovered at 515 s, a potential false 

peak was confirmed to be a true peak between 515 and 516 s, 

and a false peak was relocated to an earlier time with a lower 

peak height between 518 and 519 s. 

Stage 4. Onset detection. We identified the onset position 

corresponding to each true peak in three steps. First, we found 

ranges where w0 was below both the filtered waveform w2 and 

the baseline b. This was to ensure that the identified onsets 

would be insensitive to different selections of baselines (here 

we considered the filtered waveform w2 as another potential 

baseline). Second, if there were multiple ranges identified, we 

ranked them based on their lengths, and selected the 

rightmost one from the top two ranges. This ensured that, 

when multiple potential onsets existed, we would find the 

major one closer to the left of the peak. Finally, we identified 

the minimum position on the waveform w0 in the selected 

range as the onset location. Fig. 1(f) illustrates the onsets 

identified by the algorithm. 

C. Evaluation of the onset and peak detection algorithm 

We validated the onset and peak detection algorithm by 

having an experienced clinician subjectively evaluate 30-s 

PPG waveform samples from 100 randomly selected 

subjects. We only included samples that were determined to 

be “reliable” according to our previously reported algorithm, 

which locates clean PPG waveform segments [8]. The 

clinician reviewed each identified beat, and sought to identify 

false beats, i.e., beats probably not due to a vascular pulsation, 

and missed beats.  

III. RESULTS 

The 100 selected subjects had an average age of 39 yr 

(standard deviation 14 yr), including 72% male and 28% 

female, 13% prehospital intubated, 8% major hemorrhage, 

and 4% mortality rate. Except for a lower mortality rate 

(p=0.02) than the overall population of 898 patients (where 

the mortality rate was 10%), there were no statistically 

significant differences between this group and the overall 

population.  

From the 100 sample waveforms, the algorithm identified 

4605 peaks and 4505 onsets (the onset of the first peak was 

not identified in each segment). The human expert evaluated 

every peak and found 15 “probably bad” peaks, i.e., beats 

unlikely to be related to vascular pulsation, and zero missed 

peaks.  

Fig. 2 shows typical onsets and peaks identified by the 

algorithm as well as the expert’s evaluation of the 

questionable peaks (we show 15 s each due to limited space). 

Panel I shows two very clean PPG waveforms from which the 

algorithm correctly identified all peaks. Panel II shows some 

typical noisy waveforms with different morphologies, where 

the human expert determined that the algorithm had identified 

credible onsets and peaks. Finally, Panel III shows waveform 

samples where the expert identified one or more questionable 

peaks.  

IV. DISCUSSION AND CONCLUSIONS 

Our algorithm is able to adapt itself to different 

morphologies of PPG waveforms, detecting onsets and peaks 

from noisy waveforms that show substantial baseline 

instability. This automated algorithm may be useful for 

certain clinical investigations, which, in prior reports, 

required manual analysis of the PPG [2, 3]. The algorithm’s 
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credible performance may be attributed to its use of multiple 

auxiliary waveforms with different levels of filtering, each of 

which accounted for different degrees of waveform 

variability. Its adaptive property may be particularly desirable 

for field use, where the morphology of the PPG waveform can 

change rapidly because of medic intervention or patient 

movement and the noisy nature of PPG measuring devices. 

The major limitation of this report is the inherent challenge 

of validating noisy field data: given such waveforms from an 

uncontrolled prehospital environment, it is impossible to 

determine the precise “true” location of the beat onsets and 

peaks. This could, however, be resolved through simulations 

of clean signals with known superimposed noise. Also, we 

did not evaluate the diagnostic utility of our algorithm, i.e., 

whether it can yield superior information for the early 

diagnosis and prognosis of patient pathologies.  

In our validation exercise, we found that, for the vast 

majority of cases, the algorithm’s findings were credible, i.e., 

the identified beat onset and peak were “probably” due to a 

vascular pulsation. It was also apparent, though, that in many 

cases, these pulsations were quite distorted, even though the 

algorithm did a credible job of identifying the beat’s onset 

and peak. In the future, it may or may not be advantageous to 

filter out excessively distorted beats from diagnostic 

consideration (or use additional waveform-cleaning methods 

to reduce the distortion). We are actively pursuing an 

evaluation of the diagnostic applications of the PPG 

waveform features, and evaluating whether there is diagnostic 

benefit to further filtering of excessively distorted beats. 

DISCLAIMER 

The opinions or assertions contained herein are the private 

views of the authors and are not to be construed as official or 

as reflecting the views of the U.S. Army or the U.S. 

Department of Defense. 
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Fig. 2.  Typical photoplethysmography (PPG) waveforms (black lines) from our database along with the detected peaks (rectangles) and detected onsets 

(triangles) identified by our algorithm. Panel I shows two very clean waveforms; Panel II shows eight noisy waveforms with varying morphologies, 

including missing (unconnected lines) and outlier data (vertical lines) in (e), where a human expert determined that the algorithm had identified credible 

onsets and peaks; and Panel III shows four noisy waveforms where the human expert considered five peaks as questionable (marked by arrows). 
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